JPS6393832A - Wet treatment of sintered zinc ore - Google Patents

Wet treatment of sintered zinc ore

Info

Publication number
JPS6393832A
JPS6393832A JP61237225A JP23722586A JPS6393832A JP S6393832 A JPS6393832 A JP S6393832A JP 61237225 A JP61237225 A JP 61237225A JP 23722586 A JP23722586 A JP 23722586A JP S6393832 A JPS6393832 A JP S6393832A
Authority
JP
Japan
Prior art keywords
zinc
sintered ore
iron
added
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61237225A
Other languages
Japanese (ja)
Inventor
Hiromi Kubo
久保 博海
Tetsuo Sekiya
関屋 鉄雄
Masatami Sakata
坂田 政民
Motomi Furuta
古田 基美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61237225A priority Critical patent/JPS6393832A/en
Publication of JPS6393832A publication Critical patent/JPS6393832A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To permit recovery of zinc and other valuable metals with a high extraction ratio with a min. number of solid-liquid sepn., by subjecting a neutral slurry to the solid-liquid sepn. after high-acid melting, acid melting, iron removal and neutralization at the time of subjecting sintered ore to an extraction treatment with an electrolytic liquid. CONSTITUTION:The sintered zinc ore is added to the zinc electrolytic liquid and is treated under prescribed extraction conditions in a high-acid melting stage. The greater part of zinc ferrite can be melted if the treatment is made for a long period by decreasing the amt. of the sintered ore to be added and elevating the temp. in this case. The sintered ore remaining after the extraction is added at a prescribed ratio to the high acid melting slurry and the treatment is made under the prescribed conditions in an acid melting stage. The greater part of ZnO in the sintered ore added thereto melts but the greater part of the zinc ferrite does not melt in this case. The prescribed conditions are maintained under the addition of the carryover of the sintered ore to the acid melting slurry and the Fe<2+> remaining without settling is settled and removed in an iron removing stage. A neutralizing agent is added to the slurry removed of iron and the slurry is thickened and filtered in a neutralizing stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、亜鉛焼鉱を亜鉛電解尾液で抽出処理し、亜鉛
焼鉱中に含まれる亜鉛およびその他の有価金属を極めて
高い抽出率で溶解し、次いで溶解スラリーから鉄を除去
する亜鉛焼鉱の湿式処理法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention extracts zinc and other valuable metals contained in the zinc sintered ore with an extremely high extraction rate by extracting zinc sintered ore with a zinc electrolytic tailing liquid. The present invention relates to a method for wet processing of zinc sinter, which involves melting and then removing iron from the melt slurry.

〔従来の技術〕[Conventional technology]

亜鉛製錬は、乾式製錬と湿式製錬に大別され、現在では
湿式製錬(電解製錬)が主流となっている。通常、亜鉛
の湿式製錬は、第4図に示すようなフローて行なわれて
いる。
Zinc smelting is broadly divided into pyrometallurgy and hydrometallurgical smelting, and hydrometallurgical smelting (electrolytic smelting) is currently the mainstream. Usually, zinc hydrometallurgy is carried out in a flow as shown in FIG.

亜鉛精鉱を焙焼する際に、精鉱に含まれている鉄は亜鉛
等とジンクフェライト(20・0・F e20 、)を
形成する。このジンクフェライトは希硫酸には難溶性で
あるため、従来の亜鉛焼鉱の溶解では、ジンクフェライ
トが溶解しない程度の条件で行なわれている。
When zinc concentrate is roasted, iron contained in the concentrate forms zinc ferrite (20.0.F e20 ) with zinc and the like. Since this zinc ferrite is poorly soluble in dilute sulfuric acid, conventional melting of zinc sintered ore is carried out under conditions that do not dissolve the zinc ferrite.

従って溶解残漬中には、ジンクフェライトとして亜鉛等
が多量に含まれているため、亜鉛等の抽出率は、鉄の含
有量によってほぼ決まり、高い値は望めない。
Therefore, since the dissolved residue contains a large amount of zinc etc. as zinc ferrite, the extraction rate of zinc etc. is almost determined by the iron content, and a high value cannot be expected.

一般に、亜鉛およびその他の有価金属の抽出率を高める
ためには、ジンクフェライトを主成分とする溶解残漬を
さらに処理する必要がある。
Generally, in order to increase the extraction rate of zinc and other valuable metals, it is necessary to further process the dissolved residue mainly composed of zinc ferrite.

これら残漬を処理する方法としては、ヒューミング法、
ウエルツ法等の乾式法と、ジャロサイト法、ゲーサイト
法、ヘマタイト法等に代表される湿式法がある。
Methods for treating these residues include fuming method,
There are dry methods such as the Wertz method, and wet methods such as the jarosite method, the goethite method, and the hematite method.

近年、溶解残漬を硫酸で処理し、亜鉛およびその他の有
価金属とともに溶解した鉄を有利に沈殿除去する湿式法
が実操業に取り入れられている。
In recent years, a wet method has been introduced into actual operations in which the dissolved residue is treated with sulfuric acid to advantageously precipitate and remove dissolved iron along with zinc and other valuable metals.

この技術の確立により、亜鉛およびその他の有価金属の
採収率は、著しく向上して来た。
With the establishment of this technology, the yield of zinc and other valuable metals has been significantly improved.

前述の溶解残漬の湿式処理法では、除去される鉄沈殿の
形態によりジャワサイト法、ゲーサイト法、ヘマタイト
法と呼ばれている。
The above-mentioned wet treatment method of dissolving and soaking is called Javasite method, Goethite method, and Hematite method depending on the form of the iron precipitate removed.

ジャワサイト法では鉄をX−Fe5(Son)2(OH
)& (X ; N a 、K 、N Hヤ)として沈
殿除去するため、Na、に、NH5等のアルカリを添加
する必要がある。
In the Javasite method, iron is converted into X-Fe5(Son)2(OH)
) &(X; Na, K, NH), it is necessary to add an alkali such as NH5 to Na.

又、ゲーサイト法では、鉄をFe O−OHあるいはF
e2O,・H2Oとして沈殿除去する方法で、還元なら
びに酸化工程を必要とする。
In addition, in the goethite method, iron is converted into FeO-OH or F
This method involves precipitation and removal as e2O, .H2O, and requires reduction and oxidation steps.

更にヘマタイト法は、鉄をF e、o 、で除去する方
法で酸素あるいは空気加圧下で200℃という高温にす
る必要があるため、オートクレーブを使用する。
Furthermore, the hematite method uses Fe,O to remove iron and requires heating to a high temperature of 200° C. under oxygen or air pressure, so an autoclave is used.

上記のいずれの方法も、亜鉛焼鉱の酸性溶解と溶解残漬
の高温高酸溶解の組み合わせから成る複式溶解方式とな
っている。そのため濃縮あるいは一過を頻繁に行なうこ
とからシックナーや濾過装置に莫大な投資を強いられる
という欠点がある。
All of the above-mentioned methods are a dual melting method consisting of a combination of acidic dissolution of the zinc sintered ore and high-temperature, high-acid dissolution of the dissolved residue. Therefore, there is a drawback that a large amount of investment is required in thickeners and filtration equipment due to frequent concentration or filtration.

(発明が解決しようとする問題点) 本発明は、前述の従来技術に鑑み固液分離の回数を最小
限にし、かつアルカリ等の添加剤を必要とせず、亜鉛焼
鉱に含まれる亜鉛およびその他の有価金属を極めて高い
抽出率で溶解し、次に熔解スラリーから鉄を沈殿除去す
る亜鉛焼鉱の湿式処理法を提供することを目的とするも
のである。
(Problems to be Solved by the Invention) In view of the above-mentioned prior art, the present invention minimizes the number of solid-liquid separations, eliminates the need for additives such as alkali, and eliminates the need for zinc and other substances contained in zinc sintered ore. The object of the present invention is to provide a method for wet treatment of zinc sintered ore, which dissolves valuable metals at an extremely high extraction rate, and then precipitates and removes iron from the molten slurry.

(問題点を解決するための手段) 本発明は、第1図に示すように高酸性溶解・酸性溶解・
除鉄・中和に至るまで固液分離を行なわず、最終的に中
和スラリーを固液分離することにより中性液を清浄工程
へ鉛・銀残漬と鉄沈殿の混合物である溶解残漬を鉛製錬
工程へ供用する亜鉛焼鉱の湿式処理法である。
(Means for solving the problems) As shown in FIG.
Solid-liquid separation is not performed until iron removal and neutralization, and the neutralized slurry is finally subjected to solid-liquid separation to send the neutral liquid to the cleaning process.The dissolved residue is a mixture of lead and silver residue and iron precipitate. This is a wet processing method for zinc sintered ore used in the lead smelting process.

即ち本発明は、亜鉛塊鉱を電解尾液にて抽出処理するに
当り、該焼鉱を高酸性溶解し、次いで亜鉛焼鉱を前記高
酸性溶解スラリーに添加し酸性溶解し、更に該酸性溶解
スラリーに、亜鉛焼鉱を添加して除鉄することを特徴と
する亜鉛焼鉱の湿式処理法であり、具体的には亜鉛焼鉱
を電解尾液にて高酸性溶解するに当り、該亜鉛焼鉱の湿
式処理総量60〜80%を80〜95℃、3〜6時間、
最終H2So4濃度 30〜100g/Ω の抽出条件
にて溶解し酸性溶解に際しては、湿式処理総量の20〜
40%の亜鉛焼鉱を前記高酸性溶解スラリーに添加し、
80〜95℃にて1〜3時間酸性溶解し、最終H2SO
,濃度1〜20g/Qとし、又前記除鉄に際しては、該
酸性溶解スラリーに亜鉛焼鉱を添加して70〜95℃、
pH1,4〜3.4の抽出条件にて、除鉄する亜鉛焼鉱
の湿式処理法である。
That is, in the present invention, when extracting zinc lump ore with electrolytic tailings, the burnt ore is dissolved in a highly acidic solution, then the zinc burnt ore is added to the highly acidic dissolved slurry and dissolved in an acidic manner, and then the burnt ore is dissolved in an acidic manner. This is a wet processing method for zinc sintered ore, which is characterized by adding zinc sintered ore to the slurry to remove iron. 60 to 80% of the total amount of burned ore is wet-treated at 80 to 95°C for 3 to 6 hours.
Dissolved under extraction conditions with a final H2So4 concentration of 30 to 100 g/Ω, and during acidic dissolution, 20 to 20% of the total amount of wet processing
adding 40% zinc sinter to the highly acidic dissolved slurry;
Acidic dissolution for 1-3 hours at 80-95 °C, final H2SO
, the concentration was 1 to 20 g/Q, and during the iron removal, zinc sinter was added to the acidic dissolved slurry at 70 to 95°C.
This is a wet processing method for zinc sintered ore to remove iron under extraction conditions of pH 1.4 to 3.4.

更に又前記除鉄工程で得られた鉄の沈殿物の一部を、鉄
沈殿物の種として前記酸性溶解に繰返すことを特徴とす
る亜鉛焼鉱の湿式処理法である。
Furthermore, it is a wet treatment method for zinc sintered ore, characterized in that a part of the iron precipitate obtained in the iron removal step is repeatedly subjected to the acid dissolution as a seed for iron precipitate.

(作用) 本発明の亜鉛焼鉱の湿式処理法のフローシートを第1図
に示す。
(Function) A flow sheet of the wet treatment method for zinc sintered ore of the present invention is shown in FIG.

第1図に示す如く高酸性溶解工程では亜鉛電解尾液に亜
鉛焼鉱を加え、80〜95℃、3〜6hrの抽出条件に
て処理する。
As shown in FIG. 1, in the highly acidic dissolution step, zinc sintered ore is added to the zinc electrolytic tailing solution, and the process is carried out under extraction conditions of 80-95°C and 3-6 hours.

この場合の亜鉛焼鉱の添加量は、高酸性及び酸性溶解で
添加する総抽出処理重量の60〜80%とすれば、高酸
性溶解液の最終酸濃度は30〜100 g/lとなり、
難溶性の亜鉛フェライトの大部分を溶解できる。
In this case, if the amount of zinc sintered ore added is 60 to 80% of the total extraction treatment weight added in high acidity and acidic dissolution, the final acid concentration of the highly acidic solution will be 30 to 100 g/l,
Can dissolve most of the poorly soluble zinc ferrite.

この場合高酸性溶解での亜鉛焼鉱添加量によって最終酸
濃度は変動し、従って亜鉛フェライトが溶解する割合も
影響されることになる。つまり、亜鉛焼鉱の添加量を少
なくし、温度を高め、長時間処理すれば亜鉛フェライト
の溶解を促進することができる。
In this case, the final acid concentration varies depending on the amount of zinc sintered ore added during highly acidic dissolution, and therefore the rate at which zinc ferrite is dissolved will also be affected. In other words, the dissolution of zinc ferrite can be promoted by reducing the amount of zinc sintered ore added, increasing the temperature, and performing the treatment for a long time.

次に酸性溶解工程では、高酸性溶解スラリーに、抽出残
部の20〜40%の亜鉛焼鉱を添加し、80〜95℃ 
p)I O,5〜2で1〜3hr処理する。
Next, in the acidic dissolution step, 20 to 40% of the extracted zinc sintered ore is added to the highly acidic dissolution slurry, and the temperature is 80 to 95°C.
p) Treat with IO, 5-2 for 1-3 hr.

この場合、酸性溶解液の最終酸濃度は1〜20g/lと
なるため、酸性溶解で添加した亜鉛焼鉱に含まれるZn
Oの大部分は溶解するが亜鉛フェライトの大部分は溶解
しない。
In this case, the final acid concentration of the acidic solution is 1 to 20 g/l, so the Zn contained in the zinc sintered ore added in the acidic solution is
Most of the O dissolves, but most of the zinc ferrite does not.

高酸性溶解での亜鉛焼鉱添加量は少ない方が高酸性溶解
での亜鉛およびその他の有価金属の抽出率は高まるが、
酸性溶解での亜鉛焼鉱添加量が多くなるため、場合によ
っては通計での亜鉛およびその他の有価金属の抽出率が
低下する。
The smaller the amount of zinc sintered ore added in highly acidic dissolution, the higher the extraction rate of zinc and other valuable metals in highly acidic dissolution.
Since the amount of zinc sintered ore added during acid dissolution increases, the total extraction rate of zinc and other valuable metals may decrease in some cases.

従って、高酸性溶解での亜鉛焼鉱添加量を、上記のよう
にすることにより、通計での亜鉛およびその他の有価金
属の抽出率を最大にすることができる。
Therefore, by adjusting the amount of zinc sintered ore added in highly acidic dissolution as described above, the total extraction rate of zinc and other valuable metals can be maximized.

また、反応温度、反応時間については経済性を考慮して
適正な範囲を示したが、温度は高い方が、時間は長い方
が望ましいことは明らかである。
Furthermore, although appropriate ranges for the reaction temperature and reaction time are shown in consideration of economic efficiency, it is clear that higher temperatures and longer times are desirable.

高酸性および酸性溶解で亜鉛焼鉱に含まれる亜鉛フェラ
イトの60〜80%は溶解し、亜鉛とともに溶出する鉄
は、はとんど第2鉄イオンとして存在する。
In highly acidic and acidic dissolution, 60 to 80% of the zinc ferrite contained in zinc burnt ore is dissolved, and the iron eluted with zinc is mostly present as ferric ions.

この第2鉄イオンの1部は酸性溶解で沈殿し、残りは除
鉄で沈殿除去される。
A part of this ferric ion is precipitated by acidic dissolution, and the rest is precipitated and removed by iron removal.

第2鉄イオンが最初に沈殿を開始するのは、酸性溶解工
程であるので、除鉄スラリーを酸性溶解に繰り返すこと
により、鉄沈殿の種存在のもとで安定して沈降性・炉適
性ともに良好な鉄の沈殿物を得ることができるようにな
った。
Ferric ions first start to precipitate during the acidic dissolution process, so by repeating the acidic dissolution of the iron-removed slurry, both the sedimentation properties and furnace suitability are stabilized in the presence of iron precipitation seeds. It became possible to obtain good iron precipitates.

除鉄工程では酸性溶解スラリーに亜鉛焼鉱のキャリーオ
ーバー品を加えながら70〜95℃、pH1゜4〜3.
4の状態を1〜3hr保つことにより、残りの第2鉄イ
オンを沈殿除去する。
In the iron removal process, carryover zinc sintered ore is added to the acidic dissolution slurry at 70-95°C and pH 1°4-3.
By maintaining the condition in step 4 for 1 to 3 hours, the remaining ferric ions are precipitated and removed.

中和工程では除鉄スラリーに適当な中和剤を添加して、
最終的にp)I 4.8〜5.2に中和する。
In the neutralization process, an appropriate neutralizing agent is added to the iron removal slurry,
Finally neutralize to p)I 4.8-5.2.

この中和スラリーはシックナーで濃縮し、上澄液は中性
液として清浄工程へ送り、濃縮スピゴットは水洗・濾過
した後、乾燥して鉛製錬工程へ供用し、鉛や銀等の有価
金属を回収する。
This neutralized slurry is concentrated in a thickener, the supernatant liquid is sent to the cleaning process as a neutral liquid, and the concentrated spigot is washed with water, filtered, dried, and used for the lead smelting process, where valuable metals such as lead and silver are processed. Collect.

亜鉛焼鉱の溶解工程において、鉛や銀等の品位が高い残
渣を回収することが経済的である場合や、亜鉛およびそ
の他の有価金武屑を極限まで抽出するために中性溶解液
を酸性溶解へ繰返して、いわゆる複式溶解を行なう必要
がある場合、第2図に示すフローシートにて処理しても
同様な効果を奏するものである。
In the process of melting zinc sintered ore, there are cases where it is economical to recover high-grade residue such as lead and silver, and where the neutral solution is acidified to extract the maximum amount of zinc and other valuable metal scraps. If it is necessary to repeatedly perform so-called multiple melting, the same effect can be obtained even if the process is carried out using the flow sheet shown in FIG.

また、本発明の方法は、酸化亜鉛を主成分とするもので
、鉄を多く含んだ煙灰等の原料についても適用できる。
Furthermore, the method of the present invention can also be applied to raw materials such as smoke ash, which contains zinc oxide as a main component and contains a large amount of iron.

本発明の亜鉛焼鉱の湿式処理法によれば、例えば鉄含有
量の低い亜鉛焼鉱(Fe45.4%)では、従来法では
亜鉛の抽出率が92〜94%であったのに対し、95〜
98%になり、一方鉄含有量の比較的高い焼鉱(Fe;
9.9%)では87〜90%に対し、92〜95%へと
大幅に抽出率が向上する。
According to the wet processing method of zinc sintered ore of the present invention, for example, in zinc sintered ore with a low iron content (Fe45.4%), the extraction rate of zinc was 92 to 94% in the conventional method. 95~
98%, while burnt ore with a relatively high iron content (Fe;
9.9%), the extraction rate is significantly improved from 87 to 90% to 92 to 95%.

次に本発明の実施例について延べる。Next, examples of the present invention will be described.

〔実施例〕〔Example〕

〔実施例 1〕 亜鉛焼鉱3θOgを電解尾液2U  (Zn ;51g
/l 。
[Example 1] 2U of electrolytic tailing liquid (Zn; 51g
/l.

亜鉛焼鉱・高酸性溶解液・高酸性溶解液の分析値は次の
第1表に示す通りであり、亜鉛の抽出率は99,1%で
あった。
The analytical values of zinc sinter, highly acidic solution, and highly acidic solution are shown in Table 1 below, and the extraction rate of zinc was 99.1%.

第1表 (宵t  %) 次に亜鉛焼鉱を加えて、最終pHO,s〜1.0.90
t、1.5hrの抽出条件で酸性溶解を行なった。
Table 1 (Yoi t %) Next, add zinc sintered ore, and the final pH,s~1.0.90
Acidic dissolution was performed under extraction conditions of t and 1.5 hr.

酸性溶解液・酸性溶解液の分析値は次の第2表に示す通
りであり、亜鉛の抽出率は95.1%であった。
The analysis values of the acidic solution and the acidic solution are shown in Table 2 below, and the extraction rate of zinc was 95.1%.

第2表 (wt  %) 高酸性溶解と酸性溶解通しての全体の亜鉛の抽出率は9
8.2%でフェライトとしての亜鉛の抽出率は66.8
%であった。
Table 2 (wt %) The overall zinc extraction rate through high acid dissolution and acid dissolution is 9
At 8.2%, the extraction rate of zinc as ferrite is 66.8
%Met.

〔実施例 2〕 従来法で得られた中性液に、硫酸第1鉄と硫酸第2鉄試
薬を添加してve : a g#! 、Fll :0.
1g/lに調整した鉄溶液を得た。温度80℃に保った
従来法の中性液に、この鉄溶液3交を添加し、この間水
酸化亜鉛スラリーでpH2,6〜3.0になる様コント
ロールして除鉄を行なフた。
[Example 2] Ferrous sulfate and ferric sulfate reagents were added to a neutral solution obtained by the conventional method to obtain ve: a g#! ,Fll:0.
An iron solution adjusted to 1 g/l was obtained. This iron solution was added to a conventional neutral solution maintained at a temperature of 80 DEG C., and during this time iron was removed by controlling the pH to 2.6 to 3.0 with a zinc hydroxide slurry.

除鉄が終了してから、炭酸カルシウムで中和して最終p
H4,8〜5.2 とした。
After iron removal is complete, neutralize with calcium carbonate and prepare the final p
It was set as H4.8 to 5.2.

この中和スラリー19に凝集剤(クリフロックPN−1
71)を 12mg添加して、沈降速度と濾過速度を測
定した。その結果、等速沈降速度は3 、3 crtr
1分、濾過速度は4.9111.Q/Cl1129分で
あった。
This neutralized slurry 19 was added with a coagulant (Cliffrock PN-1).
71) was added, and the sedimentation rate and filtration rate were measured. As a result, the uniform sedimentation rate is 3,3 crtr
1 minute, filtration rate is 4.9111. Q/Cl was 1129 minutes.

(実施例 3) 実施例2と同様の方法で除鉄のpHを変えて沈降速度と
か過速度を測定した。その結果を次の第3表に示す。
(Example 3) In the same manner as in Example 2, the pH of iron removal was changed and the sedimentation rate and overrate were measured. The results are shown in Table 3 below.

第3表に示す如く除鉄の適性pHは1.4〜3.4の範
囲にあることが分った。
As shown in Table 3, the suitable pH for iron removal was found to be in the range of 1.4 to 3.4.

〔実施例 4〕 1段槽から2段槽へ、2段槽から3段槽へと順次オーバ
ーフローし、各々電熱ヒーターで温度コントロールでき
る反応容器(有効容積3.39)を直列に10段並べた
試験装置を用いて高酸性溶解から中和に至るまで一貫し
た連続試験を行なった。
[Example 4] 10 reaction vessels (effective volume: 3.39 cm) were arranged in series, allowing overflow from the first-stage tank to the second-stage tank, and from the second-stage tank to the third-stage tank, each of which could be temperature-controlled with an electric heater. Using a testing device, we conducted consistent continuous tests ranging from highly acidic dissolution to neutralization.

1段槽から4段槽では高酸性溶解を行ない、1段槽に亜
鉛電解尾液(H2SO,濃度約200g/U)を定量ポ
ンプで3.34J/hr供給し、亜鉛焼鉱はその亜鉛品
位と亜鉛電解尾液のH,So、濃度から算出される一定
量を定量フィーダーで添加した。
Highly acidic dissolution is carried out in the 1st to 4th tanks, and zinc electrolytic tailings (H2SO, concentration approximately 200g/U) is supplied to the 1st stage tank at 3.34 J/hr using a metering pump. A constant amount calculated from the H, So, and concentration of the zinc electrolytic tail solution was added using a quantitative feeder.

従って1槽あたりの滞留時間は1時間となり温度はすべ
て 90± 5℃ にコントロールした。
Therefore, the residence time per tank was 1 hour, and all temperatures were controlled at 90±5°C.

5.6段槽では酸性溶解を行ない、6段槽のp)lが0
.5〜2になるよう、5段槽へ添加する亜鉛焼鉱量をコ
ントロールした。
5. Acidic dissolution is performed in the 6-stage tank, and p)l in the 6-stage tank is 0.
.. The amount of zinc sintered ore added to the 5-stage tank was controlled so that the amount was 5 to 2.

7.8段槽では除鉄を行ない8段槽のpHが1.4〜3
.4になるように7段槽へ亜鉛焼鉱のキャリーオーバー
品(煙灰)を添加した。
7. In the 8th stage tank, iron is removed and the pH of the 8th stage tank is 1.4 to 3.
.. A carryover product (smoke ash) of zinc sintered ore was added to the 7-stage tank so that the amount of

9.10段槽では中和を行ない、9段槽へ炭酸カルシウ
ムの中和剤を加え10段槽のpHを4.8咥 〜5.2に調達した。
9. Neutralization was performed in the 10-layer tank, and a neutralizing agent of calcium carbonate was added to the 9-layer tank to bring the pH of the 10-layer tank to 4.8 to 5.2.

10段槽のオーバーフローをサンプリングし、1文に対
して凝集剤(クリフロック P N −171)を12
mg  加えて、沈降性とf通性を測定した。
The overflow of the 10-stage tank was sampled, and 12 times of flocculant (Cliffrock PN-171) was added per sentence.
In addition, sedimentation and facultability were measured.

鉄含有量の低い亜鉛焼鉱(試験NO,1)と、鉄含有量
の高い亜鉛焼鉱(試験NO,2)について、それぞれ2
4時間連続して試験した。
2 for zinc sintered ore with low iron content (test NO. 1) and zinc sintered ore with high iron content (test NO. 2).
The test was conducted continuously for 4 hours.

その結果は次の第4表に示すとおりであった。The results were as shown in Table 4 below.

実施例5 鉄含有量の低い亜鉛焼鉱(実施例4、試験N091と同
等品)について、実施例4と同様の方法で試験を行なっ
た。
Example 5 A test was conducted in the same manner as in Example 4 on zinc sintered ore with a low iron content (Example 4, equivalent to Test No. 091).

ただし、8段槽の除鉄スラリーを11/分の添加速度で
5段槽に添加して鉄沈殿の種の影響を調べた。
However, the effect of the type of iron precipitation was investigated by adding the iron removal slurry from the 8-stage tank to the 5-stage tank at an addition rate of 11/min.

その結果を試験No、3として以下に示す。The results are shown below as Test No. 3.

比較のために実施例4の試験N001のデータを添付し
た。
The data of Test N001 of Example 4 is attached for comparison.

試験NO,1,3の沈降曲線を第3図に示す。The sedimentation curves of test Nos. 1 and 3 are shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明の亜鉛焼鉱の湿式処理法に依れば、既設の単式連
続中性溶解設備をほぼ原型のまま使用し、シックナーや
濾過機等の莫大な投資を要する設備を必要とせず、亜鉛
焼鉱から亜鉛およびその他の有価金属を極めて高い抽出
率で回収することができる効果を奏するものである。
According to the wet processing method for zinc sintered ore of the present invention, the existing single-type continuous neutral melting equipment can be used almost in its original form, and there is no need for equipment that requires huge investment such as thickeners and filters. This method has the effect of recovering zinc and other valuable metals from ore at an extremely high extraction rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明方法の工程説明図であり、
第3図は〔実施例〕における鉄沈澱の沈降曲線グラフ、
第4図は亜鉛の湿式製錬の工程説明図、第5図は従来の
処理工程説明図である。
FIG. 1 and FIG. 2 are process explanatory diagrams of the method of the present invention,
Figure 3 is a sedimentation curve graph of iron precipitation in [Example],
FIG. 4 is an explanatory diagram of the zinc hydrometallurgy process, and FIG. 5 is an explanatory diagram of the conventional treatment process.

Claims (5)

【特許請求の範囲】[Claims] (1)亜鉛焼鉱を電解尾液にて抽出処理するに当り該亜
鉛焼鉱を高酸性溶解し、次いで亜鉛焼鉱を前記高酸性溶
解スラリーに添加し酸性溶解し、更に該酸性溶解スラリ
ーに、亜鉛焼鉱を添加して除鉄することを特徴とする亜
鉛焼鉱の湿式処理法。
(1) When extracting zinc sintered ore using electrolytic tailings, the zinc sintered ore is dissolved in a highly acidic solution, then the zinc sintered ore is added to the highly acidic dissolved slurry, dissolved in an acidic state, and further added to the acidic dissolved slurry. , a wet processing method for zinc sintered ore characterized by adding zinc sintered ore to remove iron.
(2)亜鉛焼鉱を電解尾液にて高酸性溶解するに当り、
該亜鉛焼鉱の湿式処理総量60〜80%を80〜95℃
、3〜6時間、最終H_2SO_4濃度30〜100g
/lの抽出条件にて溶解することを特徴とする特許請求
の範囲第1項記載の亜鉛焼鉱の湿式処理法。
(2) When dissolving zinc sintered ore in a highly acidic solution using electrolytic tailings,
A total of 60 to 80% of the zinc sintered ore is heated to 80 to 95°C.
, 3-6 hours, final H_2SO_4 concentration 30-100g
The wet processing method for zinc sintered ore according to claim 1, characterized in that the zinc sintered ore is dissolved under extraction conditions of /l.
(3)前記酸性溶解に際し、亜鉛焼鉱の湿式処理総量の
20〜40%を前記酸性溶解スラリーに添加し、80〜
95℃にて1〜3時間酸性溶解し、最終H_2SO_4
濃度1〜20g/lとすることを特徴とする特許請求の
範囲第1項及び第2項記載の亜鉛焼鉱の湿式処理法。
(3) During the acid dissolution, add 20 to 40% of the total wet-processed amount of zinc sintered ore to the acid dissolution slurry, and
Acidic dissolution for 1-3 hours at 95°C, final H_2SO_4
A wet treatment method for zinc sintered ore according to claims 1 and 2, characterized in that the concentration is 1 to 20 g/l.
(4)前記除鉄に際し、該酸性溶解スラリーに亜鉛焼鉱
を添加して、70〜95℃、pH1.4〜3.4の抽出
条件にて、除鉄することを特徴とする特許請求の範囲第
1項〜第3項記載の亜鉛焼鉱の湿式処理法。
(4) When removing iron, zinc sinter is added to the acidic dissolved slurry to remove iron under extraction conditions of 70 to 95°C and pH 1.4 to 3.4. A wet treatment method for zinc sintered ore according to items 1 to 3.
(5)前記除鉄工程で得られた鉄の沈殿物の一部を、鉄
沈殿物の種として前記酸性溶解に繰返すことを特徴とす
る特許請求の範囲第1項〜第4項記載の亜鉛焼鉱の湿式
処理法。
(5) Zinc according to claims 1 to 4, characterized in that a part of the iron precipitate obtained in the iron removal step is repeatedly subjected to the acidic dissolution as a seed for the iron precipitate. Wet processing method for sintered ore.
JP61237225A 1986-10-07 1986-10-07 Wet treatment of sintered zinc ore Pending JPS6393832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61237225A JPS6393832A (en) 1986-10-07 1986-10-07 Wet treatment of sintered zinc ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61237225A JPS6393832A (en) 1986-10-07 1986-10-07 Wet treatment of sintered zinc ore

Publications (1)

Publication Number Publication Date
JPS6393832A true JPS6393832A (en) 1988-04-25

Family

ID=17012233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61237225A Pending JPS6393832A (en) 1986-10-07 1986-10-07 Wet treatment of sintered zinc ore

Country Status (1)

Country Link
JP (1) JPS6393832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540835A (en) * 2005-05-10 2008-11-20 プバダ、ジョージ Processing process of dust and residue containing zinc oxide and zinc ferrite discharged from electric furnaces and other furnaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540835A (en) * 2005-05-10 2008-11-20 プバダ、ジョージ Processing process of dust and residue containing zinc oxide and zinc ferrite discharged from electric furnaces and other furnaces

Similar Documents

Publication Publication Date Title
JP5334592B2 (en) Rare metal recovery method in zinc leaching process
KR100312468B1 (en) Wet metallurgical method for processing raw materials containing zinc sulfide
US3434947A (en) Process for the separation of iron from metal sulphate solutions and a hydrometallurgic process for the production of zinc
US4676828A (en) Process for the leaching of sulphides containing zinc and iron
CA1223126A (en) Process for recovering zinc from ferrites
DE60015527T2 (en) Process for the extraction of elemental sulfur from leach residues of the sulphide ore treatment by distillation and condensation
CN101171348A (en) Method for the recovery of valuable metals and arsenic from a solution
CA1152337A (en) Leaching of sulphidic mattes containing non-ferrous metals and iron
KR101534417B1 (en) Method for treating a solution containing zinc sulphate
CN109161687A (en) The recovery process of arsenic in a kind of anode mud with high As and Pb smelting ash
US4305914A (en) Process for precipitating iron as jarosite with a low non-ferrous metal content
JPS5916940A (en) Recovery of zinc
DE2043818C3 (en) Process for leaching jarosite sludge
NO160528B (en) ZINC RECOVERY FROM ZINCULATED SULFIDIC MATERIAL.
Swarnkar et al. Iron control in zinc plant residue leach solution
JPH09501986A (en) Method for extracting zinc from sulphide concentrates
JPH0625763A (en) Treatment of intermediate product of smelting
US4778520A (en) Process for leaching zinc from partially desulfurized zinc concentrates by sulfuric acid
JPH06212304A (en) Method for smelting zinc
JPH04311541A (en) Wet-type treating method for zinc concentration and zinc leaching residue at the same time
JPS6393832A (en) Wet treatment of sintered zinc ore
CN113881857A (en) Method for treating cobalt-containing solution produced in wet zinc smelting cadmium recovery process
DE2111737A1 (en) Process for the removal of trivalent iron from ferrous solutions
Subramanian et al. Recovery of niobium and tantalum from low grade tin slag-A hydrometallurgical approach
US3314783A (en) Process for the recovery of molybdenum values from ferruginous, molybdenum-bearing slags