JPS639563B2 - - Google Patents

Info

Publication number
JPS639563B2
JPS639563B2 JP8463784A JP8463784A JPS639563B2 JP S639563 B2 JPS639563 B2 JP S639563B2 JP 8463784 A JP8463784 A JP 8463784A JP 8463784 A JP8463784 A JP 8463784A JP S639563 B2 JPS639563 B2 JP S639563B2
Authority
JP
Japan
Prior art keywords
furnace
burner
cylindrical heat
semi
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8463784A
Other languages
Japanese (ja)
Other versions
JPS60226690A (en
Inventor
Akira Kawabata
Shohei Goto
Kyoshi Muranaka
Katsuhiko Sannomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8463784A priority Critical patent/JPS60226690A/en
Publication of JPS60226690A publication Critical patent/JPS60226690A/en
Publication of JPS639563B2 publication Critical patent/JPS639563B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばスラブ、ビレツト等の鋼材を
目的の圧延温度まで均一加熱する加熱炉に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heating furnace for uniformly heating steel materials, such as slabs and billets, to a target rolling temperature.

(従来技術) 従来、この種の加熱炉は被加熱材の上、下面に
直下バーナを配置した燃焼室を設け、装入側から
抽出側に向つて被加熱材を搬送しながら加熱を行
う直火燃焼方式の加熱炉が一般に採用されてい
た。
(Prior art) Conventionally, this type of heating furnace has a combustion chamber with direct burners arranged above and below the material to be heated, and heats the material directly while conveying it from the charging side to the extraction side. Fire-burning heating furnaces were generally used.

この種の直火燃焼方式の加熱炉ではバーナから
供給された燃料と燃焼用空気を直接炉内(燃焼室
内)の自由空間で混合燃焼させ、その燃焼ガスの
揮炎放射、ガス放射及び炉壁放射を利用して被加
熱材の加熱を行うものであるが、一般にこの種の
直火燃焼ではバーナから供給される流体の噴出エ
ネルギーを十分に大きくとつても、その火炎長は
精々3〜4mにしかならず、加えて低負荷燃焼時
にはバーナ供給流体の噴出エネルギーも小さくな
るため火炎の直進性が低下し、浮力による火炎の
舞上り現象や炉内ガス流れによる火炎の曲折現象
が発生するという基本的な問題を有していたた
め、最近の加熱炉のごとく炉の大型化(炉幅で10
〜15m、炉長で30〜50m)や操業の多様化(950
〜1250℃迄の広温度範囲で均一加熱)に対しては
従来の直火燃焼方式では十分に目的を達すること
が難かしいという欠点を有している。
In this type of direct combustion type heating furnace, the fuel supplied from the burner and the combustion air are mixed and burned directly in the free space inside the furnace (combustion chamber), and the combustion gas emits volatile flames, gas radiation and the furnace wall. Radiation is used to heat the material to be heated, but in general, in this type of direct combustion, even if the jet energy of the fluid supplied from the burner is sufficiently large, the flame length is at most 3 to 4 meters. In addition, during low-load combustion, the ejection energy of the burner supply fluid also decreases, which reduces the straightness of the flame, resulting in flame soaring due to buoyancy and flame bending due to the gas flow in the furnace. Due to this problem, the furnace was made larger (furnace width is 10 mm) like recent heating furnaces.
~15m, furnace length 30-50m) and diversification of operations (950m
Conventional direct-fire combustion methods have the disadvantage that it is difficult to achieve the desired goal (uniform heating over a wide temperature range up to 1250°C).

又、最近は炉の大型化に伴い、被加熱材の搬送
手段として一般にウオーキングビーム方式を採用
する傾向にあるが、このウオーキングビーム方式
では被加熱材を断熱・水冷構造の固定及び可動ス
キツドで支持、搬送する方式のため、このスキツ
ド直上にある被加熱材はスキツドパイプの影とな
るため(シヤドウ効果)伝熱が阻害され、被加熱
材の他の部分に比べて加熱されにくいという欠点
を持つている。被加熱材の均一加熱のためには加
熱初期の段階でこのスキツドシヤドウ部を局部的
に集中加熱できる。いわゆるピーク温度を有した
炉温分布を形成することが望ましいが、従来の直
火式加熱炉では任意点、即ちスキツド部にピーク
温度を作ることは一般的に不可能であつた。
In addition, recently, as furnaces have become larger, there has been a general tendency to adopt a walking beam method as a means of conveying the heated material.In this walking beam method, the heated material is supported by a fixed and movable skid with an insulated and water-cooled structure. Because of the conveyance method, the heated material directly above the skid pipe is in the shadow of the skid pipe (shadow effect), which impedes heat transfer and has the disadvantage that it is difficult to heat compared to other parts of the heated material. There is. In order to uniformly heat the material to be heated, it is possible to locally and intensively heat the skid shadow area at the initial stage of heating. It is desirable to form a furnace temperature distribution having a so-called peak temperature, but in conventional direct-fired heating furnaces, it has generally been impossible to create a peak temperature at an arbitrary point, that is, at a skid portion.

一方、この種の直火式加熱炉では燃焼室のバー
ナ配置方法によりサイドバーナ、軸流バーナ、ル
ーフバーナの三方式があることが一般的に知られ
ている。特開昭57−32321のごとくサイドバーナ
方式は炉の両側壁部にバーナを配置する構造であ
る。この方式は炉構造がシンプルで設備費が比較
的安価であり、一般に炉長方向は比較的均一な炉
温分布が得られ易いが、炉幅方向については火炎
の舞上りや曲折のため均一な炉温分布が得られに
くいという欠点を有している。
On the other hand, it is generally known that there are three types of direct-fired heating furnaces of this type, depending on how the burners are arranged in the combustion chamber: side burners, axial burners, and roof burners. The side burner system, as disclosed in Japanese Patent Application Laid-Open No. 57-32321, has a structure in which burners are placed on both side walls of the furnace. This method has a simple furnace structure and relatively low equipment cost, and generally it is easy to obtain a relatively uniform furnace temperature distribution in the furnace length direction, but it is not uniform in the furnace width direction due to flame soaring and bending. It has the disadvantage that it is difficult to obtain furnace temperature distribution.

これに対して特開昭57−82424のごとき軸流バ
ーナ方式は炉の長手方向にバーナを配置する構造
のためサイドバーナ方式の場合とは逆に、一般に
炉幅方向は比較的均一な炉温分布が得易いが、炉
長方向については均一な炉温分布が得られにくい
という欠点を有しており、設備的にはバーナの配
置上炉長方向に2〜3mの長さの仕切壁(以下仕
切部と称す)を炉幅方向全体にわたつて設ける必
要があるため炉床利用率が悪くかつ設備費が高い
という欠点を有している。
On the other hand, axial flow burner systems such as those in JP-A-57-82424 have a structure in which the burners are arranged in the longitudinal direction of the furnace, so unlike the side burner system, the furnace temperature is generally relatively uniform in the width direction. Although it is easy to obtain a uniform temperature distribution in the furnace length direction, it has the disadvantage that it is difficult to obtain a uniform furnace temperature distribution in the furnace length direction. Since it is necessary to provide a partition section (hereinafter referred to as a partition section) across the entire width of the hearth, this method has disadvantages in that the utilization rate of the hearth is poor and the equipment cost is high.

一方ルーフバーナ方式はその性格上、上部燃焼
室の天井炉壁にバーナを配置する構造のため炉幅
及び炉長方向の全面にわたつて比較的均一な炉温
分布が得られるという特長を有しているが、他の
二方式に比べてバーナ本数が多くなるため一般に
設備費が高く、かつバーナ配置の性格上上部燃焼
室のみしか適用できないという欠点がある。
On the other hand, the roof burner method has a structure in which the burner is placed on the ceiling furnace wall of the upper combustion chamber, so it has the advantage of being able to obtain a relatively uniform furnace temperature distribution over the entire width and length of the furnace. However, compared to the other two methods, the number of burners is larger, so the equipment cost is generally higher, and the disadvantage is that it can only be applied to the upper combustion chamber due to the nature of the burner arrangement.

以上のように、従来の加熱装置は炉の大型化や
操業の多様化を満足させるには基本的な欠点を有
している。
As described above, conventional heating devices have fundamental drawbacks in meeting the needs of larger furnaces and diversified operations.

(発明の目的と概要) 本発明は、従来の直火燃焼方式の欠点である被
加熱材の均一加熱性の改善に主眼を置き、被加熱
材の偏熱防止による加熱能の向上と品質の向上を
設備費の安価なサイドバーナ方式を用いて実現す
ることを目的とするものである。
(Objective and Summary of the Invention) The present invention focuses on improving the uniform heating property of the heated material, which is a drawback of the conventional direct flame combustion method, and improves the heating capacity and quality by preventing uneven heat of the heated material. The objective is to achieve this improvement using the side burner method, which has low equipment costs.

本発明は、炉下部の炉長方向両側壁に被加熱材
の進行方向と直角方向にガス噴出口を向けてバー
ナを配設するとともに、各側壁の一部のバーナの
ガス噴出口側のバーナ軸方向に両端を開放した円
筒状の熱放射管を配設し、残りのバーナのガス噴
出口側のバーナ軸方向及び円筒状熱放射管の反バ
ーナ側のバーナ軸方向には半円筒状の熱放射管を
弦を下方に向けて配設し、半円筒状熱放射管の下
部には該半円筒状熱放射管と直交状に適当な間隔
をおいて、該半円筒状熱放射管との間に適当な間
隙を有するガス分散壁を配設することを特徴とし
た加熱炉の加熱装置を提供するものである。
In the present invention, burners are arranged on both walls in the furnace length direction of the lower part of the furnace, with gas jet ports facing in a direction perpendicular to the traveling direction of the heated material, and burners on the gas jet port side of some burners on each side wall are arranged. A cylindrical heat radiating tube with both ends opened in the axial direction is installed, and semi-cylindrical heat radiating tubes are installed in the burner axial direction on the gas jet port side of the remaining burners and in the burner axial direction on the opposite burner side of the cylindrical heat radiating tube. A heat radiating tube is arranged with the chord facing downward, and at the bottom of the semi-cylindrical heat radiating tube there is a tube perpendicular to the semi-cylindrical heat radiating tube at an appropriate interval. The present invention provides a heating device for a heating furnace characterized by disposing a gas dispersion wall having an appropriate gap therebetween.

(発明の実施例) 以下図面に示す実施例を参照しながら本発明を
説明する。第1図、第2図は本発明にかかわる鋼
材加熱炉の一実施例を示す。1は耐火断熱性と気
密性を有した炉壁、2は炉壁1の天井部の炉長方
向と炉幅方向に複数個配置されたルーフバーナ、
3は炉壁1の炉長方向の下部両側壁に配置された
サイドバーナであり、4は加熱炉を各燃焼室に仕
切るための仕切壁、5は被加熱材としての鋼材、
6は予熱帯、7は加熱帯、8は均熱帯である。9
は鋼材5を支持するための固定スキツド、10は
鋼材5を搬送するための可動スキツドであり、水
冷スキツドパイプの外面は断熱構造となつてい
る。11はサイドバーナ3の炉内側軸芯上に配置
された所要長さの耐熱性と熱伝導性を有した円筒
状熱放射管、12は円筒状熱放射管11の支持架
台、13はサイドバーナ3の炉内側軸芯上に配置
された、所要長さの耐熱性と熱伝導性を有し、弦
を下向きにして配置された半円筒状の熱放射管、
14は半円筒状熱放射管13の支持架台である。
(Embodiments of the Invention) The present invention will be described below with reference to embodiments shown in the drawings. FIGS. 1 and 2 show an embodiment of a steel heating furnace according to the present invention. 1 is a furnace wall having fireproof insulation and airtightness; 2 is a plurality of roof burners arranged in the furnace length direction and furnace width direction on the ceiling of the furnace wall 1;
3 is a side burner arranged on both lower side walls of the furnace wall 1 in the furnace length direction; 4 is a partition wall for partitioning the heating furnace into each combustion chamber; 5 is a steel material as a material to be heated;
6 is a preheating zone, 7 is a heating zone, and 8 is a soaking zone. 9
1 is a fixed skid for supporting the steel material 5, and 10 is a movable skid for conveying the steel material 5. The outer surface of the water-cooled skid pipe has a heat insulating structure. Reference numeral 11 indicates a cylindrical heat radiating tube having heat resistance and thermal conductivity and having a required length, which is arranged on the axis of the inside of the furnace of the side burner 3, 12 indicates a support frame for the cylindrical heat radiating tube 11, and 13 indicates a side burner. 3, a semi-cylindrical heat radiating tube having the required length of heat resistance and thermal conductivity and arranged with the chord facing downward;
14 is a support frame for the semi-cylindrical heat radiating tube 13.

又図中の破線による矢印はルーフバーナ2から
の燃焼ガス流れを、実線による矢印はサイドバー
ナ3からの燃焼ガス流れを示してたものである。
燃焼ガスは均熱帯から加熱帯へ、加熱帯から予熱
帯へ向つて流れ、最終的には煙道16から炉外へ
排出される。
Further, the broken line arrows in the figure indicate the flow of combustion gas from the roof burner 2, and the solid line arrows indicate the flow of combustion gas from the side burner 3.
The combustion gas flows from the soaking zone to the heating zone, from the heating zone to the preheating zone, and is finally discharged from the flue 16 to the outside of the furnace.

円筒状の熱放射管、半円筒状の熱放射管の各熱
放射管と支持架台の関係を各々第3図、第4図に
示す。第4図に示すように、半円筒熱放射管用の
支持架台14は、放射管13を支持、固定すると
同時にサイドバーナ3から放出された燃焼ガスを
炉内へ分散供給するための耐熱性を有した燃焼ガ
ス分散壁で、通常半円筒状熱放射管13の下部に
熱放射管と直交状に所定間隔をおいて複数段設け
られている。15は燃焼ガス分散壁14の半円筒
状熱放射管13側の上端面に半円筒状熱放射管1
3と相対する形で設けられた燃焼ガス通過溝であ
り、通常加熱目的に応じて開口面積が決定され
る。
The relationship between the cylindrical heat radiating tube and the semi-cylindrical heat radiating tube and the support frame is shown in FIGS. 3 and 4, respectively. As shown in FIG. 4, the support frame 14 for the semi-cylindrical heat radiant tube supports and fixes the radiant tube 13, and at the same time has heat resistance to disperse and supply the combustion gas released from the side burner 3 into the furnace. A plurality of combustion gas dispersion walls are usually provided at the bottom of the semi-cylindrical heat radiation tube 13 at predetermined intervals in a direction perpendicular to the heat radiation tube. 15 is a semi-cylindrical heat radiating tube 1 on the upper end surface of the combustion gas distribution wall 14 on the semi-cylindrical heat radiating tube 13 side.
This is a combustion gas passage groove provided opposite to No. 3, and the opening area is usually determined depending on the purpose of heating.

次に本発明の加熱装置の操作について説明す
る。加熱炉内に挿入された被加熱材5は、被加熱
材5の支持、搬送装置である固定スキツド9及び
可動スキツド10によつて装入側の予熱帯6から
抽出側の均熱帯8に向つて搬送される間に被加熱
材5の上面はルーフバーナ2により、下面はサイ
ドバーナ3により加熱される。この場合、加熱炉
の下部はサイドバーナ3と円筒状熱放射管11又
は半円筒状熱放射管13及びそれらの支持架台で
構成されているため、サイドバーナ3から供給さ
れた燃料と燃焼用空気は該熱放射管内で混合燃焼
が行なわれ、従つて、従来の直火燃焼方式に比べ
て浮力や炉内ガス流れの影響を受けにくく、燃焼
量の多少に関係なく安定した炉温分布を確保する
ことが可能である。
Next, the operation of the heating device of the present invention will be explained. The material to be heated 5 inserted into the heating furnace is directed from the preheating zone 6 on the charging side to the soaking zone 8 on the extraction side by means of a fixed skid 9 and a movable skid 10, which are supporting and conveying devices for the heated material 5. While being transported, the upper surface of the material to be heated 5 is heated by the roof burner 2, and the lower surface is heated by the side burner 3. In this case, since the lower part of the heating furnace is composed of the side burner 3, the cylindrical heat radiation tube 11 or the semi-cylindrical heat radiation tube 13, and their support frame, the fuel and combustion air supplied from the side burner 3 are Mixed combustion takes place within the heat radiating tube, and is therefore less affected by buoyancy and in-furnace gas flow than conventional direct-fire combustion methods, ensuring a stable furnace temperature distribution regardless of the amount of combustion. It is possible to do so.

さらに、半円筒状の熱放射管13の下部には燃
焼ガス分散壁14が設けられているため、一部の
燃焼ガスはガス分散壁と熱放射管とで形成された
ガス通過溝15を通つて炉内の反バーナ方向へ通
過するが、ガス分散壁14に衝突した燃焼ガスは
その位置で流れ方向がかわり、炉内に噴出し、部
分的な高温部を形成することが可能である。ここ
で、この高温部を、固定スキツド9と可動スキツ
ド10の間のいわゆるスキツドシヤドウ部に合致
させることにより該シヤドウ部を積極的に加熱す
ることができるため、950〜1250℃という広加熱
温度範囲で被加熱材5の均一加熱が安定して行な
えるようになつた。
Further, since a combustion gas distribution wall 14 is provided at the bottom of the semi-cylindrical heat radiation tube 13, some combustion gas passes through the gas passage groove 15 formed by the gas distribution wall and the heat radiation tube. The combustion gas then passes in the direction away from the burner in the furnace, but the flow direction of the combustion gas that collides with the gas distribution wall 14 changes at that position, and it is possible to blow out into the furnace and form a local high temperature area. Here, by aligning this high-temperature part with the so-called skid shadow part between the fixed skid 9 and the movable skid 10, the shadow part can be actively heated. Uniform heating of the material to be heated 5 can now be performed stably.

ガス分散壁の一例を第4図に示しているが、ガ
スを噴出させず、いわゆるフラツトな温度分布を
要求される箇所には同図Aのようにガス通過溝1
5の大きいガス分散壁14を配し、ガスを噴出さ
せて高温(ピーク炉温)を要求される箇所には同
図Bのようにガス通過溝15の小さいガス分散壁
14を配すればよい。さらに、炉壁近くのバーナ
に近い箇所にピーク炉温を形成したい場合は、バ
ーナ近傍から半円筒状の熱放射管を用いれば良い
が、炉中心に近いすなわちバーナから遠い箇所に
ピーク炉温を形成したい場合にはバーナ近傍には
円筒状熱放射管11を用いて燃焼ガスを分散させ
ず、ピーク炉温を形成させる箇所近くは半円筒状
熱放射管13とガス分散壁14を用いてガスを分
散させ、目的とする炉温パターンを形成すれば良
い。このような考え方に基づいて炉内の炉幅方向
1/2(すなわち片側のバーナの受持範囲)に、2
ケ所のシヤドウ部を有する加熱炉の具体的な、熱
放射管とガス分散壁を配置した例およびその効果
の模式図を第5図に示す。
An example of a gas dispersion wall is shown in Fig. 4, and in places where a so-called flat temperature distribution is required without blowing out gas, gas passage grooves 1 are installed as shown in Fig. 4A.
It is sufficient to arrange a large gas dispersion wall 14 with a diameter of 5 and a small gas dispersion wall 14 with a small gas passage groove 15 as shown in FIG. . Furthermore, if you want to create a peak furnace temperature near the burner near the furnace wall, you can use a semi-cylindrical heat radiation tube from near the burner, but you can also create a peak furnace temperature near the furnace center, that is, at a location far from the burner. If desired, a cylindrical heat radiation tube 11 is used near the burner to prevent the combustion gas from being dispersed, and a semicylindrical heat radiation tube 13 and a gas distribution wall 14 are used near the area where the peak furnace temperature is to be generated to disperse the combustion gas. What is necessary is to disperse the temperature and form the desired furnace temperature pattern. Based on this idea, there are two
FIG. 5 shows a specific example of a heating furnace having several shadow parts, in which heat radiation tubes and gas distribution walls are arranged, and a schematic diagram of its effects.

第5図において同図Aは炉幅方向の被加熱材と
スキツドの配置を炉幅方向に1/2の断面で表わし
たものであり、被加熱材5には炉側壁に近いシヤ
ドウ部S1と炉中心に近いシヤドウ部S2が形成
されている。同図Bは、炉側壁に近いシヤドウ部
S1の部分にピーク炉温を形成することを目的に
熱放射管とガス分散壁を配した図である。シヤド
ウ部が炉側壁に近いため熱放射管3としては全て
半円筒状のものを用いており、ガス分散壁として
ガス分散が多く必要とされる(イ)には、第4図Bの
タイプのものを用いているが、その他の(ア)、(ウ)、
(エ)のガス分散壁としては、ガスはできるだけ分散
させないことが望ましいため、第4図Aのタイプ
のものを用いている。
In Fig. 5, figure A shows the arrangement of the material to be heated and the skid in the width direction of the furnace in a 1/2 section in the width direction of the furnace. A shadow portion S2 is formed near the center of the furnace. Figure B is a diagram in which a heat radiation tube and a gas distribution wall are arranged for the purpose of forming a peak furnace temperature in a portion of the shadow portion S1 near the furnace side wall. Since the shadow part is close to the furnace side wall, all the heat radiation tubes 3 are semi-cylindrical, and for (a) where a large amount of gas dispersion is required as a gas dispersion wall, the type shown in Fig. 4B is used. However, other (a), (c),
As the gas dispersion wall (d), the type shown in FIG. 4A is used because it is desirable that the gas is not dispersed as much as possible.

第5図Bの熱放射管および分散壁配置によつて
得られる炉温パターンを同図Dのaで示す。シヤ
ドウ部S1は、(イ)の分散壁によるガスの分散噴出
により積極的な加熱を受けることになる。一方第
5図Cは、炉中心に近いシヤドウ部S2の部分に
ピーク炉温を形成することを目的に熱放射管とガ
ス分散壁を配した図である。この場合は、シヤド
ウ部はバーナから遠いためバーナ近くには円筒状
の熱放射管を用いてガス分散を抑止し、その後に
半円筒状熱放射管およびガス分散壁を配してい
る。ガス分散壁の形状は第5図Bと同様の考え方
から(カ)の部分には第4図Bのタイプ、(オ)、(キ)には
第4図Aのタイプのものを用いている。第5図C
の熱放射管およびガス分散壁配置によつて得られ
る炉温パターンを同図Dのbで示す。シヤドウ部
S2は(カ)の分散壁によるガスの分散噴出により積
極的な加熱を受けることになる。従つて、第5図
Aのような、スキツド配置の加熱炉に対しては同
図BおよびCに示す熱放射管およびガス分散壁の
配置を炉長方向のバーナに対して交互に行なうこ
とによつてシヤドウ部の悪影響を回避することが
可能である。
The furnace temperature pattern obtained by the heat radiating tube and distribution wall arrangement of FIG. 5B is shown by a in FIG. 5D. The shadow portion S1 is actively heated by the dispersion and ejection of gas by the dispersion wall in (a). On the other hand, FIG. 5C is a diagram in which a heat radiation tube and a gas distribution wall are arranged for the purpose of forming a peak furnace temperature in the shadow portion S2 near the furnace center. In this case, since the shadow part is far from the burner, a cylindrical heat radiation tube is used near the burner to suppress gas dispersion, followed by a semicylindrical heat radiation tube and a gas distribution wall. The shape of the gas distribution wall is based on the same idea as in Figure 5B, so the type shown in Figure 4B is used for the part (F), and the type shown in Figure 4A is used for parts (E) and (G). . Figure 5C
The furnace temperature pattern obtained by the arrangement of the heat radiation tube and the gas distribution wall is shown in FIG. The shadow portion S2 is actively heated by the dispersion and ejection of gas by the dispersion wall (f). Therefore, for a heating furnace with skid arrangement as shown in Fig. 5A, the heat radiation tubes and gas distribution walls shown in Fig. 5B and C are arranged alternately with respect to the burners in the furnace length direction. Therefore, it is possible to avoid the adverse effects of the shadow portion.

第5図Dに示したa,bの各炉温パターンは、
ガスの燃焼が熱放射管内で行なわれるため、燃焼
ガスが浮力や炉内全体のガス流れの影響を受けに
くく、燃焼量の多少に関係なく非常に安定したも
のであることは前述のとおりである。
The furnace temperature patterns a and b shown in Fig. 5D are as follows:
As mentioned above, since the combustion of gas takes place inside the heat radiation tube, the combustion gas is not affected by buoyancy or the gas flow throughout the furnace, and is extremely stable regardless of the amount of combustion. .

実験例 次に、本発明の効果を燃焼実験炉(高1.8×巾
3.0×長6.4m)で確認した結果を例示する。実験
は、本発明の効果を確認するため炉巾方向に1.7
mのピツチで燃焼量150万Kcal/Hのバーナを2
本取付け、被加熱材5による奪熱を模擬するため
天井炉壁には水冷奪熱管を配し、燃料としてはコ
ークス炉ガス、燃焼用空気としては300℃の熱風
を用い空気比1.1の共通条件のもとで、従来の直
火燃焼方式と本発明の燃焼方式の比較を行つた結
果を第6図から第8図に示す。
Experimental Example Next, we will demonstrate the effect of the present invention in a combustion experimental furnace (height 1.8 x width
3.0 x length 6.4 m). In order to confirm the effect of the present invention, the experiment was conducted with a diameter of 1.7 mm in the furnace width direction.
2 burners with a combustion rate of 1.5 million Kcal/H at a pitch of m
In this installation, water-cooled heat-absorbing pipes are arranged on the ceiling furnace wall to simulate heat absorption by the heated material 5, coke oven gas is used as the fuel, hot air at 300°C is used as the combustion air, and the common conditions are an air ratio of 1.1. Figures 6 to 8 show the results of a comparison between the conventional direct-fire combustion system and the combustion system of the present invention under the following conditions.

第6図は従来の直火燃焼方式の一例として、実
炉でのバーナ軸方向の温度分布特性が最も優れて
いるとの評価が高いガス二流式バーナの炉温分布
の測定例である。
FIG. 6 shows a measurement example of the furnace temperature distribution of a gas two-flow burner, which is highly rated as having the best temperature distribution characteristics in the burner axial direction in an actual furnace, as an example of a conventional direct-fire combustion method.

又、第7図は本発明の半円筒状熱放射管13と
燃焼ガス分散壁14を組み合わせて配置した場合
の炉温分布の測定例であり、バーナとしてはノズ
ルミツクスタイプを使用し、半円筒状熱放射管1
3としては400φの半円筒状のSiCチユーブを3.2
mの長さで使用した結果である。ここで分散壁の
開口面積比率(ガス通過溝面積比率)はバーナ側
より240、240、60、20、20%と漸減した場合の結
果である。
Moreover, FIG. 7 shows an example of measuring the furnace temperature distribution when the semi-cylindrical heat radiating tube 13 and the combustion gas distribution wall 14 of the present invention are arranged in combination. Cylindrical heat radiation tube 1
3 is a 400φ semi-cylindrical SiC tube.
This is the result of using a length of m. Here, the results are obtained when the opening area ratio of the dispersion wall (gas passage groove area ratio) gradually decreases from the burner side to 240, 240, 60, 20, and 20%.

第8図は本発明の円筒状熱放射管11と半円筒
状熱放射管13および燃焼ガス分散壁14を組合
せて配置した場合の炉温分布の測定例である。バ
ーナおよび熱放射管の径、材質は第7図と同様で
あるが円筒状熱放射管、半円筒状熱放射管共に長
さは1.6mのものを使用している。又、半円筒状
熱放射管部のガズ分散壁の開口面積比率はバーナ
側から110、70、70%と漸減した場合の結果であ
る。
FIG. 8 shows an example of measuring the furnace temperature distribution when the cylindrical heat radiating tube 11, semi-cylindrical heat radiating tube 13, and combustion gas distribution wall 14 of the present invention are arranged in combination. The diameters and materials of the burner and heat radiation tube are the same as those shown in FIG. 7, but both the cylindrical heat radiation tube and the semi-cylindrical heat radiation tube have a length of 1.6 m. Moreover, the results are obtained when the opening area ratio of the gas dispersion wall of the semi-cylindrical heat radiating tube section gradually decreases from 110% to 70% to 70% from the burner side.

第6図から第8図は横軸にバーナからの距離
を、縦軸には炉温をバーナ長手方向の各断面での
測定温度(T)SECとバーナ長手方向の平均温度
(T)AVEとの差で示したものであり、燃焼量20
〜100%の範囲で実験した結果を図中の斜線範囲
で表示したものである。
In Figures 6 to 8, the horizontal axis shows the distance from the burner, and the vertical axis shows the furnace temperature. It is shown as the difference between the combustion amount 20
The results of experiments conducted in the range of ~100% are shown in the shaded range in the figure.

この結果、従来の直火燃焼方式ではバーナから
約1.5mの所に火炎のピーク温度があり、それよ
り先では急速に炉温の低下が見られる、いわゆる
バーナ側高の温度分布傾向を示しており、しかも
燃焼量の差により温度分布が大幅に変動すること
を示している。
As a result, in the conventional direct-fire combustion method, the flame peak temperature is approximately 1.5 m from the burner, and the furnace temperature rapidly decreases beyond that point, showing a so-called temperature distribution trend at the burner side height. Moreover, the temperature distribution changes significantly due to the difference in combustion amount.

一方、円筒状熱放射管11、半円筒状熱放射管
13およびガス分散壁14を適当に組み合せて配
置した本発明では上記の組合せ及び位置と燃焼ガ
ス通過溝の開口面積を適当に選択することによ
り、燃焼量の多少にかかわらず、炉内の所定の位
置にピーク点を持つた炉温分布を形成することが
できることを示している。
On the other hand, in the present invention in which the cylindrical heat radiating tube 11, the semi-cylindrical heat radiating tube 13, and the gas distribution wall 14 are appropriately combined and arranged, it is necessary to appropriately select the above combination and position and the opening area of the combustion gas passage groove. This shows that it is possible to form a furnace temperature distribution with a peak point at a predetermined position within the furnace, regardless of the amount of combustion.

(発明の効果) 以上に述べたように本発明にかかわる加熱炉の
加熱装置は、従来の直火燃焼方式加熱炉の問題点
であつたバーナ長手方向の炉温分布の改善を図る
ため、直火燃焼バーナの先端に半円筒状熱放射
管、又は円筒状熱放射管と半円筒状熱放射管を配
置し、半円筒状熱放射管の下部には燃焼ガス分散
壁を配置することにより、炉内の所定の位置に所
要のピーク点を有した炉温分布を形成することが
できるため加熱炉における被加熱材の偏熱原因で
あるスキツドシヤドウ部を積極的に加熱すること
が可能であり、被加熱材の均一加熱、即ち偏熱防
止により加熱能力のアツプと品質の向上が設備コ
ストの安いサイドバーナ方式で可能という特徴を
有した加熱炉の加熱装置である。
(Effects of the Invention) As described above, the heating device for a heating furnace according to the present invention improves the furnace temperature distribution in the longitudinal direction of the burner, which was a problem with conventional direct combustion type heating furnaces. By arranging a semi-cylindrical heat radiating tube, or a cylindrical heat radiating tube and a semi-cylindrical heat radiating tube at the tip of the fire combustion burner, and arranging a combustion gas distribution wall at the bottom of the semi-cylindrical heat radiating tube, Since it is possible to form a furnace temperature distribution with a required peak point at a predetermined position in the furnace, it is possible to actively heat the skid shadow area, which is the cause of uneven heat of the material to be heated in the heating furnace. This heating device for a heating furnace has the feature that it is possible to increase heating capacity and improve quality by uniformly heating the material to be heated, that is, by preventing unbalanced heat, using a side burner method with low equipment cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の加熱装置を備えた鋼材加熱炉
の一例の縦断面を示す図、第2図A,Bは各々第
1図の炉の−および−線における横断面
図、第3図は円筒状熱放射管と支持架台の断面
図、第4図は半円筒状熱放射管と支持架台兼用の
ガス分散壁の断面を示す図で第4図のA,Bはガ
ス分散壁の形状の種類を例示している。第5図は
本発明の加熱装置適用の具体例と効果を示す図で
あり、同図Aは、スキツド配置の例、B,Cは熱
放射管と支持架台およびガス分散壁の配置を具体
的に示す炉横断面図、Dは結果として得られる炉
内温度分布を模式的に示す図である。第6図は従
来の直火燃焼方式における炉内温度分布の実験炉
での測定例、第7図は本発明の半円筒状熱放射管
と支持架台兼用のガス分散壁を用いた場合の炉内
温度分布の実験炉での測定例、第8図は本発明の
円筒状熱放射管と半円筒状熱放射管と支持架台お
よびガス分散壁を用いた場合の炉内温度分布の実
験炉での測定例を示す各グラフである。 1……炉壁、2……ルーフバーナ、3……サイ
ドバーナ、4……仕切壁、5……被加熱材(鋼
材)、6……予熱帯、7……加熱帯、8……均熱
帯、9……固定スキツド、10……可動スキツ
ド、11……円筒状熱放射管、12……円筒状熱
放射管11の支持架台、13……半円筒状熱放射
管、14……半円筒状熱放射管の支持架台兼用の
ガス分散壁、15……ガス通過溝、16……煙
道。
FIG. 1 is a longitudinal cross-sectional view of an example of a steel heating furnace equipped with the heating device of the present invention, FIGS. 2A and B are cross-sectional views taken along lines - and -, respectively, of the furnace in FIG. 1, and FIG. 4 is a cross-sectional view of the cylindrical heat radiating tube and the support pedestal, and FIG. 4 is a cross-sectional view of the semi-cylindrical heat radiating tube and the gas distribution wall that also serves as the support pedestal. A and B in FIG. 4 are the shapes of the gas distribution wall. Examples of types of FIG. 5 is a diagram showing a specific example and effect of applying the heating device of the present invention. FIG. A cross-sectional view of the furnace shown in FIG. Figure 6 shows an example of measuring the temperature distribution inside the furnace in a conventional direct-fire combustion method in an experimental furnace, and Figure 7 shows a furnace using the semi-cylindrical heat radiating tube of the present invention and the gas distribution wall that also serves as a support frame. Figure 8 shows an example of measuring the internal temperature distribution in an experimental reactor using the cylindrical heat radiating tube, semi-cylindrical heat radiating tube, support frame, and gas distribution wall of the present invention. 3 is each graph showing measurement examples of . 1... Furnace wall, 2... Roof burner, 3... Side burner, 4... Partition wall, 5... Material to be heated (steel material), 6... Pre-heating zone, 7... Heating zone, 8... Soaking zone , 9... Fixed skid, 10... Movable skid, 11... Cylindrical heat radiating tube, 12... Support frame for the cylindrical heat radiating tube 11, 13... Semi-cylindrical heat radiating tube, 14... Semi-cylindrical Gas dispersion wall that also serves as a support frame for a shaped heat radiation tube, 15... Gas passage groove, 16... Flue.

Claims (1)

【特許請求の範囲】[Claims] 1 炉下部の炉長方向両側壁に被加熱材の進行方
向と直角方向にガス噴出口を向けてバーナを配設
するとともに、各側壁の一部のバーナのガス噴出
口側のバーナ軸方向に両端を開放した円筒状の熱
放射管を配設し、残りのバーナのガス噴出口側の
バーナ軸方向および円筒状熱放射管の反バーナ側
のバーナ軸方向には半円筒状の熱放射管を弦を下
方に向けて配設し、半円筒状熱放射管の下部には
該半円筒状熱放射管と直交状に適当な間隔をおい
て、該半円筒状熱放射管との間に適当な間隙を有
するガス分散壁を配設することを特徴とした加熱
炉の加熱装置。
1. Burners are arranged on both walls in the furnace length direction of the lower part of the furnace with the gas outlet facing perpendicular to the direction of movement of the material to be heated, and some of the burners on each side wall are arranged in the burner axial direction on the gas outlet side. A cylindrical heat radiation tube with both ends open is installed, and a semi-cylindrical heat radiation tube is installed in the burner axis direction on the gas outlet side of the remaining burner and in the burner axis direction on the opposite burner side of the cylindrical heat radiation tube. is arranged with the chord facing downward, and at the bottom of the semi-cylindrical heat radiating tube, a suitable space is provided perpendicularly to the semi-cylindrical heat radiating tube, and between the semi-cylindrical heat radiating tube and the semi-cylindrical heat radiating tube. A heating device for a heating furnace, characterized in that a gas distribution wall having an appropriate gap is provided.
JP8463784A 1984-04-26 1984-04-26 Heater for heating furnace Granted JPS60226690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8463784A JPS60226690A (en) 1984-04-26 1984-04-26 Heater for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8463784A JPS60226690A (en) 1984-04-26 1984-04-26 Heater for heating furnace

Publications (2)

Publication Number Publication Date
JPS60226690A JPS60226690A (en) 1985-11-11
JPS639563B2 true JPS639563B2 (en) 1988-02-29

Family

ID=13836200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8463784A Granted JPS60226690A (en) 1984-04-26 1984-04-26 Heater for heating furnace

Country Status (1)

Country Link
JP (1) JPS60226690A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609785A (en) * 1992-10-05 1997-03-11 Acon Finland Oy Ltd. Method and apparatus for improving the performance of a heating furnace for metal slabs

Also Published As

Publication number Publication date
JPS60226690A (en) 1985-11-11

Similar Documents

Publication Publication Date Title
US3677234A (en) Heating apparatus and process
US6334770B1 (en) Fluid-fuel furnace burner for iron and steel products
US4469314A (en) Metal heating furnace
EP1417098B1 (en) Pyrolysis heater
US2276527A (en) Apparatus for heating fluids
DE68900505D1 (en) CRACKING STOVE.
US4388068A (en) Metal heating furnace
JPS639563B2 (en)
US3475135A (en) Reforming furnace for producing synthesis gas
JPS6036586Y2 (en) steel heating furnace
JPS6038659Y2 (en) steel heating furnace
JPS5926846B2 (en) Fluid indirect heating device
JPH0125870Y2 (en)
JPH0213011B2 (en)
US2745388A (en) Multiple cell circular heater
CN208124886U (en) Standpipe square chest furnace
US4388066A (en) Radiation shield and method of use
JPS60226691A (en) Heater for heating furnace
JPS6036587Y2 (en) Heating equipment in steel heating furnaces
JP3906423B2 (en) Hot dip galvanizing furnace
JPH0375609B2 (en)
SU1211294A1 (en) Blast furnace air stove
SU1283244A1 (en) Vertical cylindrical tube furnace
SU1043452A1 (en) Tube furnace
JPS6215232Y2 (en)