JPS6393509A - Drill - Google Patents

Drill

Info

Publication number
JPS6393509A
JPS6393509A JP24082786A JP24082786A JPS6393509A JP S6393509 A JPS6393509 A JP S6393509A JP 24082786 A JP24082786 A JP 24082786A JP 24082786 A JP24082786 A JP 24082786A JP S6393509 A JPS6393509 A JP S6393509A
Authority
JP
Japan
Prior art keywords
drill
groove
blade
cutting
core thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24082786A
Other languages
Japanese (ja)
Other versions
JPH0532163B2 (en
Inventor
Koichiro Wakihira
脇平 浩一郎
Michitaka Katsuta
勝田 通隆
Masayasu Hino
日野 正保
Kohei Matsumoto
公平 松本
Yoshio Nakahara
中原 良雄
Toshio Sasayama
笹山 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24082786A priority Critical patent/JPS6393509A/en
Publication of JPS6393509A publication Critical patent/JPS6393509A/en
Publication of JPH0532163B2 publication Critical patent/JPH0532163B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PURPOSE:To prevent a walking phenomenon of a drill tip during cutting, reduce the cutting resistance, and allow accurate boring by forming an auxiliary groove communicated to a chip discharging main groove in the re-grinding range of a web thickness portion. CONSTITUTION:The outside end section 5b of the heel face 5 of a drill 1 is formed thicker than that of a standard drill, on the other hand, its center side is recessed to be thinner than that of a high-rigidity drill and the standard drill. Next, an auxiliary groove 8 is formed in a fixed range 1 along the axial direction from the drill tip side, and this range is made the range where the cutting blade of the drill 1 can re-grind. According to this drill 1, chips generated by the cutting of the drill 1 are guided into a main groove 6 along the curved face of the outside 4a of the triangular protruded section 4c of the blade rear face 4 and discharged satisfactorily. Chips crushed by a chisel edge are guided into the main groove 6 from the auxiliary groove 8 and discharged satisfactorily, the cutting resistance is reduced and the cutting ability is improved, and furthermore the biting property on a material to be cut is also improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ドリルに関し、特に、基本的にはシンニング
が不要なドリルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to drills, and more particularly to drills that essentially do not require thinning.

従来の技術 従来、一般に、ドリルによる穴明は加工において、高能
率化を図るためには、ドリルの剛性を高めることが行な
われている。すなわち、この剛性が高められたドリル2
は、第1図に二点鎖線で示すように、ドリル軸直交方向
の刃部断面において、図中点線3で示す標準ドリル3よ
りも、刃裏面2b及びヒール面2cを夫々肉厚に形成し
て、心厚を大きくして剛性をもたせるようにしている。
BACKGROUND OF THE INVENTION Conventionally, in drilling holes with a drill, the rigidity of the drill has generally been increased in order to increase efficiency. In other words, this drill 2 with increased rigidity
As shown by the two-dot chain line in FIG. 1, the blade back surface 2b and heel surface 2c are each formed thicker than the standard drill 3, which is shown by the dotted line 3 in the figure, in the cross section of the blade in the direction perpendicular to the drill axis. The core thickness is increased to provide rigidity.

なお、上記標準ドリル3とは、例えば、JIS  B4
30Iのストレートシャクドリルの規格に基づいて市販
されているドリルであって、その心厚寸法が一般に(0
,15〜0.18)XD程度となっているドリルのこと
を意味する。ただし、Dはドリル径である。
Note that the standard drill 3 mentioned above is, for example, JIS B4
It is a commercially available drill based on the 30I straight shaft drill standard, and its core thickness is generally (0
, 15 to 0.18). However, D is the drill diameter.

発明が解縣↓うとする問題、へ しかしながら、上記構造のものでは、心厚が大きいため
に、刃立を行ったときチゼルエツジが標準ドリル3のも
のよりも大きくなる結果、切削抵抗が太き(なって切削
性が悪くなり、第7.8.9図に夫々斜線で示すような
比較的広範囲にシンニングを精度良く行なう必要が生じ
、このシンニングの巧拙が穴明は精度に影響するといっ
た問題がある。また、このシンニングは再研削する毎に
行なう必要があり、非常に煩雑であるといった問題もあ
る。
The problem to be solved by the invention is, however, with the structure described above, since the core thickness is large, the chisel edge becomes larger than that of the standard drill 3 when the cutting edge is sharpened, and as a result, the cutting resistance becomes thicker ( As a result, machinability deteriorates, and it becomes necessary to accurately perform thinning over a relatively wide area as shown by diagonal lines in Fig. 7.8.9, and there is a problem that the skill of thinning affects the accuracy of drilling. There is also the problem that this thinning must be performed every time re-grinding is performed, which is extremely troublesome.

したがって、本発明の目的は、シンニングを行わずとも
精度良く穴明は加工を行うことができるドリルを提供す
ることにある。
Therefore, an object of the present invention is to provide a drill that can drill holes with high accuracy without thinning.

問題点を解決するための手段 上記目的を達成するために、本発明は、心厚部分の再研
削範囲内に上記チップ排出用主溝に連通した副溝を形成
するように構成した。すなわち、チップ排出用主溝を構
成するヒール面と刃裏面とがドリル軸方向断面において
、大略滑らかな曲面をなす標準断面刃形に対して、該標
準断面刃形のヒール面よりヒール面のヒール面外側部分
の全部、すなわち外側端部、または一部、すなわち例え
ば外側端部全体を突出させたのちヒール部のみを切り落
として残りの切落とされていない部分、が上記チップ排
出用主溝内に突出するとともに、上記標準断面刃形の刃
裏面より刃裏面が上記チップ排出用主溝に向けて略三角
形状に突出するようにした断面形状を先端部より軸方向
沿いの所定範囲内に有するとともに、該所定範囲内でか
つ上記先端部より軸方向沿いの再研削可能範囲内の上記
断面形状において、上記標準断面刃形のヒール面より略
U字状にくぼんだ副溝を上記ヒール面のヒール面中心側
に有するようにしたドリルにして、上記副溝形成部分の
心厚寸法は(0,04〜0.11)Xドリル径とし、上
記所定範囲内でかつ上記副溝の無い部分における心厚寸
法は(0,25〜0.40)xドリル径とする一方、上
記副溝は、上記先端部より軸方向沿いに延びかつ心厚寸
法が一定な平行部と、該平行部に連設されかつ心厚テー
パが2/100〜6/+00となる傾斜部とを有するよ
うに構成した。
Means for Solving the Problems In order to achieve the above object, the present invention is configured such that a sub-groove communicating with the main groove for chip ejection is formed within the re-grinding range of the thick core portion. In other words, for a standard cross-sectional blade shape in which the heel surface and the back surface of the blade that constitute the main groove for chip ejection form a roughly smooth curved surface in the axial cross-section of the drill, the heel surface of the heel surface is smaller than the heel surface of the standard cross-sectional blade shape. After protruding all or part of the outer side portion, i.e., the entire outer edge, cutting off only the heel portion, the remaining portion that is not cut off is placed in the main groove for chip ejection. It protrudes and has a cross-sectional shape within a predetermined range along the axial direction from the tip, with the back surface of the blade protruding in a substantially triangular shape from the back surface of the blade of the standard cross-sectional blade shape toward the main groove for discharging chips. , in the cross-sectional shape within the predetermined range and within the re-grindable range in the axial direction from the tip, a sub-groove recessed in a substantially U-shape from the heel surface of the standard cross-sectional blade shape is formed on the heel surface of the heel surface. The core thickness of the minor groove forming part is (0.04 to 0.11) x the drill diameter, and the core thickness of the part where the minor groove is formed is within the predetermined range and where the minor groove is not formed. The thickness dimension is (0,25 to 0.40) x drill diameter, and the sub-groove is connected to a parallel part extending along the axial direction from the tip and having a constant core thickness dimension, and the parallel part. and an inclined portion having a core thickness taper of 2/100 to 6/+00.

弘明の作用 上記構成においては、副溝によりチゼルエツジが小さく
なり、切削時、ドリルの先端が被切削材に対していわゆ
る歩行現象を行こさずドリルの回転中心が移動しないと
ともに、切削抵抗も小さくなり、精度良く穴明加工が行
える。
Effect of Hiroaki In the above structure, the chisel edge becomes smaller due to the sub-groove, and during cutting, the tip of the drill does not perform the so-called walking phenomenon against the material to be cut, the center of rotation of the drill does not move, and the cutting resistance is also reduced. , can perform hole drilling with high precision.

笈嵐釧 以下に、本発明にかかる実施例を第1〜6図に示す図面
に基づいて詳細に説明する。
EMBODIMENT OF THE INVENTION Below, embodiments according to the present invention will be described in detail based on the drawings shown in FIGS. 1 to 6.

第1.2.3図は夫々本発明の一実施例に係るドリルl
の刃部の断面図、ドリルIの側面図及び上記刃部の端面
図、第4図は刃部の要部断面側面図、第5図は第4図の
■−■線断面図、第6図は具体的なドリルの刃先端面図
である。
Figures 1.2.3 each show a drill l according to an embodiment of the present invention.
4 is a cross-sectional view of the main part of the blade, FIG. 5 is a sectional view taken along the line ■-■ in FIG. 4, and FIG. The figure is a front view of the tip of a specific drill blade.

上記第1図中、点線は、チップ排出溝を構成するヒール
面3bと刃裏面3aとがドリル軸方向断面において大略
滑らかな曲面をなした標準断面刃形を有する従来の標準
ドリル3を示し、2点鎖線は従来の心厚の大きな高剛性
ドリル2を示す。なお、図中、2bは刃裏面、2cはヒ
ール面である。
In FIG. 1, the dotted line indicates a conventional standard drill 3 having a standard cross-sectional blade shape in which the heel surface 3b and the blade back surface 3a forming the chip ejection groove form a substantially smooth curved surface in the axial cross section of the drill. The two-dot chain line indicates a conventional high-rigidity drill 2 with a large core thickness. In addition, in the figure, 2b is the back surface of the blade, and 2c is the heel surface.

上記ドリル1は、先端部より軸方向沿いの所定範囲内の
ドリル軸方向断面において第1図中軸心0点を中心に点
対称に形成されており、一対のチップ排出用主溝6,6
を軸方向沿いに螺旋状に形成するとともに、湾曲した各
主溝6の溝壁面に刃裏面4とヒール面5を夫々備える。
The drill 1 is formed point-symmetrically with respect to the axial center 0 point in FIG. 1 in an axial cross-section of the drill within a predetermined range along the axial direction from the tip, and has a pair of main grooves 6, 6 for discharging chips.
is formed in a spiral along the axial direction, and the groove wall surface of each curved main groove 6 is provided with a blade back surface 4 and a heel surface 5, respectively.

上記刃裏面4は、上記ドリル軸方向断面において、標準
ドリル3より略三角形状に主溝6内に突出させて突出部
4cを形成して、標準ドリル3より肉厚にする。すなわ
ち、刃裏面4の外側4aを従来の高剛性ドリル2と同様
に突出させる一方、中8側4bを」二記高剛性ドリル2
の中心側よりくぼませて心厚が小さくなるようにする。
The blade back surface 4 is made thicker than the standard drill 3 by projecting into the main groove 6 in a substantially triangular shape from the standard drill 3 in the axial cross section of the drill to form a protrusion 4c. That is, while the outer side 4a of the blade back surface 4 is made to protrude like the conventional high-rigidity drill 2, the middle 8 side 4b is made to protrude like the conventional high-rigidity drill 2.
Make a depression from the center side to reduce the thickness of the heart.

また、」1記ヒール面5は、上記ドリル軸方向断面にお
いて、その外側端部5bを第1図中一点鎖線で示すよう
に高剛性ドリル2と同様に主溝6内に突出させるととも
に、該外側端部5bより中心側にかけてU字状にくぼん
だ副溝8を軸方向沿いに螺旋状に形成する。従って、ヒ
ール面5の外側端部5bにおいては標準ドリル3より肉
厚に形成する一方、中心側においては上記高剛性ドリル
2や標準ドリル3よりもくぼませて心厚を小さくする。
Further, in the axial cross section of the drill, the heel surface 5 has its outer end 5b protruding into the main groove 6 similarly to the high-rigidity drill 2, as shown by the dashed line in FIG. A U-shaped sub-groove 8 is formed spirally along the axial direction from the outer end 5b toward the center. Therefore, the outer end 5b of the heel surface 5 is made thicker than the standard drill 3, while the center side is recessed to have a smaller core thickness than the high-rigidity drill 2 and the standard drill 3.

上記側7y!′8は第4図に示すようにドリル先端側よ
り軸方向沿いの一定範囲C7内に形成し、この範囲を上
記ドリル1の切刃の再研削しうる範囲とする。上記この
副溝8を形成した再研削可能範囲Q、内において、先端
部よりドリル軸方向所定範囲1−を内の心厚部分に、心
厚寸法W、が一定ずなわち平行心厚(0/100)とな
り溝底面がドリル軸方向と平行になる平行部8aを形成
するとともに、該平行部から残りの範囲L2内に一定角
度傾斜した傾斜部8bを形成する。この傾斜部8bまで
再研削を行った場合でも刃先端面に形成されるチゼルエ
ツジの大きさは上記標準ドリル3のチゼルエツジよりも
小さく、切削性に優れたものとなっている。なお、上記
ドリル1は、例えば副溝8を形成する砥石で第1図中実
線で示すようにヒール部7を削り落として主溝6のスペ
ースを大きくし、切削油の浸透をより良くするのが好ま
しい。この場合、ヒール部7を削り落としても、ドリル
の剛性が落ちたことによるドリルの寿命低下は起こらな
かった。
Above side 7y! '8 is formed within a certain range C7 along the axial direction from the drill tip side as shown in FIG. 4, and this range is defined as the range in which the cutting edge of the drill 1 can be re-ground. Within the re-grindable range Q where the minor groove 8 is formed, the core thickness dimension W is constant, that is, the parallel core thickness (0 /100), thereby forming a parallel portion 8a whose groove bottom is parallel to the drill axis direction, and forming an inclined portion 8b inclined at a constant angle from the parallel portion within the remaining range L2. Even when re-grinding is performed up to this inclined portion 8b, the size of the chisel edge formed on the tip surface of the blade is smaller than the chisel edge of the standard drill 3, resulting in excellent cutting performance. The drill 1 has a grindstone that forms the sub-groove 8, for example, by grinding off the heel portion 7 as shown by the solid line in FIG. 1 to enlarge the space of the main groove 6 and improve penetration of cutting oil. is preferred. In this case, even if the heel portion 7 was shaved off, the life of the drill did not decrease due to the decrease in the rigidity of the drill.

上記ドリル1によれば、切削時、ドリルIの切削により
生じるチップは、刃裏面4の略三角形状突出部4cの外
側4aの湾曲面に沿って主溝6内に案内されて良好に排
出されるとともに、チゼルエツジで圧壊された屑は上記
副溝8から上記主溝6内に案内されて良好に排出される
According to the drill 1, during cutting, chips generated by the cutting of the drill I are guided into the main groove 6 along the curved surface of the outer side 4a of the approximately triangular protrusion 4c on the back surface 4 of the blade, and are efficiently discharged. At the same time, the debris crushed by the chisel edge is guided from the minor groove 8 into the main groove 6 and is efficiently discharged.

上記実施例にかかるドリル1であって、鉄鋼用ドリルの
具体例を第6図に示す。主溝部分の心厚寸法W2は(0
,25〜0゜40)D、溝幅比は1:l〜0.8:I、
ねじれ角は25度、副溝部分の心厚寸法W1は(0,0
4〜0.11)Dとし、先端角は135度とする。但し
、Dはドリル径である。そして、両刃裏面4.4の外端
を結ぶ線と刃裏面4の中心側湾曲面の接線とのなす角α
はIO°〜15°とし、刃裏面4の中心側湾曲面の曲率
半径R1は(0,1〜0.2)Dとし、刃裏面4からヒ
ール面5にかけての湾曲面の直径D3はφ(0,1〜0
.2)Dとし、ヒール面5の中心側湾曲面の曲率半径R
7は(0,5〜08)Dとし、ヒール面5の外側端部5
bと副溝8との境界部のドリル中心からの距離すなわち
直径り、はφ085Dとする。上記副溝8は、その軸方
向長さQ、 (第2,4図参照)、すなわち切刃と副溝
8との接点Aからの軸方向長さは(0,5〜1.1)D
とする。この軸方向長さがこれだけあれば、従来のドリ
ルと同数だけ再研削できるとともに寿命も従来のドリル
と同程度となる。
FIG. 6 shows a specific example of the drill for steel, which is the drill 1 according to the above embodiment. The core thickness dimension W2 of the main groove part is (0
,25~0°40)D, groove width ratio is 1:l~0.8:I,
The helix angle is 25 degrees, and the core thickness dimension W1 of the minor groove part is (0,0
4 to 0.11)D, and the tip angle is 135 degrees. However, D is the drill diameter. Then, the angle α between the line connecting the outer ends of the double-blade back surface 4.4 and the tangent to the center side curved surface of the blade back surface 4.
is IO° to 15°, the radius of curvature R1 of the curved surface on the center side of the blade back surface 4 is (0,1 to 0.2)D, and the diameter D3 of the curved surface from the blade back surface 4 to the heel surface 5 is φ( 0,1~0
.. 2) Let D be the radius of curvature of the center side curved surface of the heel surface 5.
7 is (0,5~08)D, and the outer end 5 of the heel surface 5
The distance from the center of the drill, that is, the diameter, of the boundary between b and the sub-groove 8 is φ085D. The minor groove 8 has an axial length Q (see Figures 2 and 4), that is, the axial length from the contact point A of the cutting edge and the minor groove 8 is (0.5 to 1.1)D.
shall be. With this axial length, it is possible to re-grind the same number of times as a conventional drill, and the service life is also comparable to that of a conventional drill.

しかし、寿命を延ばすためには上記長さは短いほうがよ
い。上記側湾8の傾斜部8bの心厚寸法W゛からW゛間
での範囲における心厚テーパは2/100一6/100
程度とし、心厚寸法WIがφ13.Omm以上の場合に
は上記心厚テーパは4/100とする。
However, in order to extend the service life, the shorter the above length, the better. The core thickness taper of the inclined portion 8b of the side bay 8 in the range from W'' to W'' is 2/100 to 6/100.
The core thickness WI is φ13. In the case of Omm or more, the core thickness taper is set to 4/100.

なお、従来の鉄鋼用高剛性ドリルでは、溝幅比が08〜
0.9:1、心厚寸法が(0,2〜0.45)Dであり
、シンニングを行う必要があった。また、鉄鋼用標準ド
リルでは、溝幅比が1.3:I−1:1、心厚寸法が(
0,1〜0.20)Dであり、シンニングが必要であっ
た。
In addition, in conventional high-rigidity drills for steel, the groove width ratio is 08~
0.9:1, and the core thickness was (0.2 to 0.45)D, so it was necessary to perform thinning. In addition, standard drills for steel have a groove width ratio of 1.3:I-1:1 and a core thickness of (
0.1 to 0.20)D, and thinning was required.

また、ドリル1の溝幅比や心厚寸法などは、軽合金用、
アルミ用のドリルと上記鉄鋼用のドリルとは異なり、夫
々用途に応じて溝幅比や心厚寸法などを決めて、シンニ
ングを行わなくてもよいようにする必要がある。この軽
合金用、アルミ用のドリルの参考例としては、溝幅比を
1.5:l−1,6゜1として大きくし、ねじれ角を3
8〜42度として大きくする一方、心厚寸法は鉄鋼用ド
リルと同じにしたものがある。
In addition, the flute width ratio and core thickness dimensions of drill 1 are for light alloys,
Unlike the drills for aluminum and the steel drills mentioned above, it is necessary to determine the groove width ratio, core thickness, etc. depending on the respective use so that thinning is not necessary. As a reference example of this drill for light alloys and aluminum, the groove width ratio is increased to 1.5:l-1,6°1, and the helix angle is set to 3.
There is a drill with a larger core thickness of 8 to 42 degrees, but with the same core thickness as a steel drill.

上記実施例によれば、ヒール面5に副溝8を備えたので
、心厚が標準ドリル3や高剛性ドリル2よりも小さくな
って、刃立をしたときチゼルエツンら小さくなる結果、
切削時、いわゆる歩行現象が生じず精度良く穴明は加工
を行うことができろとともに、切削抵抗が小さくなって
切削性が良くなり、被切削材に対する食いつき性も良く
なり、シンニングを行なう必要がなくなる。従って、従
来の高剛性ドリル2のようにシンニングの巧拙が穴明は
精度に影響するといった問題を確実に解消できる。また
、再研削毎にシンニングを行なう必要もなく、ただ、ド
リル先端の切刃の刃立てを行うだけで十分に切削できる
。また、ヒール面5の中心側に副溝8を備えたので、チ
ップ排出用の溝を従来の高剛性ドリル2や標準ドリル3
のチップ排出用溝よりも大きくすることができるととも
に、刃裏面4の突出部4Cの外側4aの湾曲面沿いにチ
ップをデツプ排出用の上記溝8,6内に円滑に案内でき
るので、チップの排出性が向上する。また、」−足側溝
8に平行部8aを形成したので、刃先部に剛性を持たせ
ることができるとともに、ドリルの製造段階の品質検査
工程において、」二記平行部8aの心厚寸法を測定する
ことにより製品の品質の安定化を図ることができる。す
なわち、平行部を形成せずに傾斜部のみから副溝8を構
成すると、該副溝部分において心厚寸法を測定する場合
、例えば、マイクロメータの測定子の位置が少しでも狂
うと心厚寸法が異なるため、各ドリルlにおいて同一箇
所を測定することが困難であり、製品の品質の安定化が
困難であったのである。また、ヒール面5の外側端部5
bを厚肉にするとともに、刃裏面4に突出部4cを形成
して厚肉にすることにより、心厚を太きくすることなく
、ドリル剛性を向上させることができる。さらに、」−
記のように心厚が小さくなることに対応してチップ排出
用の溝の断面積が標準ドリル3や高剛性ドリル2よりも
大きくなり、チップ排出性能が良くなる。
According to the above embodiment, since the heel surface 5 is provided with the sub-groove 8, the core thickness is smaller than that of the standard drill 3 or the high-rigidity drill 2, and as a result, the chisel etching becomes smaller when the cutting edge is raised.
During cutting, the so-called walking phenomenon does not occur, making it possible to drill holes with high precision.The cutting resistance is also reduced, improving machinability, and the ability to bite into the material to be cut is also improved, which eliminates the need for thinning. It disappears. Therefore, it is possible to reliably solve the problem of the conventional high-rigidity drill 2 in which the skill of thinning affects the precision of hole drilling. Further, there is no need to perform thinning every time the drill is re-grinded, and sufficient cutting can be achieved by simply sharpening the cutting edge at the tip of the drill. In addition, since the sub-groove 8 is provided on the center side of the heel surface 5, the groove for discharging chips can be replaced with the conventional high-rigidity drill 2 or standard drill 3.
In addition, the chips can be made larger than the chip ejection grooves 8 and 6 for deposit ejection along the curved surface of the outer side 4a of the protrusion 4C on the back surface 4 of the blade. Improves drainage performance. In addition, since the parallel part 8a is formed in the leg groove 8, the cutting edge can be made rigid, and the core thickness of the parallel part 8a can be measured in the quality inspection process at the manufacturing stage of the drill. By doing so, it is possible to stabilize the quality of the product. In other words, if the sub-groove 8 is constructed from only the inclined part without forming a parallel part, when measuring the core thickness dimension in the sub-groove part, for example, if the position of the measuring tip of the micrometer is slightly deviated, the core thickness dimension will be Because of the different values, it was difficult to measure the same location for each drill l, making it difficult to stabilize the quality of the product. In addition, the outer end 5 of the heel surface 5
By increasing the thickness of b and forming the protruding portion 4c on the back surface 4 of the blade, the drill rigidity can be improved without increasing the core thickness. Furthermore,”−
As described above, in response to the reduced core thickness, the cross-sectional area of the chip ejection groove is larger than that of the standard drill 3 and the high-rigidity drill 2, and the chip ejection performance is improved.

発明の効果 上記構成によれば、刃部のヒール面の中心側に略U字状
にくぼんだ副溝を形成することにより、心厚が小さくな
りヂゼルエツジが小さくなって、切削時、いわゆる歩行
現象が生じずドリルの回転中心が移動するのを効果的に
防止することができるとともに、切削抵抗が小さくなり
切削性が良くなるにに、被切削材に対する食いつき性も
良くなる。従って、シンニングが不要となり、シンニン
グの巧拙が穴明は精度に影響することがないので、シン
ニングを行イつずとも精度の良い穴明は加工を行うこと
ができる。また、ドリルの再研削毎にシンニングを行な
う必要もなく、ただ、ドリル先端の切刃の刃立てを行う
だけで十分に切削できる。
Effects of the Invention According to the above structure, by forming a substantially U-shaped sub-groove on the center side of the heel surface of the blade, the core thickness is reduced and the jelly edge is reduced, thereby preventing the so-called walking phenomenon during cutting. It is possible to effectively prevent the center of rotation of the drill from moving without causing any friction, and the cutting resistance is reduced, cutting performance is improved, and the ability to bite into the material to be cut is also improved. Therefore, there is no need for thinning, and since the skill of thinning does not affect the accuracy of hole drilling, it is possible to drill holes with high accuracy even when thinning is performed. Further, there is no need to perform thinning every time the drill is re-grinded, and sufficient cutting can be achieved simply by sharpening the cutting edge at the tip of the drill.

また、ヒール面の中心側に副溝を備えたので、デツプ排
出用の溝の断面積が標準ドリルや高剛性ドリルよりも大
きくなり、チップ排出性能が良くなる。
In addition, since the sub-groove is provided on the center side of the heel surface, the cross-sectional area of the groove for discharging debris is larger than that of a standard drill or a high-rigidity drill, improving chip discharging performance.

また、上記副溝に平行部を形成したので、刃先部に剛性
を持たせることができるとともに、ドリルの製造段階の
品質検査工程において、上記平行部の心厚寸法を測定す
ることにより製品の品質の安定化を図ることができる。
In addition, since a parallel portion is formed in the minor groove, it is possible to provide rigidity to the cutting edge, and the core thickness of the parallel portion can be measured during the quality inspection process during the manufacturing stage of the drill to ensure product quality. can be stabilized.

すなわち、平行部を形成せずに傾斜部のみから副溝を構
成すると、該副溝部分において各ドリルの心厚寸法を例
えばマイクロメータで測定する場合、マイクロメータの
測定子の位置が少しでも狂うと心厚部分の傾斜により心
厚寸法が異なってくるので、各ドリルにおいて精確に測
定子を同一位置に位置させることが必要となり、この測
定子を同一位置に位置させることが非常に困難であり、
製品の品質の安定化が困難であったのである。また、ド
リル軸方向断面において、刃部のヒール面外側端部がチ
ップ排出溝内に突出する一方、刃裏面がデツプ排出溝に
向けて略三角形状に突出して、心厚を大きくすることな
く、ドリル剛性を大きくすることができて、穴明は加工
の高能率化が図れる。さらに、」二足刃裏面が略三角形
状に突出したので、切削した切屑すなわちチップが、上
記略三角形状突出部の外側斜面沿いにチップ排出溝内に
円滑に案内される。
In other words, if a sub-groove is formed only from an inclined part without forming a parallel part, when measuring the core thickness of each drill in the sub-groove part using, for example, a micrometer, the position of the measuring point of the micrometer will be misaligned even a little. Since the core thickness dimension differs depending on the slope of the core thickness part, it is necessary to accurately position the gauge head in the same position on each drill, and it is extremely difficult to position the gauge head in the same position. ,
It was difficult to stabilize the quality of the product. In addition, in the axial cross section of the drill, the outer end of the heel surface of the blade protrudes into the chip ejection groove, while the back surface of the blade protrudes in a substantially triangular shape toward the depth ejection groove, without increasing the core thickness. It is possible to increase the rigidity of the drill and increase the efficiency of hole drilling. Further, since the back surface of the bipedal blade protrudes in a substantially triangular shape, cut chips, that is, chips, are smoothly guided into the chip ejection groove along the outer slope of the substantially triangular protrusion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るドリルの刃部の断面図
、第2,3図は夫々上記実施例に係るトリルの側面図及
びその刃部を示す端面図、第4図は第1図に示すドリル
の刃部の要部断面側面図、第5図は第4図のv−■線断
面図、第6図は上記ドリルのより具体的なドリルの刃先
端面図、第7゜〜9図は夫々従来の高剛性ドリルにシン
ニングを行−・た場合の説明図である1、 ! 実施例に係るトリル、2 従来のトリル、2b  
勾裏面、2c ヒール部、j(標ぺtトリル、3 a−
刃裏面、3b−1−z−ル面、4 刃裏面、4a・外側
、・IE)中心側、4c 突出部、5 ヒール部、8 
・副溝、5b  外側端部、6 千・ツブ排出用]衿t
η、7 ヒール部3、 特^′l出願K 株式会ト)、神戸製鋼所代理人 イ「
理にh  山 葆 ほか2名第4図 第6図 第5図 第7ズ         第8図 第9図
FIG. 1 is a cross-sectional view of the blade of a drill according to an embodiment of the present invention, FIGS. 2 and 3 are a side view and an end view of the drill according to the above embodiment, respectively, and FIG. 1 is a cross-sectional side view of the main part of the drill bit shown in FIG. 1, FIG. 5 is a cross-sectional view taken along the line v-■ in FIG. Figures 1 to 9 are explanatory views of conventional high-rigidity drills after thinning. Trill according to Example, 2 Conventional trill, 2b
Back side, 2c Heel part, j (marked Petrill, 3 a-
Back side of the blade, 3b-1-z-ru side, 4 Back side of the blade, 4a/outside, IE) center side, 4c protrusion, 5 heel part, 8
・Minor groove, 5b Outer end, 6,000・For spit discharge] Collar t
η, 7 Heel part 3, Special application K Co., Ltd., Kobe Steel agent I
Rinih Yamaboshi and 2 others Figure 4 Figure 6 Figure 5 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)チップ排出用主溝(6)を構成するヒール面(3
b)と刃裏面(3a)とがドリル軸方向断面において、
大略滑らかな曲面をなす標準断面刃形に対して、該標準
断面刃形のヒール面(3b)よりヒール面(5)のヒー
ル面外側部分の全部または一部が上記チップ排出用主溝
(6)内に突出するとともに、上記標準断面刃形の刃裏
面(3a)より刃裏面(4)が上記チップ排出用主溝(
6)に向けて略三角形状に突出するようにした断面形状
を先端部より軸方向沿いの所定範囲内に有するとともに
、該所定範囲内でかつ上記先端部より軸方向沿いの再研
削可能範囲(l_2)内の上記断面形状において、上記
標準断面刃形のヒール面(3b)より略U字状にくぼん
だ副溝(8)を上記ヒール面(5)のヒール面中心側に
有するようにしたドリルにして、 上記副溝形成部分の心厚寸法は(0.04〜0.11)
×ドリル径(D)とし、上記所定範囲内でかつ上記副溝
(8)の無い部分における心厚寸法は(0.25〜0.
40)×ドリル径(D)とする一方、上記副溝(8)は
、上記先端部より軸方向沿いに延びかつ心厚寸法が一定
な平行部(8a)と、該平行部(8a)に連設されかつ
心厚テーパが2/100〜6/100となる傾斜部(8
b)とを有するようにしたことを特徴とするドリル。
(1) Heel surface (3) forming the chip ejection main groove (6)
b) and the back surface of the blade (3a) in the axial cross section of the drill,
For a standard cross-sectional blade shape that has a roughly smooth curved surface, all or part of the outside portion of the heel surface of the heel surface (5) from the heel surface (3b) of the standard cross-sectional blade shape is the main groove for chip ejection (6). ), and the blade back surface (4) of the standard cross-sectional blade shape is more closely aligned with the chip ejection main groove (3a) than the blade back surface (3a).
6) has a substantially triangular cross-sectional shape protruding toward the tip within a predetermined range along the axial direction from the tip, and a re-grindable range within the predetermined range and along the axial direction from the tip ( In the cross-sectional shape in l_2), a sub-groove (8) recessed in a substantially U-shape from the heel surface (3b) of the standard cross-sectional blade shape is provided on the center side of the heel surface of the heel surface (5). When using a drill, the core thickness of the above sub-groove forming part is (0.04 to 0.11).
x drill diameter (D), the core thickness dimension in the part without the above-mentioned minor groove (8) within the above-mentioned predetermined range is (0.25-0.
40)×drill diameter (D), and the sub-groove (8) has a parallel portion (8a) extending along the axial direction from the tip and having a constant core thickness dimension, and a parallel portion (8a) in the parallel portion (8a). Inclined portions (8
b) A drill characterized by comprising:
JP24082786A 1986-10-09 1986-10-09 Drill Granted JPS6393509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24082786A JPS6393509A (en) 1986-10-09 1986-10-09 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24082786A JPS6393509A (en) 1986-10-09 1986-10-09 Drill

Publications (2)

Publication Number Publication Date
JPS6393509A true JPS6393509A (en) 1988-04-23
JPH0532163B2 JPH0532163B2 (en) 1993-05-14

Family

ID=17065286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24082786A Granted JPS6393509A (en) 1986-10-09 1986-10-09 Drill

Country Status (1)

Country Link
JP (1) JPS6393509A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794485A (en) * 2012-08-24 2012-11-28 深圳市金洲精工科技股份有限公司 Flat head drill and processing method thereof
US20140219737A1 (en) * 2011-09-06 2014-08-07 Osg Corporation Drill
US9403246B2 (en) 2010-02-04 2016-08-02 Kennametal Inc. Drill bit and method for manufacturing
US9511424B2 (en) 2011-11-04 2016-12-06 Osg Corporation Drill
US9901990B2 (en) * 2010-02-04 2018-02-27 Kennametal Inc. Drilling tool
CN111250762A (en) * 2020-03-20 2020-06-09 常州机电职业技术学院 Drill bit convenient for detecting turning point of chisel edge during grinding and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403246B2 (en) 2010-02-04 2016-08-02 Kennametal Inc. Drill bit and method for manufacturing
US9901990B2 (en) * 2010-02-04 2018-02-27 Kennametal Inc. Drilling tool
US10661356B2 (en) 2010-02-04 2020-05-26 Kennametal Inc. Drilling tool
US20140219737A1 (en) * 2011-09-06 2014-08-07 Osg Corporation Drill
US9492877B2 (en) * 2011-09-06 2016-11-15 Osg Corporation Drill
US9511424B2 (en) 2011-11-04 2016-12-06 Osg Corporation Drill
CN102794485A (en) * 2012-08-24 2012-11-28 深圳市金洲精工科技股份有限公司 Flat head drill and processing method thereof
CN111250762A (en) * 2020-03-20 2020-06-09 常州机电职业技术学院 Drill bit convenient for detecting turning point of chisel edge during grinding and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0532163B2 (en) 1993-05-14

Similar Documents

Publication Publication Date Title
EP1666180B1 (en) Drill
EP0761352B1 (en) A roll-forged drill bit
JPS5856719A (en) Combination drill
JP5374502B2 (en) Drill, cutting insert and method of manufacturing workpiece
US20090016832A1 (en) Drill
KR20050003469A (en) Drilling tool for holemaking in metallic workpieces
JPS6393509A (en) Drill
US7201544B2 (en) Deep hole boring drill
JPH11104911A (en) Drilling tool, and throw-away type drilling tool
JPH0523885B2 (en)
JPH0615512A (en) Drill and formation of cutting blade of drill
JPS6268213A (en) Drill
JPH0524218U (en) Drilling tool
JP2002103123A (en) Twist drill
JPS61109606A (en) Twist drill
JPS59161208A (en) Rolling cutter
JPH0146246B2 (en)
JPH0740119A (en) Drilling tool
JP2508524B2 (en) Drill
JPH03117508A (en) Drill
JPH0740116A (en) Drilling tool
JPH10315021A (en) Drill
JPS6125936Y2 (en)
JPH0620655B2 (en) Drill
JPH0369646B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees