JPS639407B2 - - Google Patents

Info

Publication number
JPS639407B2
JPS639407B2 JP3546280A JP3546280A JPS639407B2 JP S639407 B2 JPS639407 B2 JP S639407B2 JP 3546280 A JP3546280 A JP 3546280A JP 3546280 A JP3546280 A JP 3546280A JP S639407 B2 JPS639407 B2 JP S639407B2
Authority
JP
Japan
Prior art keywords
partial electrode
piezoelectric
electrode
filter
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3546280A
Other languages
Japanese (ja)
Other versions
JPS56132010A (en
Inventor
Takeshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3546280A priority Critical patent/JPS56132010A/en
Publication of JPS56132010A publication Critical patent/JPS56132010A/en
Publication of JPS639407B2 publication Critical patent/JPS639407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters

Description

【発明の詳細な説明】 本発明は、厚み縦振動を励振利用する3端子圧
電振動子を電気的に差動接続してなる圧電フイル
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric filter formed by electrically differentially connecting three-terminal piezoelectric vibrators that use thickness longitudinal vibration for excitation.

差動接続を行つた圧電フイルタとして、最も広
く使われているものに音片、音叉、縦振動子、
等々を利用したメカニカルフイルタがあることは
周知の通りである。しかしこれら従来のメカニカ
ルフイルタは機械振動系としては1つの系を構成
していた。
The most widely used piezoelectric filters with differential connections include vibrating bars, tuning forks, longitudinal vibrators,
It is well known that there are mechanical filters that utilize the following. However, these conventional mechanical filters constitute one system as a mechanical vibration system.

その最も大きな理由の1つとして−1:1及び
1:1の変成器が、エリンバ等の恒弾性金属の表
裏面に圧電磁器板を分極方向に注意して接着する
だけで容易に得られ、純電気的に差動接続するだ
けでフイルタが実現できることがあげられる。
One of the biggest reasons for this is that -1:1 and 1:1 transformers can be easily obtained by simply gluing piezoelectric ceramic plates to the front and back surfaces of a constant elastic metal such as Erinva, paying attention to the polarization direction. One example is that a filter can be realized simply by making a purely electrical differential connection.

第1図にたわみモードを用い、エリンバ等の恒
弾性金属11a,11bにあらかじめ分極処理さ
れた圧電磁器板12a,12bを接着した、従来
の3端子メカニカル振動子の一例を示す。
FIG. 1 shows an example of a conventional three-terminal mechanical vibrator in which piezoelectric ceramic plates 12a and 12b, which have been polarized in advance, are bonded to constant elastic metals 11a and 11b, such as Erinvar, using a deflection mode.

図において矢印は分極方向を示す。右側に示し
たのはそれぞれ左側に示した3端子メカニカル振
動子の電気的等価回路であり、La,Lbは動イン
ダクタンス、Ca,Cbは動容量、Cda,Cdbは制
動容量を示す。
In the figure, arrows indicate polarization directions. Shown on the right are electrical equivalent circuits of the three-terminal mechanical resonators shown on the left, where La and Lb are dynamic inductances, Ca and Cb are dynamic capacitances, and Cda and Cdb are damping capacitances.

即ち、圧電磁器板を分極方向に注意して接着す
るだけで1:1及び−1:1の変成器が容易に得
られることがわかる。
That is, it can be seen that 1:1 and -1:1 transformers can be easily obtained by simply bonding piezoelectric ceramic plates with care in the polarization direction.

そしてこのように構成した第1図に示した3端
子メカニカル振動子を差動接続することによつ
て、第2図に示すようなフイルタ回路が得られ
る。
By differentially connecting the three-terminal mechanical vibrators shown in FIG. 1 constructed in this way, a filter circuit as shown in FIG. 2 can be obtained.

第2図の回路においてCd=Cda+Cdbである。 In the circuit of FIG. 2, C d =C da +C db .

このような差動接続型フイルタは、中、広帯域
フイルタのみならず第1図aに示す振動子の共振
周波数fraと第1図bに示す振動子の共振周波数
frbとを接近させることによつて狭帯域フイルタ
が容易に実現できるという共通の利点がある。
Such a differentially connected filter is not only a medium- and wide-band filter, but also has a resonant frequency f ra of the resonator shown in Figure 1a and a resonant frequency of the resonator shown in Figure 1b.
A common advantage is that a narrowband filter can be easily realized by bringing f rb close to each other.

しかし、このようなエリンバ等の恒弾性金属に
圧電磁器板を接着したメカニカルフイルタでは、
実用可能な周波数帯が音叉で500Hz〜10KHz、音
片で500Hz〜60KHz、縦振動子を用いた場合であ
つても40KHz〜300KHz程度であり、1MHz以上で
は到底実現不可能である。
However, with mechanical filters made of piezoelectric ceramic plates bonded to constant elastic metals such as Erinba,
Practical frequency bands are 500Hz to 10KHz with a tuning fork, 500Hz to 60KHz with a tone piece, and about 40KHz to 300KHz even when using a vertical vibrator, and it is completely unrealizable above 1MHz.

本発明は、1MHz以上の高周波帯において機能
する圧電フイルタを提供しようとするものであ
る。
The present invention aims to provide a piezoelectric filter that functions in a high frequency band of 1 MHz or higher.

さて、1MHz以上の高い周波数帯で用いられて
いるフイルタとして、第3図に示すように圧電磁
器板30の表面に入力電極31及び出力電極32
を設け、裏面にアース電極33を設けた構造を持
ち、エネルギー閉じ込めを利用したモノリシツク
フイルタがある。
Now, as a filter used in a high frequency band of 1 MHz or more, as shown in FIG.
There is a monolithic filter that utilizes energy confinement and has a structure in which a ground electrode 33 is provided on the back surface.

しかし、第3図に示したモノリシツクフイルタ
では一度電極付けを行つてしまうと帯域幅の調整
ができないという欠点がある。また狭帯域フイル
タを実現しようとすると電極31と電極32との
間隔を相当広げる必要があり、材料の音速のばら
つき及び研磨精度のばらつきの影響をうけやすく
なり、電極31と電極33との間の共振周波数
fr1及び電極32と電極33との間の共振周波数
fr2のばらつきが大きくなり、非常に歩留りが悪
くなる。良品質のフイルタを得ようとしてfr1
びfr2を調整するために、真空蒸着装置を用いて
電極31及び電極32の膜厚を独立に調整してや
る試みがあり、現に水晶板を利用したモノリシツ
クフイルタの周波数調整法はこの方法によつてい
る。しかし、真空蒸着装置の中で周波数調整を行
つてフイルタを製造することは、量産向きでない
ばかりか非常に高価なものになるという欠点を有
していた。
However, the monolithic filter shown in FIG. 3 has the disadvantage that once the electrodes are attached, the bandwidth cannot be adjusted. Furthermore, if a narrowband filter is to be realized, the distance between the electrodes 31 and 32 needs to be considerably widened, which makes it susceptible to variations in sound velocity and polishing precision of the materials, and the gap between the electrodes 31 and 33 increases. resonant frequency
f r1 and the resonance frequency between electrode 32 and electrode 33
The variation in f r2 becomes large, and the yield becomes extremely poor. In order to adjust f r1 and f r2 in order to obtain a high-quality filter, there has been an attempt to independently adjust the film thickness of electrode 31 and electrode 32 using a vacuum evaporation device, and a monolithic film using a quartz plate has actually been proposed. This method is used to adjust the frequency of the filter. However, manufacturing a filter by adjusting the frequency in a vacuum evaporation apparatus has the disadvantage that it is not suitable for mass production and is extremely expensive.

本発明は以上のような諸欠点を解消するために
なされたものであり、1MHz以上の高周波帯にお
いて狭帯域フイルタとしても充分な機能を発揮す
る圧電フイルタを提供せんとするものである。そ
してその特徴の1つは圧電フイルタを構成する2
つの圧電振動子が互いに独立した機械振動系に属
することであり、各々の圧電振動子が内部にアー
ス電極を備えていることである。
The present invention has been made to eliminate the above-mentioned drawbacks, and aims to provide a piezoelectric filter that can function satisfactorily as a narrow band filter in a high frequency band of 1 MHz or higher. One of its features is the two components that make up the piezoelectric filter.
The two piezoelectric vibrators belong to mutually independent mechanical vibration systems, and each piezoelectric vibrator is provided with a ground electrode inside.

第4図a,b,cは厚み縦振動のエネルギー閉
じ込めを利用した本発明の圧電フイルタに使用す
る3端子圧電振動子を示し、各イ図はその断面を
示した図であり、各ロ図はそれぞれその平面を示
した図である。第4図aは圧電磁器板40aの厚
さ方向の中央部にほぼ円形のアース部分電極43
aを設け、アース部分電極43aの上側にその円
形部分が重なるように対向し左側方向にリードを
取り出した上側部分電極41a、及びアース部分
電極43aの下側にその円形部分が重なるように
対向し右側方向にリードを取り出した下側部分電
極42aを設け、圧電磁器板40aの厚さ方向の
一方の端面から他方の端面にかけて、例えば図の
矢印で示すような向きに分極を施した厚み縦振動
を行う3端子圧電振動子を示す。これは第1図a
に示す1:1の変成器を有する電気的等価回路で
表すことができる。本発明の圧電フイルタにこの
1:1の変成器が必要な理由は次のとおりであ
る。まず電極41aと電極43aとの間に電圧を
かけて、その結果圧電磁器板40aの厚みが増し
たとする。次に圧電磁器板40aの厚みを外部か
ら力を加えてむりやり増したとすると、今度は前
と位相が180゜異つた電圧が生じる。そのため電極
41aと電極43aとの間に電圧をかけて厚み縦
振動を励振してやると、第4図aに示した分極方
向では、電極42aには電極41aに印加した信
号と同相の出力が得られるわけである。
Figures 4a, b, and c show a three-terminal piezoelectric vibrator used in the piezoelectric filter of the present invention that utilizes the energy trapping of thickness longitudinal vibration; are diagrams each showing the plane thereof. FIG. 4a shows a substantially circular earth partial electrode 43 in the center of the piezoelectric ceramic plate 40a in the thickness direction.
an upper partial electrode 41a with a lead taken out toward the left side, and an upper partial electrode 41a with a lead taken out toward the left side, and an upper partial electrode 41a facing to the left so that its circular portion overlaps the upper side of the earth partial electrode 43a, and the circular portion thereof overlaps the lower side of the earth partial electrode 43a. A lower partial electrode 42a with a lead taken out in the right direction is provided, and the piezoelectric ceramic plate 40a is polarized from one end face to the other end face in the thickness direction, for example, in the direction shown by the arrow in the figure. A three-terminal piezoelectric vibrator is shown. This is Figure 1a
It can be represented by an electrical equivalent circuit with a 1:1 transformer as shown in FIG. The reason why this 1:1 transformer is necessary for the piezoelectric filter of the present invention is as follows. First, assume that a voltage is applied between the electrode 41a and the electrode 43a, and as a result, the thickness of the piezoelectric ceramic plate 40a increases. Next, if we forcibly increase the thickness of the piezoelectric ceramic plate 40a by applying an external force, a voltage will be generated whose phase is 180 degrees different from the previous one. Therefore, if a voltage is applied between the electrodes 41a and 43a to excite longitudinal thickness vibration, in the polarization direction shown in FIG. 4a, an output in phase with the signal applied to the electrode 41a will be obtained at the electrode 42a. That's why.

第4図bでは圧電磁器板40bに入出力電極4
1b,42b及びアース電極43bを設け、一見
して第4図aに示したものと同様な構造を有して
いるが、分極方向が異なり、矢印で示すように入
出力電極41b,42bからアース電極43bに
向つて分極されている。
In FIG. 4b, the input and output electrodes 4 on the piezoelectric ceramic plate 40b
1b, 42b and a ground electrode 43b, and has a structure similar to that shown in FIG. It is polarized toward the electrode 43b.

この厚み縦振動を励振移用する第4図bの3端
子圧電振動子の等価回路は前に述べた理由によ
り、−1:1の変成器がついた第1図bに示した
等価回路に等しくなる。また同様にして、第4図
cに示したように圧電磁器板40cに電極41
c,42c,43cを設け、図のようにアース電
極43cから入出力電極41c,42cに向つて
分極されている3端子圧電振動子も−1:1の変
成器がついた第1図のbに示した等価回路に等し
くなる。
For the reason stated above, the equivalent circuit of the three-terminal piezoelectric vibrator shown in Figure 4b, which transfers the excitation of this thickness longitudinal vibration, is the equivalent circuit shown in Figure 1b with a -1:1 transformer. be equal. Similarly, as shown in FIG. 4c, an electrode 41 is attached to the piezoelectric ceramic plate 40c.
c, 42c, and 43c, and the three-terminal piezoelectric vibrator polarized from the ground electrode 43c toward the input/output electrodes 41c and 42c as shown in the figure also has a -1:1 transformer (b) in Fig. 1. This is equivalent to the equivalent circuit shown in .

従つて第4図aと第4図bの振動子又は第4図
aと第4図cの振動子を電気的に差動接続を行う
だけで、機械振動系としては互いに独立して構成
された、第2図に示すフイルタ回路が得られるわ
けである。
Therefore, by simply electrically differentially connecting the vibrators shown in FIGS. 4a and 4b or the vibrators shown in FIGS. 4a and 4c, they can be configured independently of each other as a mechanical vibration system. In addition, the filter circuit shown in FIG. 2 is obtained.

尚、ここで各々の圧電振動子の入出力電極は圧
電磁器板内部に埋設されている図になつている
が、これは圧電磁器板表面に露出していても何ら
差しつかえない。
Although the input and output electrodes of each piezoelectric vibrator are shown buried inside the piezoelectric ceramic plate, there is no problem even if they are exposed on the surface of the piezoelectric ceramic plate.

また、本発明の圧電フイルタを製造する場合、
磁器積層コンデンサの技術を流用することが可能
である。さらにあらかじめ電極が設けられ圧電性
を有する二枚の圧電磁器板を接着することによつ
ても本発明の圧電フイルタは実現できる。この場
合は厚み縦振動のみならず厚み辷り振動をも利用
可能となる。
Furthermore, when manufacturing the piezoelectric filter of the present invention,
It is possible to utilize the technology of ceramic multilayer capacitors. Furthermore, the piezoelectric filter of the present invention can also be realized by bonding two piezoelectric ceramic plates provided with electrodes and having piezoelectric properties. In this case, not only thickness longitudinal vibration but also thickness sliding vibration can be used.

次に本発明の実施の一例として第4図a及び第
4図bに示した、入力電極とアース電極との厚み
方向の間隔及び出力電極とアース電極との厚み方
向の間隔が共に0.23mm、入力電極、アース電極及
び出力電極の直径が2.2mm、板厚が約0.65mmで同
等の寸法諸元を有するが分極方向が異る2つの3
端子振動子を試作した。先ず圧電フイルタで実現
しやすくしかも民生品で一般に用いられている比
帯域幅3%の特性を有する中心周波数3.5MHzの
差動接続型フイルタを試作したが、通過域でリツ
プルのない良好な特性が得られた。
Next, as an example of the implementation of the present invention, as shown in FIGS. 4a and 4b, the distance between the input electrode and the ground electrode in the thickness direction and the distance between the output electrode and the ground electrode in the thickness direction are both 0.23 mm. The input electrode, the ground electrode, and the output electrode have a diameter of 2.2 mm and a plate thickness of approximately 0.65 mm, and have the same dimensions but different polarization directions.
We prototyped a terminal vibrator. First, we prototyped a differentially connected filter with a center frequency of 3.5MHz, which is easy to implement with a piezoelectric filter and has a characteristic bandwidth of 3%, which is commonly used in consumer products. Obtained.

ついで、狭帯域フイルタを得る目的で第4図b
で示した3端子振動子の共振周波数frbを、磁器
表面を研磨することによつて、第4図aで示した
3端子振動子の共振周波数fraに接近させた。そ
の結果比帯域幅0.5%の特性を容易に得ることが
できた。ここで比帯域幅が0.5%という値は、モ
ノリシツクタイプセラミツクフイルタでは実現困
難な値であり、本発明に従うと単に2個の圧電振
動子の共振周波数を接近させるだけで容易に実現
することができる。第4図bに示した圧電振動子
の替りに第4図cに示した圧電振動子を用いて
も、同様な結果が得られることは言うまでもな
い。
Then, for the purpose of obtaining a narrow band filter, FIG.
By polishing the porcelain surface, the resonant frequency f rb of the three-terminal resonator shown in FIG. 4 was brought close to the resonant frequency f ra of the three-terminal resonator shown in FIG. As a result, we were able to easily obtain a characteristic with a fractional bandwidth of 0.5%. Here, the value of the fractional bandwidth of 0.5% is difficult to achieve with a monolithic type ceramic filter, but according to the present invention, it can be easily achieved by simply bringing the resonant frequencies of the two piezoelectric vibrators closer together. can. It goes without saying that similar results can be obtained by using the piezoelectric vibrator shown in FIG. 4c instead of the piezoelectric vibrator shown in FIG. 4b.

尚、試作に用いた圧電磁器の特性は厚み縦エネ
ルギー閉じ込めが可能なポアソン比σ′=0.42、厚
みたて結合係数kt=0.40、比誘電率εT 33=850であ
り、電極は白金を用いた。
The properties of the piezoelectric ceramic used in the prototype are Poisson's ratio σ' = 0.42, which enables thickness longitudinal energy confinement, thickness longitudinal coupling coefficient k t = 0.40, relative permittivity ε T 33 = 850, and the electrodes are made of platinum. Using.

以上詳述したように、本発明に従うと厚み縦振
動を利用した差動接続型圧電フイルタが容易にか
つ低廉価に製造することが可能となり工業的価値
も大きい。
As described in detail above, according to the present invention, a differentially connected piezoelectric filter using thickness longitudinal vibration can be manufactured easily and at low cost, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbはたわみ振動モードを利用した
従来の3端子メカニカル振動子の一例を示し、1
1a,11bはエリンバ等の恒弾性金属、12
a,12bは圧電磁器板、矢印は分極方向を示
し、また右側は3端子メカニカル振動子の電気的
等価回路であり、La,Lbは動インダクタンス、
Ca,Cbは動容量、Cda,Cdbは制動容量である。第
2図は、第1図で示した3端子メカニカル振動子
を電気的に結線したフイルタ回路で、CdはCda
Cdbの和となる。第3図は、従来のモノリシツク
圧電フイルタの一例を示し、30は圧電磁器板、
31は入力電極、32は出力電極、33はアース
電極を示す。第4図a,b,cは厚み縦振動のエ
ネルギー閉じ込めを利用した本発明の構成要素と
なる3端子圧電振動子であり、各図においてイは
断面図、ロは平面図である。40a,40b,4
0cは圧電磁器板、41a,42a,43a,4
1b,42b,43b,41c,42c,43c
は電極、矢印は分極方向を示す。
Figures 1a and 1b show an example of a conventional three-terminal mechanical resonator using the flexural vibration mode;
1a and 11b are constant elastic metals such as Erinba, 12
a and 12b are piezoelectric ceramic plates, the arrow indicates the polarization direction, and the right side is an electrical equivalent circuit of a 3-terminal mechanical resonator, L a and L b are dynamic inductances,
C a and C b are dynamic capacities, and C da and C db are braking capacities. Figure 2 shows a filter circuit in which the three-terminal mechanical resonator shown in Figure 1 is electrically connected, where C d and C da are connected.
It becomes the sum of C db . FIG. 3 shows an example of a conventional monolithic piezoelectric filter, in which 30 is a piezoelectric ceramic plate;
31 is an input electrode, 32 is an output electrode, and 33 is a ground electrode. FIGS. 4a, b, and c show a three-terminal piezoelectric vibrator that is a component of the present invention that utilizes the energy trapping of thickness longitudinal vibration, and in each figure, A is a cross-sectional view, and B is a plan view. 40a, 40b, 4
0c is a piezoelectric ceramic plate, 41a, 42a, 43a, 4
1b, 42b, 43b, 41c, 42c, 43c
indicates the electrode, and the arrow indicates the polarization direction.

Claims (1)

【特許請求の範囲】[Claims] 1 機械振動系としては互いに独立した系を構成
する第1、第2の3端子圧電振動子を電気系とし
ては差動接続してなる圧電フイルタであつて、前
記第1の3端子圧電振動子は、圧電磁器板の厚さ
方向の中央部にアース部分電極を設け、前記アー
ス部分電極の上側に対向する上側部分電極を設
け、かつ前記アース部分電極の下側に対向する下
側部分電極を設け、前記アース部分電極から前記
上側部分電極及び前記下側部分電極に向けて分極
を施すか、あるいは、前記上側部分電極及び前記
下側部分電極から前記アース部分電極に向けて分
極を施し、厚み縦振動を励振利用した3端子圧電
振動子であり、前記第2の3端子圧電振動子は、
圧電磁器板の厚さ方向の中央部にアース部分電極
を設け、前記アース部分電極の上側に対向する上
側部分電極を設け、かつ前記アース部分電極の下
側に対向する下側部分電極を設け、圧電磁器板の
厚さ方向の一方の端面から他方の端面にかけて分
極を施し、厚み縦振動を励振利用した3端子圧電
振動子である、ことを特徴とする圧電フイルタ。
1 A piezoelectric filter in which first and second three-terminal piezoelectric vibrators, which constitute an independent system as a mechanical vibration system, are differentially connected as an electrical system, and the first three-terminal piezoelectric vibrator A ground partial electrode is provided in the center of the piezoelectric ceramic plate in the thickness direction, an upper partial electrode is provided opposite to the upper side of the earth partial electrode, and a lower partial electrode is provided opposite to the lower side of the earth partial electrode. and polarization is applied from the ground partial electrode toward the upper partial electrode and the lower partial electrode, or from the upper partial electrode and the lower partial electrode toward the earth partial electrode, and the thickness The second three-terminal piezoelectric vibrator is a three-terminal piezoelectric vibrator that uses longitudinal vibration for excitation, and the second three-terminal piezoelectric vibrator is
A ground partial electrode is provided in the center of the piezoelectric ceramic plate in the thickness direction, an upper partial electrode is provided opposite to the upper side of the earth partial electrode, and a lower partial electrode is provided opposite to the lower side of the earth partial electrode, A piezoelectric filter characterized in that it is a three-terminal piezoelectric vibrator that polarizes a piezoelectric ceramic plate from one end surface in the thickness direction to the other end surface and utilizes thickness longitudinal vibration for excitation.
JP3546280A 1980-03-19 1980-03-19 Piezoelectric filter Granted JPS56132010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3546280A JPS56132010A (en) 1980-03-19 1980-03-19 Piezoelectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3546280A JPS56132010A (en) 1980-03-19 1980-03-19 Piezoelectric filter

Publications (2)

Publication Number Publication Date
JPS56132010A JPS56132010A (en) 1981-10-16
JPS639407B2 true JPS639407B2 (en) 1988-02-29

Family

ID=12442446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3546280A Granted JPS56132010A (en) 1980-03-19 1980-03-19 Piezoelectric filter

Country Status (1)

Country Link
JP (1) JPS56132010A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790177B2 (en) * 1987-07-06 1998-08-27 株式会社村田製作所 Electrostrictive resonance element

Also Published As

Publication number Publication date
JPS56132010A (en) 1981-10-16

Similar Documents

Publication Publication Date Title
USRE23813E (en) Piezoelectric transducer and method for producing same
JP3378775B2 (en) Piezoelectric resonator and frequency adjustment method thereof
US3699484A (en) Width extensional resonator and coupled mode filter
US4356421A (en) Piezoelectric resonators of an energy-trapping type of a width extensional vibratory mode
US2373431A (en) Electric wave filter
JPH0435108A (en) Ultra thin plate multiple mode crystal filter element
JPH0666630B2 (en) Energy trapped oscillator
JPH07109971B2 (en) Filter device
JPS6340491B2 (en)
JPS59231909A (en) Piezoelectric crystal vibrator
US3842294A (en) Electromechanical transducer comprising a pair of antiparallel poled rectangular piezoelectric ceramic pieces
US3859546A (en) Rectangular piezoelectric ceramic resonator oppositely poled along opposite side surfaces
JPS639407B2 (en)
JP3088801B2 (en) Surface acoustic wave filter
JP2003273703A (en) Quartz vibrator and its manufacturing method
JPH10215140A (en) Piezoelectric resonator and electronic component using the resonator
JPS6355245B2 (en)
US3378794A (en) Electromechanical transducer and filter
JPH03139009A (en) Miniature piezoelectric resonator
JPS60196005A (en) Single piezoelectric flexural resonator and piezoelectric filter
JPS6165511A (en) Energy confinement type piezoelectric filter and its manufacture
JPH0397310A (en) Piezoelectric resonance component
JPH0522068A (en) Piezoelectric resonator
US20030218519A1 (en) Longitudinally coupled multi-mode piezoelectric bulk wave filter and electronic components using the same
JPS5844658Y2 (en) SoukiyoushinAtsudenrohaki