JPS63956A - Luminous device - Google Patents

Luminous device

Info

Publication number
JPS63956A
JPS63956A JP14387786A JP14387786A JPS63956A JP S63956 A JPS63956 A JP S63956A JP 14387786 A JP14387786 A JP 14387786A JP 14387786 A JP14387786 A JP 14387786A JP S63956 A JPS63956 A JP S63956A
Authority
JP
Japan
Prior art keywords
discharge tube
temperature
discharge
light
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14387786A
Other languages
Japanese (ja)
Inventor
Katsuya Oikawa
克哉 及川
Hidemi Egami
江上 秀己
Katsuo Saito
斎藤 勝雄
Hiroshi Satomura
里村 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14387786A priority Critical patent/JPS63956A/en
Priority to US07/061,552 priority patent/US4797598A/en
Publication of JPS63956A publication Critical patent/JPS63956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To prevent the variation of light quantity and to stablize the luminous device, by arranging the lowest temperature part at the position projecting from the discharge tube and the position lower than the discharge starting level. CONSTITUTION:A phosphor is spread in a slender form glass tube, a discharge starting member such as mercury and an inert gas such as Ar are sealed, and moreover, a coil-form electrode 2 is furnished to compose a discharge tube 1. Then, a high-frequency voltage is applied to the electrode 2 from a high-frequency applying device 3 to discharge to get a radiation. In this case, a projection 4 is arranged to be the coolest part 41 at the part of the glass tube end, where the intensity of the high-frequency electromagnetic field is lower than the discharge starting intensity. By controlling the temperature with a temperature control device 5, the variation of the saturated vapor pressure of the mercury is controlled. Therefore, as well as the quanty of the light is stabilized, a luminous device of a high brightness and a long service life can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一般には種々の用途に利用し得る照明装置に
関するものであり、特に事務機器等において原稿を照射
し原稿画像を読取る原稿読取り装置、つまり露光手段等
に好適に使用し得る照明装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention generally relates to a lighting device that can be used for various purposes, and in particular to a document reading device that illuminates a document and reads a document image in office equipment, etc. In other words, the present invention relates to an illumination device that can be suitably used as an exposure means or the like.

(背景技術) 従来、原稿読取り装置等の照明装置として有効な長尺(
細長形状)の光源としては、細長形状の蛍光灯やハロゲ
ンランプ等が頻繁に使用されている。
(Background Art) Conventionally, long lamps (
As elongated light sources, elongated fluorescent lamps, halogen lamps, and the like are frequently used.

蛍光灯は、光量が小さ《、通常は低速用の事務機器用の
照明装置として使用されており、該蛍光灯を、最近要望
されている高速事務機器の照明装置として使用するべく
供給電力を増大し輝度(発光光量)を向上せしめると、
蛍光管内部に設置された内部フィラメントが溶解するた
め、供給電力の増大にも限界があり、現実には高速事務
機器用照明装置としては不適である。
Fluorescent lamps have a small amount of light and are usually used as lighting devices for low-speed office equipment.In order to use fluorescent lamps as lighting devices for high-speed office equipment, which is currently in demand, the power supply has been increased. By increasing the brightness (amount of light emitted),
Since the internal filament installed inside the fluorescent tube melts, there is a limit to how much power can be supplied, and in reality, it is unsuitable as a lighting device for high-speed office equipment.

一方、ハロゲンランプは発光光量が大であり、高速の事
務機器用として使用されているが、事務機器の原稿読取
りに必要とされる可視光域より赤外領域の波長の光を多
く発生し、発光効率が悪いのみならず、斯る波長により
もたらされる発熱が大きく、この発熱作用を軽減せしめ
るべく冷却装置、特に大型の冷却装置が必要とされ、事
脩機器の小型化、低価格化が望まれている今日では好ま
しい照明装置とは言えない。
On the other hand, halogen lamps emit a large amount of light and are used for high-speed office equipment, but they emit more light in the infrared range than the visible light range required for reading documents in office equipment. Not only is the luminous efficiency low, but the heat generated by such wavelengths is large, and in order to reduce this heat generation effect, a cooling device, especially a large cooling device, is required. It cannot be said that it is a desirable lighting device in today's world.

本出願人は、上記従来の蛍光灯及びハロゲンランプの欠
点を解決する、一般の照明用は勿論、特に事務機器の原
稿読取り装置として好適な細長形状の照明装置を提案し
た(特願昭60−78782号)。
The present applicant has proposed an elongated illumination device which solves the drawbacks of the conventional fluorescent lamps and halogen lamps and is suitable not only for general illumination but also particularly for document reading devices for office equipment (Japanese Patent Application No. 1986- No. 78782).

該照明装置は、第3図に図示されるように、高周波電磁
界により発光する放電管1aと、該放電管の外壁に配設
された電極2aと、該電極に高周波を印加する高周波印
加手段3とを具備する。
As shown in FIG. 3, the lighting device includes a discharge tube 1a that emits light by a high-frequency electromagnetic field, an electrode 2a disposed on the outer wall of the discharge tube, and a high-frequency applying means for applying a high frequency to the electrode. 3.

更に説明すれば、第3図において、放電管1aは、通常
ソーダガラス又はパイレツクスガラスで作成された細長
形状のガラス管内に蛍光体を塗布して形成され、且つ放
電管内部には水銀の如き放電開始材及びArゐ如き不活
性ガスが封入される。又、放電管1aの両端に又は両端
近傍には導電体にて形成される、酸化の少ない例えば銅
又はステンレス等とされる電極2aが配設される。該電
極は、放電管外壁から僅かに離間して設けることもでき
るが通常放電管の外壁に密着して設けられることが放電
管に加わる電力損失が小さいため好ましい。
To explain further, in FIG. 3, the discharge tube 1a is formed by coating a phosphor inside an elongated glass tube, usually made of soda glass or pyrex glass, and containing mercury or the like inside the discharge tube. A discharge initiating material and an inert gas such as Ar are sealed. Furthermore, electrodes 2a made of a conductive material, such as copper or stainless steel, which are less likely to be oxidized, are arranged at or near both ends of the discharge tube 1a. Although the electrode can be provided slightly apart from the outer wall of the discharge tube, it is usually preferable to provide the electrode in close contact with the outer wall of the discharge tube because the power loss applied to the discharge tube is small.

上記電極2aには、高周波印加手段3にて高周波電圧が
印加される。この高周波印加手段3から電極2aに高周
波電圧が印加されると、放電管内の水銀ガスは高周波電
磁界により励起状態となり、紫外線を発生する。該紫外
線は放電管内壁に塗布された蛍光体に作用し可視光域の
光を発生せしめる。
A high frequency voltage is applied to the electrode 2a by a high frequency applying means 3. When a high frequency voltage is applied to the electrode 2a from the high frequency applying means 3, the mercury gas within the discharge tube is excited by the high frequency electromagnetic field and generates ultraviolet rays. The ultraviolet rays act on the phosphor coated on the inner wall of the discharge tube to generate light in the visible light range.

第4図には、他の態様の照明装置が示されるが、第3図
の照明装置とは、電極の構成が相違するものである。つ
まり本例の電極2は、第3図に関連して説明した放電管
1aと同様の構成とされる細長形状の放電管1aの長手
方向に沿って複数回コイル状に巻付けられた形態にて該
放電管1aの外壁に設けられている点で異なり、高周波
印加手段3より電極2に高周波電圧が印加される。
FIG. 4 shows another embodiment of the illumination device, which differs from the illumination device of FIG. 3 in the structure of the electrodes. In other words, the electrode 2 of this example is wound in a coil shape multiple times along the longitudinal direction of the elongated discharge tube 1a, which has the same configuration as the discharge tube 1a described in connection with FIG. The difference is that the electrode 2 is provided on the outer wall of the discharge tube 1a, and a high frequency voltage is applied to the electrode 2 by a high frequency applying means 3.

尚、第4図の照明装置には第3図の照明装置に比較し電
極により大きな電力を印加することができ、より大きな
光量を得ることができる点に特徴があり、原稿読み取り
装置等の大きい光量が求められるものにとっては好まし
いものである。
The illumination device shown in FIG. 4 is characterized by being able to apply a larger amount of power to the electrodes and obtain a larger amount of light than the illumination device shown in FIG. 3. This is preferable for things that require a large amount of light.

上記第3図〜第4図に示す照明装置は、電極2,2aが
放電管の外部に設けられており、従来の蛍光灯及びハロ
ゲンランプ等のように放電管内部にフィラメントを有し
ておらず、電極が劣化する度合が極めて少なく、又劣化
した時点で電極を交換することもでき、常に所望の大き
さの輝度(光量)を得ることが可能である。更に、斯る
照明装置は、電極に大電力を印加することができ、光量
の増大を図ることが可能である。
In the lighting device shown in FIGS. 3 and 4 above, the electrodes 2 and 2a are provided outside the discharge tube, and unlike conventional fluorescent lamps and halogen lamps, the lighting device does not have a filament inside the discharge tube. First, the degree of deterioration of the electrodes is extremely small, and the electrodes can be replaced once they have deteriorated, making it possible to always obtain a desired level of brightness (light amount). Furthermore, such a lighting device can apply a large amount of power to the electrodes, making it possible to increase the amount of light.

一方、この照明装置は放電管内の水銀の如き放電開始材
の励起による紫外線発光がその発光源となるため、該放
電開始材気体の蒸気圧変化による紫外線発光効率変化に
より、発光効率が変動する。
On the other hand, in this lighting device, the light emission source is ultraviolet light emission due to the excitation of a discharge initiator such as mercury in the discharge tube, so the luminous efficiency fluctuates due to a change in the ultraviolet light emission efficiency due to a change in the vapor pressure of the discharge initiator gas.

紫外線発光効率は放電管壁温度30°〜50’ 付近に
頂点を持ち、高温になるにつれこの放電開始材気体の温
度による飽和水蒸気圧上昇により低下する。以上の理由
によりこの照明装置は、高周波電磁界による放電管の昇
温に伴い発光量の低下が起こり、長時間点灯すると光量
が低下していくことが確認された。即ち、放電管の温度
が変化すると発光量が変動してしまう。
The ultraviolet light emission efficiency peaks near the discharge tube wall temperature of 30 DEG to 50 DEG, and decreases as the temperature increases due to an increase in saturated water vapor pressure due to the temperature of the discharge starter gas. For the above reasons, it has been confirmed that in this lighting device, the amount of light emitted decreases as the temperature of the discharge tube increases due to the high-frequency electromagnetic field, and the amount of light decreases when the lighting device is turned on for a long time. That is, when the temperature of the discharge tube changes, the amount of light emitted changes.

(発明の目的) 本発明は高輝度、長寿命の照明装置であって、光量変・
動がな《安定した光量の得られる照明装置を提供するこ
とを目的とする。
(Object of the invention) The present invention is a high-intensity, long-life lighting device that
The purpose of the present invention is to provide a lighting device that can provide a stable amount of light without any fluctuation.

(発明の概要) 本発明は上記目的を達成するたやのクレームであります
(Summary of the invention) The present invention is a claim that achieves the above object.

(発明の実施例) 第1図に本発明の実施例の照明装置の概略構成を示す。(Example of the invention) FIG. 1 shows a schematic configuration of a lighting device according to an embodiment of the present invention.

本装置の放電管1は、第3図に関連して説明したとほぼ
同様に、通常ソーダガラス又はバイレツクスガラスで作
成された直径5〜30mm,長さが3 0 0 m m
の細長形状のガラス管内に蛍光体を塗布して形成される
が、第3図の放電管とは異なり最冷点部41を具備する
。放電管内部には水銀の如き放電開始材及びArの如き
電離可能な始動用不活性ガスが数Torr封入される。
The discharge tube 1 of the present device is generally made of soda glass or virex glass and has a diameter of 5 to 30 mm and a length of 300 mm, substantially as described in connection with FIG.
The discharge tube is formed by coating a phosphor inside an elongated glass tube, but unlike the discharge tube shown in FIG. 3, it has a coldest point part 41. Inside the discharge tube, a discharge starting material such as mercury and an ionizable starting inert gas such as Ar are sealed at several Torr.

また、第4図に関連して説明したと同様に放電管長手方
向に沿って導体線を複数回コイル状に巻きつけた形で電
極2が配される。
Further, the electrode 2 is arranged in the form of a conductor wire wound in a coil shape a plurality of times along the longitudinal direction of the discharge tube, as described in connection with FIG.

この電極には高周波印加手段3より高周波電圧が印加さ
れる構成となっている。
A high frequency voltage is applied to this electrode by high frequency applying means 3.

放電管最冷点部41は電極2に印加された高周波電圧に
より発生する高周波電磁界の強度が放電開始強度以下に
弱まる箇所でこの高周波電磁界によって起こる放電管の
昇温の影響を受けに《い箇所、即ち高周波電磁界の集中
する発光部より離して設定されており、放電管形状を放
電管端を直径を細《直径数mmで長さ50〜l O O
 m mに延長し、L字状に曲げた型の突出部分4の先
端部41として設けられるがこの放電管形状は本発明装
置の設置条件により、前記条件を満たす範囲で、例えば
放電管中央よりT字型に延長せし細径部又はコ字型に曲
げた細径部に最冷点部を設定することも可能である。
The coldest point part 41 of the discharge tube is a place where the strength of the high-frequency electromagnetic field generated by the high-frequency voltage applied to the electrode 2 weakens below the discharge starting strength, and is not affected by the temperature rise of the discharge tube caused by this high-frequency electromagnetic field. It is set away from the light emitting part where the high frequency electromagnetic field is concentrated, and the discharge tube shape is set so that the end of the discharge tube has a narrow diameter (several mm in diameter and 50 to 100 liters in length).
This discharge tube shape is provided as the tip 41 of the protruding portion 4 which is bent into an L-shape and extends to a length of 5 mm, but depending on the installation conditions of the device of the present invention, the shape of the discharge tube is within the range that satisfies the above conditions, for example, from the center of the discharge tube. It is also possible to set the coldest point part in the narrow diameter part extended in a T-shape or in the narrow diameter part bent in a U-shape.

温度変化による光量変動は内部の飽和蒸気圧の変動に起
因する。この最冷点部を設けることにより内部の飽和蒸
気圧は最冷点によって決定されるため、光量変動は大き
く減少させうる。
Fluctuations in light intensity due to temperature changes are caused by fluctuations in internal saturated vapor pressure. By providing this coldest point portion, the internal saturated vapor pressure is determined by the coldest point, so fluctuations in the amount of light can be greatly reduced.

放電管最冷点部には温度調節手段5が具備されている。A temperature control means 5 is provided at the coldest point of the discharge tube.

高周波印加手段3より電極2に印加された周波数I M
 H z 〜1 0 2 M H z ,電圧vpp2
oov以上、デューテイー比5〜90%の高周波電圧に
より発生した高周波電磁界により放電管の水銀の如き放
電開始材気体原子が励起され、紫外線(主として253
.7nm)を発生する。この紫外線は放電管内壁に塗布
された蛍光体に作用し、可視光域の光を発光せしめる。
The frequency I M applied to the electrode 2 by the high frequency application means 3
Hz ~ 102 MHz, voltage vpp2
The high-frequency electromagnetic field generated by the high-frequency voltage with a duty ratio of 5 to 90% excites the discharge initiator gas atoms such as mercury in the discharge tube, causing ultraviolet rays (mainly 253
.. 7 nm). This ultraviolet light acts on the phosphor coated on the inner wall of the discharge tube, causing it to emit light in the visible light range.

一方、電極2により発生した前記高馬波電磁界により、
放電管並びに管内気体が昇温し、放電開始材気体の飽和
蒸気圧が変化すると、それに伴い放電開始材気体からの
紫外線発光量が変化し、従って蛍光体よりの可視光の発
光も変動する。この光量変化は30″〜50゜C間に頂
点をもつ凸形で、放電管の管壁温度変化に対し光量変化
として現われる。前記高周波電磁界の集中せし部分では
放電管外璧温度は、印加電圧によっては高周波電磁界が
集中する発光部に於いて200℃以上になり、最冷点部
を具備しない放電管では、この理由で光量が著しく減少
するが、本照明装置の如き最冷点部を具備せし放電管に
於いては、飽和蒸気圧が放電管最低温度部の温度により
決定されるため、放電管最低温度部即ち最冷点部を設け
ることにより、水銀蒸気圧は最冷点部の影響で受けるた
めに光量変動はない。更に好ましくは最冷点部を前記発
光最大量を得る温度(30°C〜50°C間にある)に
保ち温度調節を行なうことにより光量の低下を起こすこ
ともなく安定した大量の光量を得られる。
On the other hand, due to the high horse wave electromagnetic field generated by the electrode 2,
When the temperature of the discharge tube and the gas inside the tube rises and the saturated vapor pressure of the discharge initiator gas changes, the amount of ultraviolet light emitted from the discharge initiator gas changes accordingly, and accordingly, the visible light emission from the phosphor also changes. This light intensity change has a convex shape with an apex between 30" and 50°C, and appears as a light intensity change in response to a change in the discharge tube wall temperature. In the area where the high-frequency electromagnetic field is concentrated, the discharge tube outer wall temperature is Depending on the applied voltage, the temperature at the light emitting part where the high-frequency electromagnetic field is concentrated can reach 200°C or more, and for discharge tubes that do not have a coldest point, the amount of light decreases significantly for this reason. In a discharge tube equipped with a There is no fluctuation in the amount of light because it is affected by the point.More preferably, the amount of light can be reduced by keeping the coldest point at a temperature (between 30°C and 50°C) that produces the maximum amount of light emitted. A large amount of stable light can be obtained without any degradation.

本照明装置の放電管形状では、放電管のL字に曲げられ
た突出部4に於いては電極2に印加された高周波電圧に
より発生せし高周波電磁界の強度は弱く、第11図に示
す如く、該箇所に前記放電管内と同組成同圧の不活性気
体(例えばAr)と放電開始材(例えば水銀)を封じ込
めた、前記放電管細径部と同形状の放電セルを置いても
放電を開始することはなく、該部の高周波電磁界強度が
放電開始強度以下に出来る。実際に細径部4を一体化さ
れた第1図に示した如き形状をもつ放電管1では、放電
管大径部の放電により放電管内の放電気体イオン並びに
電離した電子等により電磁界分布が生じ、それに伴って
放電管細径部にもれ出した電子によって、放電管内気体
の弱い発光が見られるが、該発光は、該細径部4内の気
体に電極により発生した高周波電磁界が放電開始強度以
上となり、開始され持続している放電によるものとは異
なり、該発光部の昇温が極めて少ない。該部分の発光は
主として管内電子運動による誘起された放電のものであ
り、前記放電開始強度以上の高周波電磁界のかかる放電
管太径部の電子運動及びイオン気体運動を伴う放電状態
の如く急激なカス(気体)温度上昇を引き起こさないも
のと考えられる。また該細径部は放電管材質の低熱伝導
率のため高温となる発光部よりの熱を受けずに昇温せず
、周囲温度とほぼ同音となり該細径部は放電最低温度部
となっている。このため該部分を最冷点部として(室温
以上の温度で)、温度調節を行うことにより放電管発光
量の調節及び安定が可能となる。
In the discharge tube shape of this lighting device, the intensity of the high frequency electromagnetic field generated by the high frequency voltage applied to the electrode 2 is weak at the L-shaped protrusion 4 of the discharge tube, as shown in FIG. Even if a discharge cell having the same shape as the narrow diameter portion of the discharge tube is placed in the area, the inert gas (e.g. Ar) and discharge initiating material (e.g. mercury) with the same composition and pressure as in the discharge tube are placed. The high-frequency electromagnetic field strength in the area becomes lower than the discharge starting strength. Actually, in a discharge tube 1 having a shape as shown in FIG. 1 in which the narrow diameter portion 4 is integrated, the electromagnetic field distribution is affected by the discharge body ions and ionized electrons in the discharge tube due to the discharge in the large diameter portion of the discharge tube. Due to the electrons leaked into the narrow diameter part of the discharge tube, weak light emission is observed in the gas inside the discharge tube. The temperature rise in the light emitting part is extremely small, unlike a discharge that is started and continues to exceed the discharge starting intensity. The light emission in this part is mainly due to the discharge induced by the movement of electrons within the tube, and is caused by a sudden discharge state accompanied by the movement of electrons and ionic gas in the large-diameter portion of the discharge tube, which is exposed to a high-frequency electromagnetic field that exceeds the discharge starting intensity. It is considered that this does not cause a rise in gas temperature. In addition, due to the low thermal conductivity of the material of the discharge tube, the narrow diameter part does not receive heat from the high temperature light emitting part and does not rise in temperature, and the temperature becomes almost the same as the ambient temperature, making the narrow diameter part the lowest temperature part of the discharge. There is. Therefore, by making this part the coldest point part (at a temperature higher than room temperature) and adjusting the temperature, it is possible to adjust and stabilize the amount of light emitted from the discharge tube.

最冷点温度調節は、温度調節手段5によって行われる。The temperature adjustment at the coldest point is performed by the temperature adjustment means 5.

該手段の構成は例えば第2図に示す如き、複数個の温度
に応じて電気信号を生ずるサーミスタの如き温度検知手
段6と該温度検知手段よりのアナログ信号をデイジタル
信号に変換するアナログーデイジタル(A/D)変換手
段7、制御手段8、ヒーターの如き加熱手段10並びに
該加熱手段を駆動する駆動手段9から成る。温度検知手
段6は放電管細径部(最冷点部)4に分散して設置され
、温度に応じた電気信号を発生し、該アナログ信号はA
 / D変換手段7でデインタル信号に変換され、制御
手段8では複数個のデイジタル化された温度検出手段か
らの信号を比較し、うち最低温度(最冷点温度)に対応
するものを選択し、さらにあらかじめ設定された最高光
量を与える基準温度と比較し、基準温度以上の温度に対
応する信号入力に対し差分値信号を加熱手段駆動手段9
に送る。加熱手段10は最冷点部分全体に設置され駆動
手段9によって駆動する。最高光量で発光する放電開始
材蒸気圧を与える放電管壁温度は30°〜5 0 ’C
間にあり(本実施例では378C付近)、通常室温より
高温のため、設定温度への冷却は大気の空冷(放熱)を
もって行なわれる。本構成に於いては、強制冷却を行わ
ないため冷却装置の必要性がなく、また温度調節に於い
ても出力ファクターが少な《、単純になり、温度調節手
段が簡略になっている。
The configuration of the means is, for example, as shown in FIG. 2, which includes a temperature detecting means 6 such as a thermistor that generates electrical signals in accordance with a plurality of temperatures, and an analog-digital (analog-digital) converter that converts the analog signal from the temperature detecting means into a digital signal. The system comprises A/D) conversion means 7, control means 8, heating means 10 such as a heater, and driving means 9 for driving the heating means. The temperature detection means 6 is installed in a distributed manner in the discharge tube narrow diameter section (coldest point section) 4, and generates an electric signal according to the temperature, and the analog signal is
/ It is converted into a digital signal by the D conversion means 7, and the control means 8 compares the signals from the plurality of digitalized temperature detection means, and selects the one corresponding to the lowest temperature (coldest point temperature), Furthermore, the heating means driving means 9 compares the temperature with a reference temperature that provides the preset maximum amount of light, and outputs a difference value signal to a signal input corresponding to a temperature equal to or higher than the reference temperature.
send to The heating means 10 is installed over the entire coldest point portion and is driven by the driving means 9. The discharge tube wall temperature that provides the vapor pressure of the discharge initiating material to emit light at the maximum amount of light is 30° to 50'C.
(nearly 378C in this embodiment) and is usually higher than room temperature, so cooling to the set temperature is performed by air cooling (heat radiation) in the atmosphere. In this configuration, there is no need for a cooling device because the compulsory cooling is not performed, and even in temperature control, the output factor is small, and the temperature control method is simplified.

また以上の説明に於いて、制御手段で予め設定した基準
の温度は最高の光量を得る温度に置いたが、設定温度を
室温より高温点にお《ことにより光量調節を行なうこと
も可能である。
In addition, in the above explanation, the reference temperature preset by the control means was set at the temperature at which the maximum amount of light was obtained, but it is also possible to adjust the amount of light by setting the set temperature to a point higher than room temperature. .

第5図に本発明の別の実施例の照明装置を示す。FIG. 5 shows a lighting device according to another embodiment of the invention.

放電管1bは長手方向に沿って細い幅で蛍光体未塗布部
分を持つアパーチャー型で光量を増加する形となってお
り、発光部を金属容器ll中に、細径の最冷点部4を金
属容器外、外気中に置くことを特徴とする。電極2bは
導体線を複数回コイル状に巻いた形状で1組または数組
設置される。電極2bには第1図に説明したと同様の高
周波印加手段より高周波電圧が印加される。高周波印加
手段は全部またはその一部を前記金属容器内に収納する
が、容器外に設置することも可能である。放電管発光光
は金属容器窓部12より外部へ照射される。
The discharge tube 1b is an aperture type having a narrow width in the longitudinal direction and a portion not coated with phosphor to increase the amount of light. It is characterized by being placed outside the metal container and in the open air. The electrodes 2b are formed by winding a conductor wire into a coil shape a plurality of times, and are installed in one or several sets. A high frequency voltage is applied to the electrode 2b by a high frequency applying means similar to that explained in FIG. The high frequency application means is housed in whole or in part within the metal container, but it can also be installed outside the container. The discharge tube emitted light is irradiated to the outside through the metal container window 12.

本構成では、電極近傍に発生する高周波電磁界が金属容
器l1により遮断され、放電管細径部4まで至らず特に
有効である。
This configuration is particularly effective because the high frequency electromagnetic field generated near the electrode is blocked by the metal container l1 and does not reach the narrow diameter portion 4 of the discharge tube.

放電管最低温度部が、発生する高周波電磁界作用部より
隔離され、該高周波電磁界による昇温が、第4図の実施
例よりさらに防止される。また放電管発光部との大気流
による熱的接続も断たれるため、放電管最低温度部温度
は外部周囲温度に固定され、温度調節手段を省略し、外
部周囲温度(室温)により放電管最低温度部の温度調節
を行う。本構成では金属容器内で発生する高周波電磁界
をシールドするため、外部への高周波雑音が軽減される
The lowest temperature part of the discharge tube is isolated from the generated high frequency electromagnetic field acting part, and temperature rise due to the high frequency electromagnetic field is further prevented than in the embodiment shown in FIG. In addition, since the thermal connection with the discharge tube light emitting part due to atmospheric flow is also severed, the temperature of the lowest temperature part of the discharge tube is fixed at the external ambient temperature, and the temperature control means is omitted. Adjust the temperature of the temperature section. This configuration shields the high frequency electromagnetic field generated within the metal container, so high frequency noise to the outside is reduced.

電極2bは第1図に於いて説明した放電管に長手方向に
沿って巻き着けた形状2と比較し放電管長手方向に幅を
とらず、特に放電管細径部と該大径部との接続部分に於
いて、電極の太さによる金属容器内部でのスペースが不
要となり、大径、細径接続部分より直ちに放電管細径部
分を容器外に出し、容器外へ露出せし放電管細径部分の
体積が増加し、高周波電磁界のシールド、及び放電管細
径部分を周囲気温と熱的平衡におくのに効果的な形状と
なっている。
The electrode 2b has a smaller width in the longitudinal direction of the discharge tube than the shape 2 in which it is wound around the discharge tube in the longitudinal direction as explained in FIG. At the connection part, the space inside the metal container due to the thickness of the electrode is no longer required, and the small diameter part of the discharge tube is immediately taken out of the container from the large diameter and small diameter connection parts, and the small diameter part of the discharge tube is exposed outside the container. The volume of the diameter portion has increased, and the shape is effective for shielding high-frequency electromagnetic fields and for keeping the narrow diameter portion of the discharge tube in thermal equilibrium with the ambient temperature.

第6図には、さらに第5図に於いて金属容器外へ露出し
た放電管細径部分の温度調節手段5を具備した構成の実
施例を示す。本構成では第5図の実施例に比べ外部気温
の変動の影響を受けに<<、また第1図に示した実施例
に比べ、放電管細径部分の温度調節の精度が向上し、さ
らに外部への高周波雑音の軽減化の効果を合せ持つ。
FIG. 6 shows an embodiment of the structure which further includes a temperature control means 5 for the narrow diameter portion of the discharge tube exposed to the outside of the metal container in FIG. In this configuration, compared to the embodiment shown in Fig. 5, it is less affected by changes in external temperature, and compared to the embodiment shown in Fig. 1, the accuracy of temperature control in the narrow diameter portion of the discharge tube is improved. It also has the effect of reducing high frequency noise to the outside.

以上の実施例の電極は全てコイル状に導体線を巻いた形
状の電極について説明を行ったが、第3図の如き放電管
発生部両端に金属で形成された電極を設置せしめた構成
を持つ照明装置についても本発明は有効である。
All of the electrodes in the above embodiments have been explained in terms of electrodes in the form of coiled conductor wires, but electrodes made of metal are installed at both ends of the discharge tube generating section as shown in Fig. 3. The present invention is also effective for lighting devices.

第7図は第1図に示した構成の照明装置と第11図に示
した如き、放電管の最冷点を高周波電磁界強度が放電開
始強度以上となる個所に配置した構成の照明装置の放電
管細径部の管壁温度を比較したグラフである。グラフに
表われている様に第1図に示した如き放電開始高周波電
磁界強度以下となる個所に配された細径部は、温度上昇
が少なく、放電管最低温度部となる。
FIG. 7 shows a lighting device with the configuration shown in FIG. 1 and a lighting device with the configuration shown in FIG. 11, in which the coldest point of the discharge tube is located at a location where the high-frequency electromagnetic field intensity is equal to or higher than the discharge starting intensity. It is a graph comparing the tube wall temperature of the discharge tube narrow diameter part. As shown in the graph, the narrow diameter portion located at a location where the intensity of the high frequency electromagnetic field at which the discharge starts as shown in FIG.

第8図に第1図、第6図に示した如き概要構成をもつ本
発明に係る照明装置の発光量と室温の変化を示す。室温
の変化にかかわらず発光量は一定となり外部気温に対し
て安定した発光が実現される。
FIG. 8 shows changes in the amount of light emitted and the room temperature of the lighting device according to the present invention having the general configuration shown in FIGS. 1 and 6. The amount of light emitted remains constant regardless of changes in room temperature, achieving stable light emission relative to the outside temperature.

また、第1図、第6図に示した如き概要構成をもつ本発
明に係る照明装置に於いて、放電管最冷点部の温度を室
温以上にて調節した場合の光量変化を第9図に示す。最
冷点温度30°C〜90°Cの変化に対し、光fi60
%〜100%の広い範囲に亘り変化させることが可能と
なり、最冷点温度を室温(20°C〜3 0 ’C )
以上で調節することによる発光量調節の効果も現われて
いる。
In addition, in the lighting device according to the present invention having the schematic configuration shown in FIGS. 1 and 6, FIG. 9 shows the change in light amount when the temperature of the coldest point part of the discharge tube is adjusted to above room temperature. Shown below. Optical fi60 for changes in coldest point temperature 30°C to 90°C
It is now possible to change the temperature over a wide range from % to 100%, and the coldest point temperature can be changed from room temperature (20°C to 30'C).
The effect of controlling the amount of light emitted through the above adjustment has also appeared.

さらに、第5図、第6図に示した如き構成の照明装置に
於いては、外部高周波雑音軽減の効果を持つ。
Furthermore, the illumination device having the configuration shown in FIGS. 5 and 6 has the effect of reducing external high frequency noise.

(発明の効果) 以上の如く、本発明に係る照明装置は放電管に最冷点を
設け、この最冷点は高周波電磁界による放電開始レベル
以下の場所に設けることにより、最冷点は温度上昇がほ
とんどなく、長期点灯しても光量変動がない。また最冷
点温度を一定にコントロールし、特には発光効率のよい
30°C〜50°Cに調節することにより、発光量を調
節し、さらに安定した最大光量を得ることが可能となる
(Effects of the Invention) As described above, the lighting device according to the present invention has the coldest point in the discharge tube, and by providing the coldest point at a location below the discharge start level caused by the high-frequency electromagnetic field, the temperature of the coldest point is There is almost no increase in the amount of light, and there is no fluctuation in light intensity even when the light is turned on for a long period of time. Furthermore, by controlling the coldest point temperature to a constant value, particularly adjusting it to 30° C. to 50° C., which provides good luminous efficiency, it becomes possible to adjust the amount of light emitted and obtain a more stable maximum amount of light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従った照明装置の概略構成を示す説
明図、 第2図は、第1図の照明装置の温度調節手段のブロック
図、 第3図は、本発明が適用される一つの照明装置の概略図
、 第4図は、本発明が適用される他の照明装置の概略図、 第5図は、本発明に従った他の照明装置の概略構成図、 第6図は、本発明に従った、更に他の照明装置の概略構
成図、 第7図は、第1図に示した構成の照明装置に於ける最冷
点の温度変化を示すグラフ、 第8図は、第1図及び第5図の照明装置を使用し、装置
外部気温を変化させた時の発光量を表すグラフ、 第9図は、第1図及び第5図の照明装置を使用し、放電
管最低温度部を温度変化させた時の発光量の変化を表す
グラフ、 第10図は、放電管細径部を電極コイル内に持つ照明装
置の構成図、 第11図は、高周波電界強度を確かめる方法を説明する
図である。 図において、■は放電管、2は電極、3は高周波印加手
段、4Iは最冷点である。
FIG. 1 is an explanatory diagram showing a schematic configuration of a lighting device according to the present invention, FIG. 2 is a block diagram of a temperature control means of the lighting device of FIG. 1, and FIG. 3 is a diagram to which the present invention is applied. 4 is a schematic diagram of another lighting device to which the present invention is applied; FIG. 5 is a schematic diagram of another lighting device according to the present invention; FIG. 6 is a schematic diagram of another lighting device according to the present invention; , a schematic configuration diagram of still another lighting device according to the present invention; FIG. 7 is a graph showing temperature changes at the coldest point in the lighting device configured as shown in FIG. 1; FIG. Figure 9 is a graph showing the amount of light emitted when the lighting equipment shown in Figures 1 and 5 is used and the temperature outside the equipment is changed. A graph showing the change in the amount of light emitted when the temperature of the lowest temperature part is changed. Figure 10 is a diagram of the configuration of a lighting device that has the narrow diameter part of the discharge tube inside the electrode coil. Figure 11 is a diagram showing the strength of the high-frequency electric field. It is a figure explaining a method. In the figure, ■ is a discharge tube, 2 is an electrode, 3 is a high frequency application means, and 4I is the coldest point.

Claims (1)

【特許請求の範囲】[Claims] 外部から高周波電磁界を印加されて発光する放電管と、
放電管の外部に設けられ放電管に高周波を印加するため
の電極と、この電極に高周波電力を印加する高周波印加
手段と、放電管から突出して設けられた最低温度部と、
を有し、この最低温度部は高周波電磁界が前記電極から
発生する高周波電磁界により放電する放電開始レベル以
下であるところに設けられていることを特徴とする照明
装置。
A discharge tube that emits light by applying a high-frequency electromagnetic field from the outside;
an electrode provided outside the discharge tube for applying high frequency to the discharge tube; a high frequency application means for applying high frequency power to the electrode; a lowest temperature section provided protruding from the discharge tube;
2. A lighting device characterized in that the lowest temperature portion is provided at a location where a high frequency electromagnetic field is below a discharge start level at which discharge is caused by the high frequency electromagnetic field generated from the electrode.
JP14387786A 1986-06-19 1986-06-19 Luminous device Pending JPS63956A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14387786A JPS63956A (en) 1986-06-19 1986-06-19 Luminous device
US07/061,552 US4797598A (en) 1986-06-19 1987-06-15 Illumination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14387786A JPS63956A (en) 1986-06-19 1986-06-19 Luminous device

Publications (1)

Publication Number Publication Date
JPS63956A true JPS63956A (en) 1988-01-05

Family

ID=15349087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14387786A Pending JPS63956A (en) 1986-06-19 1986-06-19 Luminous device

Country Status (1)

Country Link
JP (1) JPS63956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442732A (en) * 1978-09-22 1984-04-17 Shimano Industrial Company Limited Pedal for a bicycle
US6305633B1 (en) 1999-04-09 2001-10-23 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Webbing take-up device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423196A (en) * 1977-07-22 1979-02-21 Sawao Murao Production of protease inhibiting substance
JPS6297298A (en) * 1985-10-21 1987-05-06 松下電工株式会社 Non-electrode discharge lamp apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423196A (en) * 1977-07-22 1979-02-21 Sawao Murao Production of protease inhibiting substance
JPS6297298A (en) * 1985-10-21 1987-05-06 松下電工株式会社 Non-electrode discharge lamp apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442732A (en) * 1978-09-22 1984-04-17 Shimano Industrial Company Limited Pedal for a bicycle
US6305633B1 (en) 1999-04-09 2001-10-23 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Webbing take-up device
AU753339B2 (en) * 1999-04-09 2002-10-17 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Webbing winder

Similar Documents

Publication Publication Date Title
KR910010107B1 (en) Discharge lamp with turning up circuit
US4835442A (en) Lamp for generating ultraviolet radiation
KR910004742B1 (en) Rare gas discharge lamp
JP3078523B2 (en) Visible light generation method
US2765416A (en) Vapor lamps utilizing chemical compounds
HU222169B1 (en) Electrodeless electric lamp unit with heat bridge between the core of transformer and the amalgam and a methode for operating thereof
US4281267A (en) High intensity discharge lamp with coating on arc discharge tube
US2194300A (en) Vapor lamp and method of operation
US2774918A (en) Electric discharge device
JPH0660848A (en) Dc-operated alkali metal vapor arc discharge lamp
JPS63956A (en) Luminous device
US5216322A (en) Method of producing a gas discharge light source
US5027030A (en) Glow discharge lamp having zero anode voltage drop
US4398123A (en) High pressure discharge lamp
JP2007528097A (en) Low pressure mercury vapor discharge lamp
US4097774A (en) Arc discharge flash lamp and shielded cold cathode therefor
JP2006318731A (en) Metal halide discharge lamp and metal halide discharge lamp system
KR102349116B1 (en) Xenon flash lamp
JP2006318729A (en) Metal halide discharge lamp and metal halide discharge lamp system
US3921030A (en) Radiation standard
JP2598323Y2 (en) Small fluorescent tube
JPS6313255A (en) Lighting equipment
JPH1050261A (en) Discharge lamp, lighting system, and display device
JP2862482B2 (en) Small fluorescent tube
JPH10144257A (en) Rare gas discharge lamp