JPS639408B2 - - Google Patents

Info

Publication number
JPS639408B2
JPS639408B2 JP55010314A JP1031480A JPS639408B2 JP S639408 B2 JPS639408 B2 JP S639408B2 JP 55010314 A JP55010314 A JP 55010314A JP 1031480 A JP1031480 A JP 1031480A JP S639408 B2 JPS639408 B2 JP S639408B2
Authority
JP
Japan
Prior art keywords
data
automatic equalizer
state
discriminator
equalizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55010314A
Other languages
Japanese (ja)
Other versions
JPS56107614A (en
Inventor
Mikiro Eguchi
Yoichi Sato
Fumio Akashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1031480A priority Critical patent/JPS56107614A/en
Publication of JPS56107614A publication Critical patent/JPS56107614A/en
Publication of JPS639408B2 publication Critical patent/JPS639408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure

Description

【発明の詳細な説明】 本発明は通信伝送路に生じる符号間干渉を自動
的に消去する自動等化器、特に高速度データ伝送
に適する自動等化器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic equalizer that automatically eliminates intersymbol interference occurring in a communication transmission path, and in particular to an improvement in an automatic equalizer suitable for high-speed data transmission.

限られた帯域内で高速データ伝送を行なう場
合、受信データは回線の種々の劣化要因の影響を
強く受けており、受信部にてそのままの状態でデ
ータの識別を行なうことは不可能である。このた
め受信装置には、この歪を補償するための等化器
が用いられる。さらに回線の特性変動に追従して
常時最適な受信状態を保つために、近年等化器は
受信信号について一定のタイムスロツト毎にリア
ルタイム演算処理を行ない、自らの特性を最適な
状態へ変化させる能力を有する自動等化器が使わ
れるようになつた。
When high-speed data transmission is performed within a limited band, received data is strongly affected by various deterioration factors of the line, and it is impossible for the receiving unit to identify the data in its original state. Therefore, an equalizer is used in the receiving device to compensate for this distortion. Furthermore, in order to keep up with fluctuations in line characteristics and always maintain optimal reception conditions, equalizers in recent years have the ability to perform real-time arithmetic processing on received signals at fixed time slots to change their characteristics to the optimal state. Automatic equalizers with .

ところで、自動等化器はデータ成分から劣化分
を見つけ、アダプテイブに等化動作を行ない、内
部の値を最適化していくため、データ伝送開始時
から定常のデータ点を識別することはむずかし
く、特に多相・多レベルデータ点の場合不可能に
近い。ゆえに通常、データ伝送に先立つて等化器
を動作可能な状態にもつていくための信号(以
後、同期化信号と呼ぶ。)を必要とし、その後通
常の多相・多レベルデータを受信して等化を行な
う方法が用いられる。このため、初期の同期化
(動作可能な状態にすること)に失敗したり、デ
ータ伝送中、回線異常によつていつたん同期がは
ずれたりすると(自動等化器の場合、発散と呼
ぶ)、同期化信号なしに自ら再同期することがで
きないという欠点をもつている。
By the way, since automatic equalizers find degradation from data components and adaptively perform equalization operations to optimize internal values, it is difficult to identify stationary data points from the beginning of data transmission. This is nearly impossible for polyphase/multilevel data points. Therefore, before data transmission, a signal (hereinafter referred to as a synchronization signal) is required to bring the equalizer into an operable state, and after that, normal multiphase/multilevel data is received. A method of equalization is used. Therefore, if initial synchronization (making it operational) fails, or if synchronization suddenly goes out due to line abnormality during data transmission (in the case of automatic equalizers, this is called divergence). , has the disadvantage that it cannot resynchronize itself without a synchronization signal.

従来の自動等化器のもつ欠点をさらに詳しく説
明する。同期化信号によつて同期化した後、回線
じよう乱等により受信信号の品質が極度に悪化し
た場合、自動等化器はデータ成分中の劣化成分が
過大になるために等化状態がくずれてしまい、同
期がはずれてしまう。いつたん発散すると多相・
多レベルのデータ点の場合、じよう乱が復旧して
も前記理由により自ら等化することは不可能であ
る。このため発散状態になれば、送信部からの同
期化信号が再度こない限りこの状態を続けること
になる。再等化するためには発散状態を何らかの
信号を用いて送信部に伝え、同期化信号を再度受
け取る必要があるが、第1図に示すようないくつ
かに分岐されたポーリングモードシステムにおい
ては、各々の端末モデムから同時に要求信号が送
出されれば信号が衝突し合つてセンター局に正常
に伝わらない。また衝突し合うことなく正常にセ
ンター局に伝わつたとしても、センター局は送出
データを一時中断して同期化信号を出すためデー
タ伝送効率が低減することになる。第1図におい
て1はセンター局、2,3,4はそれぞれの端末
局、5は端末局からの要求信号を示す。このよう
に多相・多レベルのデータ点をもつ高速度データ
伝送では、受信部の発散に対して自ら再等化でき
ないという欠点がある。
The drawbacks of the conventional automatic equalizer will be explained in more detail. After synchronization with a synchronization signal, if the quality of the received signal deteriorates extremely due to line disturbances, the automatic equalizer will lose the equalization state due to excessive degraded components in the data components. and the synchronization will be lost. When it diverges, polyphase
In the case of multi-level data points, even if the disturbance is recovered, it is impossible to equalize them by themselves for the reasons mentioned above. Therefore, once a divergence state occurs, this state will continue unless the synchronization signal from the transmitting section is received again. In order to re-equalize, it is necessary to convey the divergence state to the transmitter using some kind of signal and receive the synchronization signal again, but in a polling mode system that is branched into several parts as shown in Figure 1, If request signals are sent from each terminal modem at the same time, the signals will collide with each other and will not be transmitted properly to the center station. Furthermore, even if the data is transmitted normally to the center station without collision, the center station temporarily interrupts the sending data and issues a synchronization signal, resulting in a reduction in data transmission efficiency. In FIG. 1, 1 is a center station, 2, 3, and 4 are respective terminal stations, and 5 is a request signal from the terminal station. In this way, high-speed data transmission with multi-phase/multi-level data points has a drawback in that it is not possible to re-equalize the divergence of the receiving section by itself.

本発明は、上記欠点を取り除く自動等化器を提
供することにある。
The object of the invention is to provide an automatic equalizer that eliminates the above-mentioned drawbacks.

本発明は、自動等化器の識別部を2ケ備え、定
常時(等化状態)と異常時(発散状態)で識別部
を切換えて用い、さらに異常時に用いられる識別
器においては、多相データの識別を行なわず、多
レベルデータに関して、あたかも2値であるよう
にみなして識別することを特徴とした自動等化器
である。
The present invention has two discriminating parts of an automatic equalizer, and the discriminating parts are switched between the normal state (equalization state) and the abnormal state (divergence state). This automatic equalizer is characterized in that it does not identify data, but identifies multi-level data by treating it as if it were binary.

多相・多レベル変調は1つの送信データを直交
したX、Yの座標によつてそれぞれの振巾成分に
分け、正弦搬送波及び余弦搬送波でそれぞれを変
調し足し合わせるものである。受信部では2ケの
復調部を設けそれぞれ正弦及び余弦搬送波で復調
し直交した関係にある2ケのデータをえる。これ
はX、Yの座標でのそれぞれの振巾を表わしてお
り図示すれば第2図のように表わされる。第2図
において〇印は送信データと同一場所の点であ
り、回線劣化がなければこれらが受信データ点と
なる。a点はA点の劣化した受信データ点であ
る。
In multiphase/multilevel modulation, one transmission data is divided into amplitude components according to orthogonal X and Y coordinates, each modulated by a sine carrier wave and a cosine carrier wave, and then summed. In the receiving section, two demodulating sections are provided and demodulated using sine and cosine carrier waves, respectively, to obtain two pieces of data that are orthogonal to each other. This represents the respective amplitudes in the X and Y coordinates, and is represented as shown in FIG. 2. In FIG. 2, the circles are points located at the same location as the transmitted data, and if there is no line deterioration, these will be the received data points. Point a is a degraded received data point of point A.

第3図は従来の自動等化器の構成である。ここ
で受信データは、その実部成分をX、虚部成分を
Yとすれば、複素数として表わすことができるた
め、2ケの復調データX、YをRD=(X、Y)=
(X+jY)とする。さらに本等化器内のエレメン
トCo等の値も同様に考え、演算も複素数で行な
う。6は受信データのレジスタ、7はタツプゲイ
ンのレジスタ、8は掛算器、9,11は加算器、
10は識別器を表わす。
FIG. 3 shows the configuration of a conventional automatic equalizer. Here, the received data can be expressed as a complex number if its real part component is X and its imaginary part component is Y. Therefore, the two demodulated data X and Y are RD=(X, Y)=
Let it be (X+jY). Furthermore, the values of elements such as C o in this equalizer are considered in the same way, and calculations are performed using complex numbers. 6 is a receive data register, 7 is a tap gain register, 8 is a multiplier, 9 and 11 are adders,
10 represents a discriminator.

受信データRDは受信データのレジスタ6に与
えられ、その受信データの1タイムスロツト毎に
このレジスタ6の内部を図の左から右へ各エレメ
ントX-2,X-1,X0,X1,X2を順にシフトする。
レジスタ7にはタツプゲイン(等価修正量)が各
エレメントC-2〜C2に蓄えられていて、上記レジ
スタ6の各エレメントとレジスタ7の各エレメン
トの内容は、掛算器8で演算されて、加算器11
に与えられるように構成されている。加算器11
の出力は等価補償された受信データRD′であり出
力として利用される。受信データレジスタ6のセ
ンターにある受信データX0に対する等化結果は2n=-2 CoXoとなる。この値は識別器10で理想値
と比較され誤差量が得られ、これが加算器9に送
られてタツプゲインに加えられ、レジスタ7に蓄
えられたタツプゲインCoがさらに最適値に修正
される。この動作の繰返しにより、自動等化器の
出力データはタイムスロツト毎に誤差量が最小化
され、定常的に最小の誤差量の等化を行うことが
できる。例えば、第2図に示すa点が受信された
とき、識別器10にて理想値と比較され(なぜな
らA点に最も近いため)、aとA間の距離が誤差
量として得られる。
The received data RD is given to the received data register 6, and for each time slot of the received data, each element X -2 , X -1 , X 0 , X 1 , Shift X 2 in order.
In register 7, tap gain (equivalent correction amount) is stored in each element C -2 to C2 , and the contents of each element of register 6 and each element of register 7 are calculated by multiplier 8 and added. Vessel 11
It is configured to be given to Adder 11
The output is equivalently compensated received data RD' and is used as an output. The equalization result for the received data X 0 at the center of the received data register 6 is 2n=-2 C o X o . This value is compared with the ideal value in the discriminator 10 to obtain an error amount, which is sent to the adder 9 and added to the tap gain, and the tap gain Co stored in the register 7 is further corrected to the optimum value. By repeating this operation, the error amount of the output data of the automatic equalizer is minimized for each time slot, and equalization with the minimum error amount can be constantly performed. For example, when point a shown in FIG. 2 is received, it is compared with an ideal value in the discriminator 10 (because it is closest to point A), and the distance between a and A is obtained as the error amount.

第4図に本発明の実施例の構成を示す。この等
化器は第3図の等化器に、さらに発散を検出する
検出器19と、識別器10と違つた識別値をもつ
識別器18と、それら2つの識別器10,18の
2出力を選択する選択器20とをもつことを特徴
とする。識別器18は第5図に示す如く2つの判
定円をもつていることを特徴とする。第5図中の
〇点は第2図中の〇点と同様である。検出器19
は自動等化器が発散状態であることを検出する
と、識別器18の出力を選択して出力するように
選択器20の動作を切換える。
FIG. 4 shows the configuration of an embodiment of the present invention. This equalizer is the same as the equalizer shown in FIG. It is characterized by having a selector 20 for selecting. The discriminator 18 is characterized by having two judgment circles as shown in FIG. The ○ points in FIG. 5 are the same as the ○ points in FIG. 2. Detector 19
When detecting that the automatic equalizer is in a divergent state, it switches the operation of the selector 20 to select and output the output of the discriminator 18.

自動等化器が発散状態であることを検出するこ
とは容易であり、第6図に検出器19の回路例を
示す。21は、検出器を表わし、受信すべき各々
のデータ点に対してX、Y方向にある範囲を設け
て窓を構成し、実際の受信データが、この窓から
はずれている場合、“1”を出力する。また受信
データがタイムスロツト毎に加算器から出力され
るため、検出器21の出力も同様にタイムスロツ
ト毎に出力される。次にアンド回路22にて、ク
ロツク(タイムスロツトと同周期である)と
AND論理をとり、カウンタ23のクロツクとし
て用いる。こうすれば検出器21の出力が“1”
状態のとき、カウンタ23のカウントが進むこと
になる。24はタイマ回路を表わし、一定周期で
カウンタ23にクリアパルスを与える。つまり、
ある範囲をもつた窓をはずれるデータ(即ち極め
て劣化しているか、発散状態にあるデータ)があ
れば、カウンタ23がカウントアツプし、クリア
周期以内にQoケカウントすれば、(一定期間内の
異常データの個数をカウントすることと同様であ
る)Qo=“1”となつて、自動等化器が発散状態
であると判定する。Qoが検出器19の出力とな
る。
It is easy to detect that the automatic equalizer is in a divergent state, and an example of the circuit of the detector 19 is shown in FIG. 21 represents a detector, which forms a window by providing a certain range in the X and Y directions for each data point to be received, and when the actual received data is outside this window, it is set to "1". Output. Furthermore, since the received data is output from the adder for each time slot, the output of the detector 21 is similarly output for each time slot. Next, in the AND circuit 22, the clock (which has the same period as the time slot) and
The AND logic is used as the clock for the counter 23. In this way, the output of the detector 21 will be “1”
In this state, the count of the counter 23 advances. 24 represents a timer circuit, which provides a clear pulse to the counter 23 at regular intervals. In other words,
If there is data that falls outside a window with a certain range (that is, data that is extremely degraded or in a divergent state), the counter 23 counts up. (This is similar to counting the number of data) Q o = "1" and it is determined that the automatic equalizer is in a divergent state. Q o becomes the output of the detector 19.

次に第5図にもとずいて識別器18を経路とす
る自動等化器を説明する。識別器18では基準値
は16点ではなく第5図に示す大円を基準円とす
る。即ち受信データ16点をX、Yの両軸に投影す
ると、X軸でみれば7値となるがこれをあたかも
2値データの如く考え、他の値は雑音が重畳して
いると考える。またY軸についても同様に考える
とX、Y2次元でみれば基準値は円となる。例え
ば受信データbはB点に1番近い値であるが、B
点と誤差量をとることを行なわず、b点から大円
に垂線をおろしその距離lをもつて誤差量とする
ことを意味する。つまりデータが2値であると考
えれば、その基準値との誤差量を求め、自動等化
器を修正しても正しく修正される確率が、誤まつ
て修正される確率よりも大きくなるので、充分平
均してみると自動等化器は等化が可能となる。
Next, an automatic equalizer using the discriminator 18 as a path will be explained based on FIG. In the discriminator 18, the reference value is not the 16 points but the great circle shown in FIG. 5 as the reference circle. That is, when 16 points of received data are projected onto both the X and Y axes, there are 7 values on the X axis, but this is considered as if it were binary data, and other values are considered to be superimposed with noise. Also, considering the Y axis in the same way, the reference value becomes a circle when viewed in two dimensions, X and Y. For example, received data b is the value closest to point B, but B
This means that instead of taking the point and the error amount, draw a perpendicular line from point b to the great circle and use the distance l as the error amount. In other words, if we consider that the data is binary, even if we calculate the amount of error from the reference value and correct the automatic equalizer, the probability that it will be corrected is greater than the probability that it will be incorrectly corrected. If the values are averaged sufficiently, the automatic equalizer will be able to perform equalization.

ところで小円中にあるC点の劣化したc点につ
いてこの方法で行なうと大円までの距離を誤差量
とするため、実際の誤差量よりも大きな値とな
り、全体の劣化度合に対して悪い影響を与えてし
まう。よつて逆に小円内のデータを無視(誤差量
をとらない)した方が全体の劣化度合に対して良
い結果がえられる。つまり、識別器18では、加
算器11の出力信号のX軸(同相)、Y軸(直交)
の自乗和を求め、小円の半径値と比較して、半径
値をこえる場合に限り、大円との前記距離lを求
めて誤差量とする。このようにして得られた誤差
量を用いてタツプゲインの値を修正することは、
加算器11の出力を大円の基準値に平均値として
最も近くなるように等化器のタツプゲインを調整
することである。このようにして検出器19が発
散状態を検出した後、識別器18が大小2円によ
つて誤差量を求めその値によつて各Coを修正し
ていき、ある時間の後に等化状態に復帰すれば、
検出器19は正常状態を出力するため、識別器1
7を選択するよう選択器に働きかける。このよう
にして、第3図に示す従来例に対して、第2の識
別器18、検出器19、選択器20を追加するこ
とにより、自動等化器が発散状態になつた後、第
2の識別器18の閾値を用いることにより、同期
信号なしに自ら等化状態に復帰させることが可能
となる。
By the way, if this method is used for the degraded point C in the small circle, the distance to the large circle will be used as the error amount, which will result in a larger value than the actual error amount, which will have a negative effect on the overall degree of deterioration. I end up giving. Therefore, conversely, better results can be obtained with respect to the overall degree of deterioration by ignoring the data within the small circle (not taking the amount of error). In other words, in the discriminator 18, the X-axis (in-phase) and Y-axis (orthogonal) of the output signal of the adder 11
The sum of the squares of is calculated and compared with the radius value of the small circle.Only when the radius value is exceeded, the distance l from the large circle is calculated and used as the error amount. Correcting the tap gain value using the error amount obtained in this way is
The purpose is to adjust the tap gain of the equalizer so that the output of the adder 11 becomes closest to the reference value of the great circle as an average value. After the detector 19 detects the divergence state in this way, the discriminator 18 calculates the amount of error using the two large and small circles, corrects each C o by the value, and after a certain time, the equalized state is reached. If you return to
Since the detector 19 outputs a normal state, the discriminator 1
Instruct the selector to select 7. In this way, by adding the second discriminator 18, detector 19, and selector 20 to the conventional example shown in FIG. By using the threshold value of the discriminator 18, it becomes possible to return to the equalization state by itself without a synchronization signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回線が3分岐されたポーリングモード
システム1構成を示すブロツク図、第2図は多
相・多レベルデータ点の1構成を示す配置図、第
3図は従来の自動等化器のブロツク図、第4図は
本発明の自動等化器の実施例を示すブロツク図、
第5図は第4図の識別器の多相・多レベルデータ
点構成を例示する配置図、第6図は第4図の検出
器の一例を示すブロツク図である。 6……受信データのレジスタ、7……タツプゲ
インのレジスタ、8……掛算器、9,11……加
算器、10……識別器、18……識別器、19…
…検出器、20……選択器。
Figure 1 is a block diagram showing the configuration of a polling mode system in which the line is branched into three, Figure 2 is a layout diagram showing one configuration of multiphase/multilevel data points, and Figure 3 is a diagram of a conventional automatic equalizer. Block diagram: FIG. 4 is a block diagram showing an embodiment of the automatic equalizer of the present invention;
FIG. 5 is a layout diagram illustrating a multiphase/multilevel data point configuration of the discriminator shown in FIG. 4, and FIG. 6 is a block diagram showing an example of the detector shown in FIG. 4. 6... Received data register, 7... Tap gain register, 8... Multiplier, 9, 11... Adder, 10... Discriminator, 18... Discriminator, 19...
...Detector, 20...Selector.

Claims (1)

【特許請求の範囲】[Claims] 1 正弦搬送波及び余弦搬送波のそれぞれを振巾
変調して情報を伝送する多相・多レベル変調方式
に用いる自動等化器において、自動等化器の発散
状態を検出し、同相出力信号と直交出力信号の自
乗和が予め定められた第1の閾値をこえたとき前
記自乗和の平均値が予め定められ前記第1の閾値
よりも実質的に大きい第2の閾値に最も近くなる
ようにタツプゲインを調整するようにしたことを
特徴とする自動等化器。
1. In an automatic equalizer used in a multiphase/multilevel modulation method that transmits information by amplitude modulating each of a sine carrier wave and a cosine carrier wave, the divergence state of the automatic equalizer is detected and the in-phase output signal and quadrature output signal are When the sum of squares of the signal exceeds a first predetermined threshold, the tap gain is adjusted so that the average value of the sum of squares becomes closest to a second predetermined threshold that is substantially larger than the first threshold. An automatic equalizer characterized by adjusting.
JP1031480A 1980-01-31 1980-01-31 Automatic equalizer Granted JPS56107614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031480A JPS56107614A (en) 1980-01-31 1980-01-31 Automatic equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031480A JPS56107614A (en) 1980-01-31 1980-01-31 Automatic equalizer

Publications (2)

Publication Number Publication Date
JPS56107614A JPS56107614A (en) 1981-08-26
JPS639408B2 true JPS639408B2 (en) 1988-02-29

Family

ID=11746778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031480A Granted JPS56107614A (en) 1980-01-31 1980-01-31 Automatic equalizer

Country Status (1)

Country Link
JP (1) JPS56107614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021020777A (en) * 2019-07-26 2021-02-18 ヤマト科学株式会社 Cabinet system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225621A1 (en) * 1982-07-08 1984-01-12 Siemens AG, 1000 Berlin und 8000 München ADAPTIVE EQUALIZER FOR EQUALIZING MULTIPLE SIGNALS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492416A (en) * 1972-04-18 1974-01-10
JPS54151349A (en) * 1978-05-19 1979-11-28 Nec Corp Automatic equalizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492416A (en) * 1972-04-18 1974-01-10
JPS54151349A (en) * 1978-05-19 1979-11-28 Nec Corp Automatic equalizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021020777A (en) * 2019-07-26 2021-02-18 ヤマト科学株式会社 Cabinet system

Also Published As

Publication number Publication date
JPS56107614A (en) 1981-08-26

Similar Documents

Publication Publication Date Title
US7570713B2 (en) System and method for anticipatory receiver switching based on signal quality estimation
US6983027B2 (en) OFDM transmit signal receiver
US5625652A (en) Timing recovery controller and method for adjusting the timing of synchronizing windows in a PSK demodulator
US5563908A (en) Modulator and demodulator apparatus
US7104534B2 (en) System and method for detecting collisions in a shared communications medium
JP3259228B2 (en) Binary data error correction using hint signal
CA1241068A (en) Carrier recovery circuit
US5550506A (en) DQPSK demodulator capable of improving a symbol error rate without decreasing a transmission rate
US4503545A (en) System for evaluating transmission line impairments
EP0262644B1 (en) Qam demodulator with rapid resynchronization function
US6175591B1 (en) Radio receiving apparatus
JPH03255729A (en) Demodulation system
US5153527A (en) Demodulation apparatus having reception state evaluation
US6381290B1 (en) Mobile unit for pilot symbol assisted wireless system and method of improving performance thereof
JPS639408B2 (en)
JPH06244891A (en) Modem corresponding to frequency offset
JP2590441B2 (en) Interference wave detection method
US5189684A (en) Line signal deterioration removing systems
EP1535439B1 (en) Noise-balanced qam detection
EP0757462B1 (en) Frequency offset correction for a data receiving system
JP4177879B1 (en) Reception device, transmission device, and wireless communication system
JPH0748677B2 (en) Equalizer
JPH11205092A (en) Afc circuit for equalizer
US20060159191A1 (en) Embedded keying
JPH06237275A (en) Special eye pattern and modulating and demodulating system using the pattern