JPS63941A - High frequency ion source - Google Patents

High frequency ion source

Info

Publication number
JPS63941A
JPS63941A JP61140082A JP14008286A JPS63941A JP S63941 A JPS63941 A JP S63941A JP 61140082 A JP61140082 A JP 61140082A JP 14008286 A JP14008286 A JP 14008286A JP S63941 A JPS63941 A JP S63941A
Authority
JP
Japan
Prior art keywords
high frequency
frequency
vacuum
ion source
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61140082A
Other languages
Japanese (ja)
Inventor
Yoichi Oshita
陽一 大下
Mitsuhiro Kamei
亀井 光浩
Yoshimi Hakamata
袴田 好美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61140082A priority Critical patent/JPS63941A/en
Publication of JPS63941A publication Critical patent/JPS63941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To reduce magnetic effect at an extension electrode and lower a divergence angle of a beam by arranging a high frequency coil, which generates plasma with electrostatic dissociation of the gas inside a vacuum vesel, with its central axis in pararell with the extension electrode. CONSTITUTION:By connecting a vacuum vessel 1 on the same side as an ion source to a vacuum vessel 2 on the same sade as a processing chamber, required gas is introduced therein from an air inlet 5 after both vessels are exhausted into a high vacuum through an air outlet 4. Then, high frequency power is fed by a high frequency power source 8 to a high frequency coil 7 arranged with its central axis orthogonalized with normal direction of an extension electrode 13. A high frequency ion source is formed by dissociating the gas in the vessel 1 to generate plasma, and drawing an ion beam 14 from the plasma to implant it on a workpiece 15. Accordingly, high frequency magnetic field at the extension electrode 13 can be lowered to check diffraction of the ion beam 14, reducing a divergence angle of the beam and enabling it to be formed in a pararell beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,高周波電流でプラズマを発生させる方式のイ
オン源に係り、特に、ビーム引出し特性をそこねること
なくビーム発散角を向上できる方式に関する. C従来の技術〕  . 従来の直流電流でプラズマを発生するイオン源として、
例えば、バキューム34 巻3−4号(1984年)4
55〜462頁(Vacuum  3 4 ,3−4,
 (1984) pp455〜462)のFigure
 1に述べられているものがある。この方式は,まず,
フィラメントを点灯し,次に,フィラメントを陰極,真
空容器を陽極とする放電によりプラズマを発生するもの
である。このようなフィラメントをもつ直流形のイオン
源では、近年、多用され始めたハロゲン系の化合物ガス
を用いた時、その化学的活性な性質によりフィラメント
の寿命が非常に短くなる場合があるため、特開昭52−
143981号公報の様な無電極方式のものが見直され
てきた.これは絶縁物容器の周辺に高周波コイルを配置
し、高周波電源により供給される高周波電流を高周波コ
イルに流し、無電極放電を得るものである。更にそのプ
ラズマ発生効果を高めるものとしてジャーナルオブバキ
ュームサイエンステクノロジーA3巻3号(1985年
)1218 〜1221頁(J.Vac.Sci. T
achnolA3 (3) (1985) pp121
11〜1221)に述べられているように,高周波コイ
ルを真空容器の中に含浸させたものが開発されている. 〔発明が解決しようとする問題点〕 イオン源へのニーズは、これまで述べた,長寿命化,高
効率化の他に,半導体分野の微則加工で要求される低発
散角化の間題がある6これはビームの広がり角を抑え、
できるだけ平行ビームに近づけようとするものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion source that generates plasma using a high-frequency current, and particularly to a method that can improve the beam divergence angle without impairing the beam extraction characteristics. C. Conventional technology]. As an ion source that generates plasma using conventional direct current,
For example, Vacuum 34 Volume 3-4 (1984) 4
Pages 55-462 (Vacuum 3 4, 3-4,
(1984) pp455-462) Figure
There is something mentioned in 1. In this method, first,
A filament is lit, and then plasma is generated by a discharge using the filament as a cathode and the vacuum container as an anode. In DC type ion sources with such filaments, when using halogen-based compound gases, which have recently become widely used, the life of the filament may be extremely short due to its chemically active nature. Kaisho 52-
Electrodeless systems such as those disclosed in Publication No. 143981 have been reviewed. In this method, a high-frequency coil is arranged around an insulating container, and a high-frequency current supplied by a high-frequency power source is passed through the high-frequency coil to obtain an electrodeless discharge. Furthermore, as a method to enhance the plasma generation effect, Journal of Vacuum Science Technology A3 No. 3 (1985) pp. 1218-1221 (J. Vac. Sci. T
achnolA3 (3) (1985) pp121
11-1221), a vacuum container impregnated with a high-frequency coil has been developed. [Problems to be solved by the invention] In addition to the long life and high efficiency mentioned above, the needs for ion sources also include the problem of low divergence angle required in microprocessing in the semiconductor field. 6 This suppresses the divergence angle of the beam,
The aim is to make it as close to a parallel beam as possible.

しかし、高周波コイルの中心軸上に引出し電極に配置さ
れた前述の構成では、引出し電極部の高周波磁界が高く
なり、引出し電極で引出されたイオンビームが磁界によ
り回折されるため、ビームが広がるのが避けられないと
いう問題があった。
However, in the above-mentioned configuration in which the extraction electrode is placed on the central axis of the high-frequency coil, the high-frequency magnetic field of the extraction electrode increases, and the ion beam extracted by the extraction electrode is diffracted by the magnetic field, causing the beam to spread. The problem was that it was unavoidable.

本発明の目的は、ビームの発生効率をそこなうことなく
、ビームの低発散化を実現できる長寿命のイオン源を提
供することにある。
An object of the present invention is to provide a long-life ion source that can achieve low beam divergence without impairing beam generation efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、真空容器中に含浸された高周波コイルの中
心軸を引出し電極と平行に配置することにより達成され
る. 〔作用〕 高周波コイルの周辺で磁界の最も強くなる部位は、コイ
ルの内部,コイル導体の周辺及び中心軸上のコイル近傍
である。本発明の要点の第一は、引出し電極の配置を出
来るだけこの部位から遠ざけることである.第二の要点
は,引出し電極部に印加される磁束の向きをできるだけ
引出し,電極面に平行にすることである。高周波磁界の
性質で、導体の平行成分は表皮効果により導体を貫通で
きない。引出し電極部の高周波磁界は高周波コイルの中
心軸を引出し電極面に平行に配置することで実現できる
The above objective is achieved by arranging the central axis of the high-frequency coil impregnated in the vacuum container parallel to the extraction electrode. [Operation] The areas where the magnetic field is strongest around the high-frequency coil are inside the coil, around the coil conductor, and near the coil on the central axis. The first point of the present invention is to locate the extraction electrode as far away from this area as possible. The second point is to draw out the direction of the magnetic flux applied to the extraction electrode part as much as possible so that it is parallel to the electrode surface. Due to the nature of high-frequency magnetic fields, parallel components of a conductor cannot penetrate the conductor due to the skin effect. The high frequency magnetic field of the extraction electrode part can be realized by arranging the central axis of the high frequency coil parallel to the extraction electrode surface.

〔実施例〕〔Example〕

以下に本発明の詳細な実施例を用いて説明する.第1図
の実施例はイオン源側真空容器1と処理室側真空容器2
が絶縁物3を介し真空を保持できる構造で接続されたも
のである。動作原理は未ず真空容器1.2の内部を図示
しない真空排気手段によりガス排気口4を通じて、例え
ば、IXIO−’Torr以下の高真空に排気した後、
図示しないガス給気手段により所望のガス給気口5を通
じて連続的に真空容器1内に導入し、排気手設の排気速
度と,例えば、I X 1 0”−8Torrでつり合
うようにする。この状態で絶徽電流導入端子6でシール
され、かつ、保持された高周波コイル7に外部に設置さ
れた高周波電流8より高周波電力を供給する。高周波電
源8は工業用に割当てられた13.56 M&の周波数
が多用されるが、本発明は、特に、周波数に制限される
ものではない。このときの注意として、効率よく電力を
高周波コイル7に供給するためのインピーダンス整合、
或いは,外部空間への電磁波漏洩対策としての電磁シー
ルド等が必要である。このように、高周波コイル7に高
周波電力を供給することにより真空容器1内に,通常は
プラズマが点弧するが、雰囲気ガス圧が低く、プラズマ
が点弧しづらい場合は補助的な図示しない点弧用フィラ
メントを点灯したり、ガス供給手段で瞬間的にガス圧を
上げる等の手段でプラズマを点弧することができる。次
に外部直流電源9,10で真空容器1及びこれに接続さ
れた引出し電極11に正の電位を、引出し電極12に負
の電位を印加し、引出し電極部13に電界を作ると、プ
ラズマ中の正イオンが加速され、イオンビーム14とな
って.図示しないホルダで保持される被加工物15に入
射する。このホルダは被加工物15の加工精度,形状な
どにより自転運動,傾斜機構,被加工物が複数あるとき
は公転運動、もしくはこれらの組み合わせ機能が付与さ
れるが具体的構成については省略する.以上の構成で高
周波コイル7による発生磁界は16のようになり,ここ
で高周波コイル7の中心軸を引出し電極部13の法線方
向と直交方向に配置したことにより、引出し電極部13
の位置ではその強度は弱く,方向は引出し電極面13に
平行なものとなり、所期の特性が得られていることが確
認できる.本実施例は高周波コイル7の中心軸が直線状
のもので比較的小口径のイオン源に適した構成である。
The present invention will be explained below using detailed examples. The embodiment shown in FIG. 1 includes a vacuum vessel 1 on the ion source side and a vacuum vessel 2 on the processing chamber side.
are connected through an insulator 3 in a structure that can maintain a vacuum. The principle of operation is that the inside of the vacuum container 1.2 is first evacuated to a high vacuum of, for example, IXIO-'Torr or less, through the gas exhaust port 4 by a vacuum evacuation means (not shown).
A desired gas is continuously introduced into the vacuum chamber 1 through a desired gas supply port 5 by a gas supply means (not shown), and balanced with the exhaust speed of the manual exhaust system at, for example, IX10''-8 Torr. In this state, high-frequency power is supplied from a high-frequency current 8 installed externally to a high-frequency coil 7 sealed and held by a high-frequency current introduction terminal 6.The high-frequency power supply 8 is a 13.56 M& Although the frequency of
Alternatively, an electromagnetic shield or the like is required as a measure against electromagnetic wave leakage into the external space. In this way, plasma is normally ignited in the vacuum vessel 1 by supplying high-frequency power to the high-frequency coil 7, but if the atmospheric gas pressure is low and it is difficult to ignite the plasma, an auxiliary point (not shown) may be used. The plasma can be ignited by lighting an arc filament or by instantaneously increasing the gas pressure with a gas supply means. Next, a positive potential is applied to the vacuum vessel 1 and the extraction electrode 11 connected thereto, and a negative potential is applied to the extraction electrode 12 using the external DC power supplies 9 and 10 to create an electric field in the extraction electrode section 13. The positive ions are accelerated and become an ion beam 14. The light is incident on a workpiece 15 held by a holder (not shown). Depending on the machining accuracy and shape of the workpiece 15, this holder is provided with functions such as rotational movement, tilting mechanism, orbital movement when there are multiple workpieces, or a combination of these functions, but the specific configuration will be omitted. With the above configuration, the magnetic field generated by the high-frequency coil 7 is as shown in 16, and by arranging the central axis of the high-frequency coil 7 in a direction orthogonal to the normal direction of the lead-out electrode part 13, the lead-out electrode part 13
At the position, the strength is weak and the direction is parallel to the extraction electrode surface 13, confirming that the desired characteristics are obtained. In this embodiment, the central axis of the high-frequency coil 7 is linear, and the configuration is suitable for an ion source with a relatively small diameter.

第2図に示した実施例は高周波コイルを軸方向からみた
もので,実施例の円形構造と異なり、長方形の断面構造
である.被加工物の構成によっては断面が長方形もしく
は正方形のイオンビームが望まれる場合があり、その場
合のイオン源側真空容器は直方体もしくは立方体の構成
にするのが効率がよい.本実施例は,この様な場合に適
する。
The embodiment shown in Figure 2 is a high-frequency coil viewed from the axial direction, and unlike the circular structure of the embodiment, it has a rectangular cross-sectional structure. Depending on the configuration of the workpiece, an ion beam with a rectangular or square cross section may be desired, and in that case, it is efficient to have a rectangular or cubic configuration for the ion source side vacuum vessel. This embodiment is suitable for such a case.

第3図,第4図は二重ソレノイド構造の高周波コイル7
を示したものである.第3図は引出し電極側、第4図は
その直交方向からみたものである.この場合も高周波コ
イル7の中心軸15は引き出し電極の線方向と直交方向
であるため前述と同一の効果を得ることができる.本実
施例は中規模のイオン源の構成に適する。
Figures 3 and 4 show a high-frequency coil 7 with a double solenoid structure.
This is what is shown. Figure 3 is a view from the extraction electrode side, and Figure 4 is a view from the perpendicular direction. In this case as well, since the central axis 15 of the high-frequency coil 7 is perpendicular to the line direction of the extraction electrode, the same effect as described above can be obtained. This embodiment is suitable for the configuration of a medium-sized ion source.

第5図に,多数の被加工物を同時に加工する際等に適す
る大規模イオン源を示す.このときのイオン源構造は中
心i111117をもつドーナツ状の構成であり、真空
容器1,引出し電極部13共にドーナツ状である。高周
波コイル7は絶縁導入端子6部より入り、第6図に示す
平面図のように、ほぼ一周した後、別の導入端子より出
る構造である.このとき第3図に示す様な二重ソレノイ
ド構造も可能であるが、高周波電源とのインピーダンス
整合を考えたとき、本実施例の方が有利である。本実施
例は、ほぼ,一ターンのコイルを考えているが、数ター
ンまで許容される。なお、本構成例において、物理的に
はコイルの中心軸は図中17になる。しかし,本例のコ
イル7で発生する磁界を考えると容器の真空容器の表皮
効果により16に示す形状となる. 従って、ここでの中心軸は18と考えるべきで、高周波
コイルの軸18を真空容器の中心軸18と合わせること
により、前述と同一の効果を得ることができる。
Figure 5 shows a large-scale ion source suitable for processing many workpieces simultaneously. The ion source structure at this time is a donut-shaped structure having a center i111117, and both the vacuum chamber 1 and the extraction electrode part 13 are donut-shaped. The high-frequency coil 7 enters through the insulated lead-in terminal 6, and exits through another lead-in terminal after making approximately one turn, as shown in the plan view of FIG. At this time, a double solenoid structure as shown in FIG. 3 is also possible, but this embodiment is more advantageous when considering impedance matching with the high frequency power source. In this embodiment, a coil of approximately one turn is considered, but up to several turns are permitted. In addition, in this configuration example, physically the central axis of the coil is 17 in the figure. However, considering the magnetic field generated by the coil 7 in this example, the shape shown in 16 is obtained due to the skin effect of the vacuum container. Therefore, the central axis here should be considered as 18, and by aligning the axis 18 of the high frequency coil with the central axis 18 of the vacuum container, the same effect as described above can be obtained.

以上の構成において、真空容器1の外周に永久磁石19
を配置し、いわゆる、カスプ磁場を構成するとビーム引
出し効率が向上する。
In the above configuration, a permanent magnet 19 is attached to the outer periphery of the vacuum container 1.
The beam extraction efficiency is improved by arranging a so-called cusp magnetic field.

〔発明の効果〕〔Effect of the invention〕

本発明によれば,引出し電極部における磁界の影響を小
さくし、ビームの発散角を低減することができる.
According to the present invention, it is possible to reduce the influence of the magnetic field on the extraction electrode portion and reduce the beam divergence angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図,第2図は本発明
の他の実施例の要部平面図、第3図は第2図の要部正面
図、第4図は第3図の正面図、第5図は第2図の縦断面
図,第6図は第2図の要部正面図である。
Fig. 1 is a longitudinal sectional view of one embodiment of the present invention, Fig. 2 is a plan view of the main part of another embodiment of the invention, Fig. 3 is a front view of the main part of Fig. 2, and Fig. 4 is a front view of the main part of Fig. 2. 3 is a front view, FIG. 5 is a longitudinal sectional view of FIG. 2, and FIG. 6 is a front view of the main part of FIG. 2.

Claims (1)

【特許請求の範囲】 1、真空容器と、前記真空容器の中のガスを排気する真
空排気手段と、前記真空容器に所望ガスを供給するガス
給気手段と、高周波電源と、前記高周波電源からの出力
電力を前記真空容器中のガスに供給しガスを電離しプラ
ズマを作成するための高周波コイルと、前記プラズマ中
のイオンをビームとして引出す引出し電極機構とからな
るものにおいて、 前記高周波コイルの発生する磁界の向きが、前記引出し
電極の法線方向と一致しないように配置したことを特徴
とする高周波イオン源。 2、特許請求の範囲第1項において、 前記高周波コイルの中心軸の向きが引き出し電極の方線
方向と直交方向であることを特徴とする高周波イオン源
。 3、特許請求の範囲第1項において、 前記高周波コイルの向きが前記真空容器の中心軸とほぼ
一致する様に配置したことを特徴とする高周波イオン源
。 4、特許請求の範囲第1項、第2項又は第3項において
、 前記真空容器はその周辺にプラズマを閉じ込める磁場発
生用の永久磁石を配置したものであることを特徴とする
高周波イオン源。
[Scope of Claims] 1. A vacuum container, a vacuum evacuation means for evacuating the gas in the vacuum container, a gas supply means for supplying a desired gas to the vacuum container, a high frequency power source, and a high frequency power source from the high frequency power source. a high-frequency coil for supplying output power to the gas in the vacuum container to ionize the gas and create plasma; and an extraction electrode mechanism for extracting ions in the plasma as a beam, the generation of the high-frequency coil A high-frequency ion source, characterized in that the high-frequency ion source is arranged so that the direction of the magnetic field does not coincide with the normal direction of the extraction electrode. 2. The high-frequency ion source according to claim 1, wherein the direction of the central axis of the high-frequency coil is orthogonal to the normal direction of the extraction electrode. 3. The high-frequency ion source according to claim 1, wherein the high-frequency coil is arranged so that the direction of the high-frequency coil substantially coincides with the central axis of the vacuum container. 4. The high-frequency ion source according to claim 1, 2, or 3, wherein the vacuum vessel is provided with a permanent magnet for generating a magnetic field for confining plasma around the vacuum vessel.
JP61140082A 1986-06-18 1986-06-18 High frequency ion source Pending JPS63941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61140082A JPS63941A (en) 1986-06-18 1986-06-18 High frequency ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140082A JPS63941A (en) 1986-06-18 1986-06-18 High frequency ion source

Publications (1)

Publication Number Publication Date
JPS63941A true JPS63941A (en) 1988-01-05

Family

ID=15260539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140082A Pending JPS63941A (en) 1986-06-18 1986-06-18 High frequency ion source

Country Status (1)

Country Link
JP (1) JPS63941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524285A (en) * 2000-02-24 2003-08-12 シーシーアール ゲゼルシャフト ミト ベシュレンクテル ハフツング ベーシッヒツングステクノロジー RF plasma source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524285A (en) * 2000-02-24 2003-08-12 シーシーアール ゲゼルシャフト ミト ベシュレンクテル ハフツング ベーシッヒツングステクノロジー RF plasma source
JP5000061B2 (en) * 2000-02-24 2012-08-15 シーシーアール ゲゼルシャフト ミト ベシュレンクテル ハフツング ベーシッヒツングステクノロジー RF plasma source

Similar Documents

Publication Publication Date Title
US4713585A (en) Ion source
US5017835A (en) High-frequency ion source
US5592055A (en) Radio-frequency plasma source
WO2003015123A3 (en) Dual frequency plasma etch reactor with independent plasma density/chemistry and ion energy control
CA2121892A1 (en) Ion beam gun
JPH04129133A (en) Ion source and plasma device
JPS63155728A (en) Plasma processor
JPS63941A (en) High frequency ion source
JP3454384B2 (en) Ion beam generator and method
US3448315A (en) Ion gun improvements for operation in the micron pressure range and utilizing a diffuse discharge
JPS6293834A (en) Ion source
US4931698A (en) Ion source
JP2001210245A (en) Ion source and ion extracting electrode
JPS5740845A (en) Ion beam generator
Lee et al. Nanobeam production with the multicusp ion source
JPS62235484A (en) Thin film device
JPH01252781A (en) Plasma cvd device utilizing pressure gradient type discharge
JP2879342B2 (en) Electron beam excited ion source
GB1398167A (en) High pressure ion sources
JPS59121747A (en) Method of ion milling
JPS5675573A (en) Ion etching method
JPH05182597A (en) High frequency power source
JP2833183B2 (en) Ion source
JPS6127053A (en) Electron beam source
JPS594428Y2 (en) Vacuum sealing mechanism of the ion generating section at the tip of the ion source device