JPS6394887A - Thermal transfer recording medium - Google Patents
Thermal transfer recording mediumInfo
- Publication number
- JPS6394887A JPS6394887A JP61239062A JP23906286A JPS6394887A JP S6394887 A JPS6394887 A JP S6394887A JP 61239062 A JP61239062 A JP 61239062A JP 23906286 A JP23906286 A JP 23906286A JP S6394887 A JPS6394887 A JP S6394887A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ink
- heating resistor
- recording medium
- anisotropic conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 44
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 239000000835 fiber Substances 0.000 claims abstract description 23
- 229920005989 resin Polymers 0.000 claims abstract description 10
- 239000011347 resin Substances 0.000 claims abstract description 10
- 239000004020 conductor Substances 0.000 claims description 6
- 229920001169 thermoplastic Polymers 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 21
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 238000010992 reflux Methods 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract 2
- 239000000976 ink Substances 0.000 description 54
- 239000010408 film Substances 0.000 description 16
- 238000004040 coloring Methods 0.000 description 6
- 238000007639 printing Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229920002379 silicone rubber Polymers 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 235000019646 color tone Nutrition 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000004945 silicone rubber Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 etc. are suitable Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000010023 transfer printing Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005513 bias potential Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/382—Contact thermal transfer or sublimation processes
- B41M5/3825—Electric current carrying heat transfer sheets
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Impression-Transfer Materials And Handling Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、インクを加熱して溶融しあるいは昇華させて
、被記録体上に記録を行うために使用する熱転写記録媒
体に関する。DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a thermal transfer recording medium used for recording on a recording medium by heating and melting or sublimating ink.
「従来の技術」
被記録体、例えば普通紙上へ、所定のディジタル画像信
号に対応する画像の記録を行う場合に、インクドナーフ
ィルム等の熱転写記録媒体を用いた記録方法が広く採用
されている。"Prior Art" When recording an image corresponding to a predetermined digital image signal on a recording medium, such as plain paper, a recording method using a thermal transfer recording medium such as an ink donor film is widely adopted.
このうちの、熱ヘツド転写方式は、多数の発熱素子を一
列に配置したサーマルヘッドを使用する方式である。こ
の方式は、インクを塗布したベースフィルムを、そのイ
ンク面を記録用紙(普通紙)に対向させた状態で、ベー
スフィルム背面からサーマルヘッドにより選択的に熱パ
ルスを印加し、その部分のインクを溶融しあるいは昇華
させて記録用紙上に転写するものである(特開昭53−
84735号公報等)。Among these, the thermal head transfer method uses a thermal head in which a large number of heating elements are arranged in a row. In this method, with the ink-coated base film facing the recording paper (plain paper), a thermal head selectively applies heat pulses from the back of the base film to remove the ink from that area. It is transferred onto recording paper by melting or sublimating it (Japanese Unexamined Patent Application Publication No. 1983-1999).
84735, etc.).
これに対して通電転写方式は、インクを塗布したベース
フィルムに針電極を接触させて、インクに選択的に通電
を行ってインクをジュール熱によって加熱する方式であ
る。On the other hand, the energization transfer method is a method in which a needle electrode is brought into contact with a base film coated with ink, and electricity is selectively applied to the ink to heat the ink using Joule heat.
この方式では、インク層とベースフィルムとに導電性が
要求される。ベースフィルムに導電性を付与するために
、樹脂中に金属を分散してこれをフィルム化(リボン化
)したり、高抵抗の導電性高分子樹脂を用いたりする方
法が用いられている。This method requires the ink layer and the base film to be electrically conductive. In order to impart conductivity to the base film, methods are used in which metals are dispersed in a resin and formed into a film (ribbon), or a highly resistive conductive polymer resin is used.
インク層には、導電性の良い材料を配合する(画像電子
学会誌1982年 Vol 11、No1)。A material with good conductivity is mixed in the ink layer (Journal of the Institute of Image Electronics Engineers, Vol. 11, No. 1, 1982).
また、同種の方式であるが、インクに直接電流を流して
加熱するのでなく、ベースフィルム上に発熱抵抗体層を
介してインク層を塗布し、この発熱抵抗体層に通電して
インクを加熱する方式が提案されている(特開昭56−
93585号公報等)。In addition, although it is a similar method, instead of heating the ink by passing a current directly through it, the ink layer is applied on the base film through a heating resistor layer, and the ink is heated by passing current through the heating resistor layer. A method has been proposed to
93585, etc.).
以後、これを熱的転写印刷方式と呼ぶことにする。Hereinafter, this will be referred to as a thermal transfer printing method.
この方式を、第4図を用いて説明する。This method will be explained using FIG. 4.
図において、熱転写記録媒体10は、ベースフィルム3
上に発熱抵抗体層4と、導電層5と、インク層6とが順
に積層された構成のものである。In the figure, the thermal transfer recording medium 10 includes a base film 3
It has a structure in which a heating resistor layer 4, a conductive layer 5, and an ink layer 6 are laminated in this order on top.
このベースフィルム3には、所定の導電性が付与されて
いる。この熱転写記録媒体10の背面に、針電極1と帰
路電極2とを接触させる。ここで、針電極1をこの紙面
に垂直な方向に向けて多数−列に配列し、画像信号に応
じてそのうちのいつくかに選択的に電気パルスを印加す
る、電流は一点鎖線の矢印11のように流れ、矢印12
で指示した部分の発熱抵抗体層4が発熱する。この熱が
インク層6の一部8を溶融軟化させて、インク8が記録
用紙7に転写される。This base film 3 is given a predetermined electrical conductivity. The needle electrode 1 and the return electrode 2 are brought into contact with the back surface of the thermal transfer recording medium 10. Here, the needle electrodes 1 are arranged in a large number of rows in a direction perpendicular to the plane of this paper, and electric pulses are selectively applied to some of them according to the image signal. Flow like arrow 12
The heat generating resistor layer 4 in the portion indicated by 2 generates heat. This heat melts and softens a portion 8 of the ink layer 6, and the ink 8 is transferred to the recording paper 7.
「発明が解決しようとする問題点」
以上のような従来技術には、それぞれ次のような問題点
がある。"Problems to be Solved by the Invention" The above-mentioned conventional techniques each have the following problems.
まず、熱ヘツド転写方式は、サーマルヘッドからベース
フィルムを介してインク層に熱が伝達されることから、
熱伝導に要する時間だけ、記録に時間遅れ(時定数1m
5ec程度)が生じ、印字速度が遅くなる難点がある。First, in the thermal head transfer method, heat is transferred from the thermal head to the ink layer via the base film.
There is a time delay in recording due to the time required for heat conduction (time constant 1 m)
5ec), resulting in a slow printing speed.
さらに、伝達される熱エネルギが小さく、低融点のイン
クを使用する必要がある。従って、インク材料選択の自
由度が小さく、転移制御性も良くない。このことから、
記録ドツトの濃度変調は困難で、インク材料としてワッ
クス系の材料しか使用できないという難点もある。Furthermore, it is necessary to use inks that transfer less thermal energy and have lower melting points. Therefore, the degree of freedom in selecting the ink material is small, and the transfer control property is also poor. From this,
It is difficult to modulate the density of recording dots, and there is also the drawback that only wax-based materials can be used as ink materials.
また、通電転写方式は、インクに配合する導電性材料が
色調制御を困難にすることから、カラー化が難しいとい
う欠点がある。また、ベースフィルム内の電気抵抗によ
る電力損失に加えて、電流の広がりによる損失も生じ、
電力効率が悪く、しかも記録ドツトの位置精度が低い難
点がある。さらに導電性材料をベースフィルムに配合す
ると、その機械特性も低下させてしまう。Furthermore, the electric transfer method has the disadvantage that it is difficult to produce color images because the conductive material added to the ink makes it difficult to control the color tone. In addition to power loss due to electrical resistance within the base film, there is also loss due to current spread.
There are drawbacks such as poor power efficiency and low positional accuracy of recording dots. Furthermore, if a conductive material is incorporated into the base film, its mechanical properties will also be degraded.
これに対し7て、熱的転写印刷方式は、インクに導電性
を付与する必要がなく、インク材料選択の自由度が高い
が、電流の広がりによる損失が大きいことと記録ドツト
の位置精度が低い点は、通電転写方式と変わりがない。On the other hand, the thermal transfer printing method does not require the ink to be electrically conductive and has a high degree of freedom in selecting ink materials, but the loss due to current spread is large and the positional accuracy of the recording dots is low. This method is no different from the current transfer method.
また、第4図から明らかなように、ベースフィルム3は
発熱抵抗体層4より十分高抵抗である必要があることか
ら、必然的に、針電極1等との接触抵抗が高くなってし
まう。しかも電流が、針電極1、ベースフィルム3、発
熱抵抗体層4、導電層5という径路と同様の経路をたど
って帰路電極2に達することから、電流路中に2個所も
接触接続部分が存在し、電気エネルギの損失が大きい難
点がある。Further, as is clear from FIG. 4, since the base film 3 needs to have a sufficiently higher resistance than the heating resistor layer 4, the contact resistance with the needle electrode 1 etc. will inevitably become higher. Moreover, since the current reaches the return electrode 2 by following the same path as the needle electrode 1, base film 3, heating resistor layer 4, and conductive layer 5, there are two contact connection parts in the current path. However, there is a drawback that there is a large loss of electrical energy.
本発明は以上の点に着目してなされたもので、効率良く
高精度に転写を行うことができる熱転写記録媒体を提供
することを目的とする。The present invention has been made with attention to the above points, and an object of the present invention is to provide a thermal transfer recording medium that can perform efficient and highly accurate transfer.
「問題点を解決するための手段」
本発明の熱転写記録媒体は、支持体上の熱可塑性高分子
物質を主成分とするインクを加熱して、被記録体上に転
写記録するものにおいて、上記支持体は、その厚み方向
に平行に並べて配列された多数の導電性繊維を、幅方向
に平行な絶縁性横糸により織製して支持し、これらを絶
縁性樹脂中に埋設した異方性導電層と、その上に順に積
層された、発熱抵抗体層と、帰路電極屑と、インクを担
持するインク剥離層とから構成されたことを特徴とする
ものである。"Means for Solving the Problems" The thermal transfer recording medium of the present invention heats an ink mainly composed of a thermoplastic polymer substance on a support and transfers the recording onto a recording medium. The support is an anisotropic conductive material in which a large number of conductive fibers arranged parallel to the thickness direction are woven and supported by insulating weft yarns parallel to the width direction, and these are embedded in an insulating resin. The device is characterized in that it is composed of a heating resistor layer, a return electrode scrap, and an ink peeling layer that supports ink, which are laminated in this order on the heating resistor layer.
「作用」
以上の熱転写記録媒体において、異方性導電層は、これ
に接触した針電極から発熱抵抗体層に向かって、その犀
み方向に低損失で電流を流すために設けられている。こ
の異方性導電層は、導電性繊維を絶縁性横糸によって織
製したもので、導電性繊維が厚み方向の導電性を確保す
る。この構造は、幅方向の絶縁性を確保しながら高密度
に導電性繊維を配列するのに適している。発熱抵抗体層
は、針電極から供給される電流によるジュール熱で発熱
し、インクを加熱して転移させるための層である。帰路
電極層は、発熱抵抗体層に流入した電流を拡散させ、還
流させる電極になる。またインク剥離層は、低いエネル
ギでもインクの転移が良好に行われるよう、その臨界表
面張力の調整された層である。"Function" In the thermal transfer recording medium described above, the anisotropic conductive layer is provided in order to flow a current with low loss in the direction of the heating resistor layer from the needle electrode in contact with the anisotropic conductive layer. This anisotropic conductive layer is made by weaving conductive fibers with insulating weft threads, and the conductive fibers ensure conductivity in the thickness direction. This structure is suitable for arranging conductive fibers at high density while ensuring insulation in the width direction. The heating resistor layer is a layer that generates heat using Joule heat caused by the current supplied from the needle electrode, and heats and transfers the ink. The return electrode layer serves as an electrode that diffuses and refluxes the current that has flowed into the heating resistor layer. Further, the ink release layer is a layer whose critical surface tension is adjusted so that ink transfer can be performed satisfactorily even at low energy.
このような構成により、高効率、高速度で高画質の記録
を行うことができる。With such a configuration, high-quality recording can be performed with high efficiency and high speed.
「実施例」
(基本的な構成)
第1図は、本発明の熱転写記録媒体の基本的な構成を示
す縦断面図である。"Example" (Basic Configuration) FIG. 1 is a longitudinal sectional view showing the basic configuration of the thermal transfer recording medium of the present invention.
この熱転写記録媒体は、支持体20上にインク層26を
形成したものである。この支持体20は、厚さ方向く矢
印X方向)の導電率が、幅方向(矢印Yの方向)の導電
率よりも高い異方性導電層23と、発熱抵抗体層24と
、帰路電極層25と、インク剥離層28とから構成され
ている。This thermal transfer recording medium has an ink layer 26 formed on a support 20. This support 20 includes an anisotropic conductive layer 23 whose conductivity in the thickness direction (direction of arrow X) is higher than conductivity in the width direction (direction of arrow Y), a heating resistor layer 24, and a return electrode. It is composed of a layer 25 and an ink release layer 28.
異方性導電層23は、厚み方向の導電率が幅方向の導電
率の10倍程度以上のものであることが好ましく、例え
ば、第2図のように、厚み方向に平行に並べて配列され
たニッケル線等の導電性の導電性繊維23aを絶縁性横
糸23cで織製し、シリコーンエラストマー等の弾性樹
脂23bでモールド固定したものを使用する。It is preferable that the conductivity in the thickness direction of the anisotropic conductive layer 23 is about 10 times or more than the conductivity in the width direction, and for example, as shown in FIG. A conductive fiber 23a such as a nickel wire is woven with an insulating weft 23c and fixed in a mold with an elastic resin 23b such as a silicone elastomer.
上記導電性繊維23aとしては、ステンレス、ニッケル
、銅などの金属繊維、炭素繊維等が使用できる。また、
絶縁性横糸としては、各種プラスチック繊維、絶縁性セ
ラミック繊維、金属繊維にゴム・プラスチック絶縁性セ
ラミック等を被覆した複合繊維等を使用することができ
る。さらに、これらの間隙を埋める材料としては、熱可
塑性エラストマー、ゴム材等が適し、一般的には、接着
性樹脂、シリコーンゴム、ウレタンゴム、ネオプレンゴ
ム等が好適する。As the conductive fiber 23a, metal fibers such as stainless steel, nickel, and copper, carbon fibers, etc. can be used. Also,
As the insulating weft, various types of plastic fibers, insulating ceramic fibers, composite fibers made of metal fibers coated with rubber, plastic insulating ceramics, etc. can be used. Further, as the material for filling these gaps, thermoplastic elastomers, rubber materials, etc. are suitable, and adhesive resins, silicone rubber, urethane rubber, neoprene rubber, etc. are generally suitable.
この異方性導電層23の厚み方向の抵抗値は、200Ω
以下、好ましくは20Ω以下に選定する。The resistance value of this anisotropic conductive layer 23 in the thickness direction is 200Ω.
Hereinafter, it is preferably selected to be 20Ω or less.
また、発熱抵抗体層24は、200’C以上の耐熱性を
有するもの、例えばTaN等のセラミックにより構成さ
れ、その体積固有抵抗は単位断面積あたり10−2Ω・
cmから104Ω・cmの範囲とし、好ましくは10Ω
・cmから103Ω・cmに選定する。また、その厚さ
は、支持体の機械特性の点から、3000人から20μ
mの範囲に選定することが好ましい。The heating resistor layer 24 is made of a material having heat resistance of 200'C or more, for example, ceramic such as TaN, and its volume resistivity is 10-2 Ω/unit cross-sectional area.
cm to 104Ω・cm, preferably 10Ω
・Select from cm to 103Ω・cm. In addition, from the viewpoint of the mechanical properties of the support, the thickness is from 3000 to 20 μm.
It is preferable to select a range of m.
発熱抵抗体層24の厚さをこのような範囲に選定すると
、その体積固有抵抗が上記範囲以上になると、発熱に必
要な電流を供給するために高電圧駆動が要求され、回路
やその他の部分の耐圧等の面で信頼性が低下する。一方
、体積固有抵抗が上記の範囲以下になると、発熱のため
に大電流を供給する必要が生じ、回路の大型化によるコ
ストアップを招く。If the thickness of the heat generating resistor layer 24 is selected within such a range, and its volume resistivity exceeds the above range, high voltage drive will be required to supply the current necessary for heat generation, causing damage to circuits and other parts. Reliability decreases in terms of voltage resistance, etc. On the other hand, when the volume resistivity falls below the above range, it becomes necessary to supply a large current to generate heat, leading to an increase in cost due to an increase in the size of the circuit.
次に、帰路電極層25は、導電性金属の蒸着等により形
成され、その体積固有抵抗は発熱抵抗体層24のそれの
5 X 10−’倍量下、好ましくはI X 10−’
倍量下であって、耐熱性が200°C以上の材料を選定
する。この帰路電極層25は、図示しない電極を通じて
接地され、あるいは一定のバイアス電位の電極に接続さ
れる。Next, the return electrode layer 25 is formed by vapor deposition of a conductive metal, and its volume resistivity is 5 x 10-' times lower than that of the heating resistor layer 24, preferably I x 10-'.
Select a material that is double the amount and has a heat resistance of 200°C or higher. This return path electrode layer 25 is grounded through an electrode (not shown) or connected to an electrode with a constant bias potential.
インク剥離層28は、インクが加熱されたとき転移が容
易なように、記録用紙等の転写材の表面の臨界表面張力
(rc)に比べて、より低い臨界表面張力を有する材料
によって形成される極薄膜であることが好ましい。その
厚さは、10μm以下、好ましくは1μm以下に選定す
る。The ink release layer 28 is formed of a material having a lower critical surface tension (rc) than the critical surface tension (rc) of the surface of a transfer material such as recording paper so that the ink can be easily transferred when heated. Preferably, it is an extremely thin film. Its thickness is selected to be 10 μm or less, preferably 1 μm or less.
インク層26は、ガラス転移温度130°C以下の高分
子物質をベースにして色材を混合または溶解し、着色し
たものとする。The ink layer 26 is colored by mixing or dissolving a coloring material based on a polymer substance having a glass transition temperature of 130° C. or less.
(動作)
第3図は、以上のような熱転写記録媒体を用いて記録を
行う記録装置の概略を示したものである。(Operation) FIG. 3 schematically shows a recording apparatus that performs recording using the thermal transfer recording medium as described above.
熱転写記録媒体30は、供給リール31から巻取リール
32に向かって搬送される。記録用紙33は、この熱転
写記録媒体30に重ね合わされて、一対の搬送ローラ3
4に挾まれて搬送される。The thermal transfer recording medium 30 is conveyed from a supply reel 31 toward a take-up reel 32 . The recording paper 33 is superimposed on this thermal transfer recording medium 30 and is conveyed by a pair of conveyance rollers 3.
4 and transported.
針電極21(第1図)を列状に配列した記録ヘッド35
は、一対の搬送ローラ34の中間で、背面弾性ローラ3
6と協同して熱転写記録媒体30と記録用紙33とを挾
みつけ、記録用の電気パルスを印加する。A recording head 35 in which needle electrodes 21 (Fig. 1) are arranged in a row.
is between the pair of conveyance rollers 34, and the back elastic roller 3
6, the thermal transfer recording medium 30 and recording paper 33 are sandwiched together, and electric pulses for recording are applied.
ここで、第1図に示すように、針電極21を異方性導電
層23に圧接させて電気パルスを印加すると、その信号
電流は、針電極21、導電性繊維23a1発熱抵抗体層
24および帰路電極層25の中を一点鎖線の矢印のよう
に流れる。異方性導電1823のX方向の電気抵抗が十
分低く、かつ帰路電極層25中では電流が広く拡散する
ためにここでも電気抵抗が低く、針電極21から供給さ
れる電気エネルギの大部分は発熱抵抗体層24において
熱エネルギに変換される。Here, as shown in FIG. 1, when the needle electrode 21 is brought into pressure contact with the anisotropic conductive layer 23 and an electric pulse is applied, the signal current is transmitted to the needle electrode 21, the conductive fiber 23a1, the heating resistor layer 24, and the anisotropic conductive layer 23. It flows in the return path electrode layer 25 like a dashed line arrow. The electrical resistance of the anisotropic conductor 1823 in the X direction is sufficiently low, and the current widely diffuses in the return electrode layer 25, so the electrical resistance is also low here, and most of the electrical energy supplied from the needle electrode 21 is generated as heat. It is converted into thermal energy in the resistor layer 24.
この熱は、帰路電極層25およびインク剥離層28を伝
わってインク層26に達する。こうしてインク層26の
インクは加熱溶融され記録用紙等へ転写される。このと
き、帰路電極層25およびインク剥離層28が十分薄層
とされているので、伝熱速度も速く、エネルギ損失も少
ない。This heat travels through the return electrode layer 25 and the ink peeling layer 28 and reaches the ink layer 26 . In this way, the ink in the ink layer 26 is heated and melted and transferred onto recording paper or the like. At this time, since the return electrode layer 25 and the ink peeling layer 28 are made sufficiently thin, the heat transfer rate is fast and energy loss is small.
本発明の熱転写記録媒体は、導電性繊維を高密度(5本
/mm以上)に配列し、異方性導電率を高く(厚み方向
の抵抗100Ω以下、幅方向の抵抗1010Ω以上)す
ることのできる構成の異方性導電層を採用したので、入
力エネルギに対して記録に有効に利用されるエネルギが
15%以上となり、きわめて高い効率で記録が可能にな
る。従って、記録のための供給エネルギは1ドツトあた
り500erg以下でよく、しかも、
500μsec/dot以下の高速記録が可能である。The thermal transfer recording medium of the present invention has conductive fibers arranged in high density (5 fibers/mm or more) and high anisotropic conductivity (resistance in the thickness direction of 100 Ω or less, resistance in the width direction of 1010 Ω or more). Since an anisotropic conductive layer having a structure that can be used is adopted, the energy effectively used for recording is 15% or more of the input energy, making it possible to record with extremely high efficiency. Therefore, the energy supplied for recording may be less than 500 erg per dot, and high-speed recording of less than 500 μsec/dot is possible.
さらに、インク剥離層28を設けることによって、イン
クの転移効率が良くなり、人力エネルギを変調してドツ
ト転移量を変化させることができ、いわゆる多階調の記
録を可能にする。Furthermore, by providing the ink peeling layer 28, the ink transfer efficiency is improved, and the amount of dot transfer can be changed by modulating human energy, making so-called multi-gradation recording possible.
本発明のより具体的な実施例を以下に説明する。More specific examples of the present invention will be described below.
(具体的な実施例1)
第1図に示した熱転写記録媒体において、各部を次のよ
うにして製造した。(Specific Example 1) Each part of the thermal transfer recording medium shown in FIG. 1 was manufactured as follows.
■異方性導電層23
はじめに第2図すに示すように、縦糸23aに線径30
μmのステンレスワイヤを用い、横糸23cに線径30
μmのポリエステル繊維を用いて平織し、布状のものを
製作する。次にこれに、室温硬化シリコーンゴムを溶剤
希釈して硬化剤を混合した溶液を塗布し、第2図Cに示
すシート状のものを得る。これを多数製作して第2図d
のように樹脂が未硬化のまま積層し、2 k g /
c m2の圧力で加圧しオーブンで2時間100°Cに
加熱し硬化処理を行う。硬化後、これを第2図dの一点
鎖線に示すように厚さ2.00mmにスライスし、端面
に上記シリコーンゴムを塗布し再び加圧硬化させて、ス
テンレス線の両端が上下面に現れたシートを得る。この
ようにして第2図aに示す異方性導電層が得られる。■Anisotropic conductive layer 23 First, as shown in Figure 2, the warp yarns 23a have a wire diameter of 30 mm.
Using a μm stainless steel wire, the weft thread 23c has a wire diameter of 30
A cloth-like product is produced by plain weaving using μm polyester fibers. Next, a solution of room-temperature-curing silicone rubber diluted with a solvent and mixed with a curing agent is applied thereto to obtain a sheet-like material as shown in FIG. 2C. After making many of these, Figure 2 d
The resin is laminated without being cured as shown in the figure, and the weight is 2 kg/
A curing treatment is performed by applying a pressure of cm2 and heating at 100°C for 2 hours in an oven. After curing, this was sliced into 2.00 mm thick pieces as shown by the dashed-dotted line in Figure 2d, and the silicone rubber was applied to the end faces and hardened again under pressure, so that both ends of the stainless steel wire appeared on the top and bottom faces. Get a sheet. In this way, the anisotropic conductive layer shown in FIG. 2a is obtained.
この異方性導電層の厚み方向の抵抗値は1.5Ω/ c
m2、幅方向の抵抗値は1014Ω/Cm2以上であ
った。The resistance value of this anisotropic conductive layer in the thickness direction is 1.5Ω/c
m2, the resistance value in the width direction was 1014Ω/Cm2 or more.
■発熱抵抗体層24
■で得られた異方性導電層を十分に洗浄し乾燥して、真
空度2X10−6Torrの真空系において、真空度3
X10−3Torrになるようアルゴンガスを導入した
後、高周波スパッタ法により5i02を20重量パーセ
ント含むTaNターゲットをスパッタリングして、抵抗
値
80Ω/10−2mm2、厚さ2500人の発熱層を形
成した。■ Heat generating resistor layer 24 The anisotropic conductive layer obtained in step (2) was thoroughly washed and dried, and then placed in a vacuum system with a vacuum degree of 3 x 10-6 Torr.
After introducing argon gas to a pressure of X10-3 Torr, a TaN target containing 20 weight percent of 5i02 was sputtered by high-frequency sputtering to form a heat generating layer having a resistance value of 80Ω/10-2 mm2 and a thickness of 2500 mm.
■帰路電極層25
■で得られたものに、電子ビーム真空蒸着法によって、
到達真空度1.5X10−6TorrでCrを700人
、Cuを2000人着膜し、帰路電極層を得た。■Return electrode layer 25 On the one obtained in (2), by electron beam vacuum evaporation method,
700 layers of Cr and 2000 layers of Cu were deposited at an ultimate vacuum of 1.5×10 −6 Torr to obtain a return electrode layer.
■インク剥離層28
厚さ3μmのポリフッ化エチレン樹脂膜を上記帰路電極
層上に焼結し、インク剥離層を形成した。(2) Ink release layer 28 A 3 μm thick polyfluoroethylene resin film was sintered on the return electrode layer to form an ink release layer.
その臨界表面張力は2Qdyne/cmであった。Its critical surface tension was 2Qdyne/cm.
■インク層26
上記インク剥離層の上に、ポリエステル樹脂(東洋i
社製バイロン200)にフタロシアニン顔料8型量パー
セント混入し、厚さ8μmの熱可塑性シアンインク層を
形成した。■Ink layer 26 On top of the above ink release layer, polyester resin (Toyo i
A thermoplastic cyan ink layer having a thickness of 8 μm was formed by mixing 8% of a phthalocyanine pigment in Vylon 200 (manufactured by Co., Ltd.).
こうして得られた熱転写記録媒体を第3図に示したよう
な装置にセットし、直径95μmの針電極を8本/mm
の密度で配列したラインヘッドを用いて記録を行った。The thermal transfer recording medium obtained in this way was set in the apparatus shown in Figure 3, and 8 needle electrodes/mm with a diameter of 95 μm were installed.
Recording was performed using line heads arranged at a density of .
記録用の電気パルスは、12V、25V、60Vの3種
とし、いずれも幅200μsecの矩形パルスとした。Three types of electric pulses were used for recording: 12 V, 25 V, and 60 V, and all of them were rectangular pulses with a width of 200 μsec.
記録用紙には複写用の普通紙を使用し、ゴム硬度60の
背面弾性ローラに対し、1000g/cm2の圧力でラ
インヘッドを押しつけるようにして熱転写記録媒体と記
録用紙とを挟みつけ、記録を行った。帰路電極層25に
は、幅5■、5KHzの矩形パルスを連続的に印加する
よう電極を接続した。Plain paper for copying was used as the recording paper, and recording was performed by sandwiching the thermal transfer recording medium and the recording paper by pressing the line head with a pressure of 1000 g/cm2 against an elastic back roller with a rubber hardness of 60. Ta. An electrode was connected to the return path electrode layer 25 so as to continuously apply a rectangular pulse having a width of 5 mm and a frequency of 5 KHz.
こうして画像信号に対応して熱転写記録を行い、転移ド
ツト(記録ドツト)の評価を行った。In this way, thermal transfer recording was performed in accordance with the image signal, and transferred dots (recorded dots) were evaluated.
〈以下余白)
第 1 表
(具体的な実施例2)
はじめに第2図すに示すように縦糸23aに線径26μ
mの銅ワイヤを用い、横糸23cに線径30μmのポリ
エステル繊維を用いて平織し、布状のものを作成する。(Left below) Table 1 (Specific Example 2) First, as shown in Figure 2, the warp threads 23a have a wire diameter of 26 μm.
A cloth-like product is produced by plain weaving a copper wire with a diameter of 30 μm using a polyester fiber having a wire diameter of 30 μm as the weft thread 23c.
次にこれを、熱硬化型シリコーン樹脂液に浸漬し、第2
図Cに示すシート状のものを得る。Next, this is immersed in a thermosetting silicone resin liquid, and a second
A sheet-like product shown in Figure C is obtained.
これを多数作成して、樹脂が未硬化のまま第2図dに示
すように積層し、加圧したままオーブン120°C,4
時間加熱し硬化処理を行う。硬化後これを第2図dの一
点鎖線に示すように厚さ3mmにスライスし、端面に上
記シリコーン樹脂を塗布し再び加熱加圧硬化させて、銅
線の両端が上下面に現れたシートを得る。このようにし
て、第2図aに示す異方性導電層が得られる。A large number of these were made, and the resin was laminated as shown in Fig. 2 (d) with the resin uncured.
Curing treatment is performed by heating for a period of time. After curing, this was sliced into 3 mm thick pieces as shown by the dashed-dotted line in Figure 2d, the silicone resin was applied to the end surfaces, and the sheets were cured under heat and pressure again to form a sheet with both ends of the copper wires appearing on the top and bottom surfaces. obtain. In this way, the anisotropic conductive layer shown in FIG. 2a is obtained.
この異方性導電層は、銅線が18本/mmの密度で配列
されたものとなり、その厚み方向の抵抗値は0.9Ω/
c m2、幅方向の抵抗値は10′3Ω/cm2以上
であった。This anisotropic conductive layer has copper wires arranged at a density of 18 wires/mm, and the resistance value in the thickness direction is 0.9Ω/mm.
cm2, and the resistance value in the width direction was 10'3Ω/cm2 or more.
以下、先の実施例と同様にして発熱抵抗体層、帰路電極
層、インク剥離層、インク層を形成し、転移ドツトの評
価を行った。Thereafter, a heating resistor layer, a return electrode layer, an ink peeling layer, and an ink layer were formed in the same manner as in the previous example, and transferred dots were evaluated.
第 2 表
G
「発明の効果」
以上のような本発明の熱転写記録媒体には、次のような
効果がある。Table 2 G "Effects of the Invention" The thermal transfer recording medium of the present invention as described above has the following effects.
(1)高速印字が可能
発熱抵抗層にインク層が近接しており、伝熱が速く、印
字動作の際の時定数が300μsec以下と小さくて、
ラインヘッド化を行えば、1100cpの高速印字も可
能である。(1) High-speed printing is possible The ink layer is close to the heat-generating resistor layer, so heat transfer is fast, and the time constant during printing is small at 300 μsec or less.
If a line head is used, high-speed printing of 1100 cp is also possible.
(2)高品位な画像が得られる。(2) High-quality images can be obtained.
本発明の熱転写記録媒体の場合、そのインク材は単に熱
可塑性であればよく、選択の自由度がきわめて高い。そ
こで、例えば透明な高分子材料中に色材を選択して配合
する場合、色調不意で色材(顔料や染料)を広範囲に選
択することができるほか、色材が高分子材料に囲まれて
いるため、紫外光の直接照射や酸素との接触による色材
の劣化、分解が生じ難い。そこで、色材の色調も堅牢性
も、印刷と同等の水準のものとすることができる。In the case of the thermal transfer recording medium of the present invention, the ink material need only be thermoplastic, and the degree of freedom in selection is extremely high. For example, when selecting and blending a coloring material into a transparent polymeric material, it is possible to select a wide range of coloring materials (pigments and dyes) with unexpected color tones, and the coloring material is surrounded by the polymeric material. Therefore, the coloring material is less likely to deteriorate or decompose due to direct irradiation with ultraviolet light or contact with oxygen. Therefore, the color tone and fastness of the coloring material can be made to the same level as printing.
(3)高階調性が得られる。(3) High gradation can be obtained.
入力信号に対する応答性が良いので、入力信号の強度変
調により転写インク量の調整を行うことができる。この
ことから、いわゆるドツトマトリクスによるパターン法
を用いた階調表現でなく、個々のドツトについて、3段
階以上の濃度表現が可能となる。従って、6〜8本/m
mという高解度を保ちながら、8〜16段階の中間調(
ハーフトーン)表現が可能である。もちろん、フルカラ
ーの階調表現も可能である。Since the responsiveness to the input signal is good, the amount of transferred ink can be adjusted by modulating the intensity of the input signal. Therefore, it is possible to express the density of each dot in three or more levels, instead of expressing the gradation using a so-called dot matrix pattern method. Therefore, 6 to 8 pieces/m
While maintaining the high resolution of m, there are 8 to 16 levels of intermediate tones (
Halftone) expression is possible. Of course, full color gradation expression is also possible.
(4)省エネルギ化ができる。(4) Energy saving can be achieved.
発熱抵抗体層とインク層とが近接していることから、熱
拡散によるエネルギロスが少ないことは前にも述べた。As mentioned above, since the heating resistor layer and the ink layer are close to each other, there is little energy loss due to thermal diffusion.
これに加えて、発熱抵抗体層へ電流を導く電流路の電気
抵抗が低く、これによるエネルギ損失も少ない。もちろ
ん、定着処理等が不要であるから、無駄なエネルギの消
費もない。このことから、記録密度が8ドツ)7mmの
場合、1ドツトあたり100〜700erg(エルグ)
のエネルギで記録を行うことができるという経済性が得
られる。In addition, the electrical resistance of the current path that guides the current to the heating resistor layer is low, and energy loss due to this is also small. Of course, since fixing processing and the like are not required, there is no wasted energy consumption. From this, if the recording density is 8 dots) 7 mm, 100 to 700 erg per dot.
It is economical to be able to perform recording using less energy.
(5)信頼性が高い。(5) High reliability.
発熱抵抗体層の抵抗値を管理すれば発熱量が制御でき、
さらに、この発熱抵抗体層にセラミック等の耐熱材を使
用すれば、その厚みを数十オングストローム(A)に制
御しながら容易にこれを製造することができる。しかも
、湿度10〜90%(Rh)、温度5〜30°Cの範囲
でプロセス(記録動作)が安定に動作し、高い信頼性を
得ることができる。従って、レーザプリンタ、静電記録
方式のような粉体取り扱い上の湿度管理、インクジェッ
ト方式のようなインク粘度安定化のための温度管理等が
不要となり、保守管理が容易である。By managing the resistance value of the heating resistor layer, the amount of heat generated can be controlled.
Furthermore, if a heat-resistant material such as ceramic is used for this heating resistor layer, it can be easily manufactured while controlling its thickness to several tens of angstroms (A). Moreover, the process (recording operation) operates stably in the range of humidity 10 to 90% (Rh) and temperature 5 to 30°C, and high reliability can be obtained. Therefore, there is no need for humidity control when handling powder as in a laser printer or electrostatic recording method, or temperature control for stabilizing ink viscosity as in an inkjet method, and maintenance management is easy.
(6)高密度記録が可能
異方性導電層内の導電体として導電性繊維を用い、これ
を織製して支持した導電性繊維を、5本/mm以上の高
密度に配列することが可能で、その厚み方向は100Ω
・cm以下幅方向は1010Ω・cm以上というような
高い導電率比とすることができる。従って、記録時の電
気エネルギを高い効率で発熱抵抗体層に供給することが
できる。(6) High-density recording is possible By using conductive fibers as conductors in the anisotropic conductive layer, it is possible to weave and support the conductive fibers and arrange them at a high density of 5 fibers/mm or more. Possible, the thickness direction is 100Ω
- A high conductivity ratio of 1010 Ω·cm or more can be achieved in the width direction of 10 cm or less. Therefore, electrical energy during recording can be supplied to the heating resistor layer with high efficiency.
第1図は本発明の熱転写記録媒体の断面図、第2図はそ
の各製造工程中の異方性導電層の部分切欠斜視図、第3
図は本発明の熱転写記録媒体を使用した記録装置の概略
構成図、第4図は従来の熱転写記録媒体の縦断面図であ
る。
20・・・・・・支持体、23・・・・・・異方性導電
層、23a・・・・・・導電性繊維、
23c・・・・・・絶縁性横糸、
24・・・・・・発熱抵抗体層、
25・・・・・・帰路電極層、
26・・・・・・インク層、
28・・・・・・インク剥離層。
出 願 人
富士ゼロックス株式会社
代 理 人FIG. 1 is a sectional view of the thermal transfer recording medium of the present invention, FIG. 2 is a partially cutaway perspective view of the anisotropic conductive layer during each manufacturing process, and FIG.
The figure is a schematic diagram of a recording apparatus using the thermal transfer recording medium of the present invention, and FIG. 4 is a longitudinal cross-sectional view of a conventional thermal transfer recording medium. 20... Support body, 23... Anisotropic conductive layer, 23a... Conductive fiber, 23c... Insulating weft, 24... ... Heat generating resistor layer, 25 ... Return electrode layer, 26 ... Ink layer, 28 ... Ink release layer. Applicant: Fuji Xerox Co., Ltd. Agent
Claims (1)
加熱して、被記録体上に転写記録するものにおいて、前
記支持体は、その厚み方向に平行に並べて配列された多
数の導電性繊維を、幅方向に平行な絶縁性横糸により織
製して支持し、これらを絶縁性樹脂中に埋設した異方性
導電層と、その上に順に積層された、発熱抵抗体層と、
帰路電極層と、インクを担持するインク剥離層とから構
成されたことを特徴とする熱転写記録媒体。In a device that transfers and records onto a recording medium by heating an ink mainly composed of a thermoplastic polymer substance on a support, the support has a large number of conductive conductors arranged in parallel in the thickness direction of the support. An anisotropic conductive layer in which fibers are woven and supported by insulating weft threads parallel to the width direction and embedded in an insulating resin, and a heating resistor layer laminated in order on the anisotropic conductive layer;
A thermal transfer recording medium comprising a return electrode layer and an ink release layer that carries ink.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61239062A JPS6394887A (en) | 1986-10-09 | 1986-10-09 | Thermal transfer recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61239062A JPS6394887A (en) | 1986-10-09 | 1986-10-09 | Thermal transfer recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6394887A true JPS6394887A (en) | 1988-04-25 |
Family
ID=17039296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61239062A Pending JPS6394887A (en) | 1986-10-09 | 1986-10-09 | Thermal transfer recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6394887A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0379334A2 (en) * | 1989-01-17 | 1990-07-25 | Matsushita Electric Industrial Co., Ltd. | Resistive sheet transfer printing and electrode head |
US5053269A (en) * | 1989-01-09 | 1991-10-01 | Notex S.A. | Stabilizing sheet with a heating insert for aboveground cultivation and for a protected-crop container platform |
-
1986
- 1986-10-09 JP JP61239062A patent/JPS6394887A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5053269A (en) * | 1989-01-09 | 1991-10-01 | Notex S.A. | Stabilizing sheet with a heating insert for aboveground cultivation and for a protected-crop container platform |
EP0379334A2 (en) * | 1989-01-17 | 1990-07-25 | Matsushita Electric Industrial Co., Ltd. | Resistive sheet transfer printing and electrode head |
US5146237A (en) * | 1989-01-17 | 1992-09-08 | Matushita Electric Industrial Co., Ltd. | Resistive sheet transfer printing and electrode head |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4897669A (en) | Thermal transfer recording media | |
JPS6394887A (en) | Thermal transfer recording medium | |
KR890009235A (en) | Printed Circuit Board Manufacturing Method | |
US4425569A (en) | Non-impact recording method and apparatus | |
EP0203714B1 (en) | Resistive ribbon system for a colour printer | |
JPS6342889A (en) | Electrothermal transfer type color ribbon | |
JP2522313B2 (en) | Thermal transfer recording medium | |
JPS6394889A (en) | Thermal transfer recording medium | |
JP2517985B2 (en) | Thermal transfer recording medium | |
JPS6394886A (en) | Thermal transfer recording medium | |
JP3003380B2 (en) | Recording head for current transfer | |
JP2569644B2 (en) | Print recording medium | |
JPS6394888A (en) | Thermal transfer recording medium | |
JP2508112B2 (en) | Thermal transfer recording medium | |
EP0313797A1 (en) | Resistive ribbon for high resolution printing and production thereof | |
JPH021337A (en) | Thermal transfer printer | |
JPS62242569A (en) | Ink medium for electro-thermorecording | |
JP2536477B2 (en) | Print recording device | |
JP2626511B2 (en) | Power transfer printing recorder | |
JPH0939316A (en) | Thermal recording method | |
JPS6347168A (en) | Printer | |
JP2666374B2 (en) | Printing method | |
JP2580763B2 (en) | Reproduction method of ink recording medium | |
JPS6381074A (en) | Recording ribbon | |
JPH022062A (en) | Printing recording method |