JPS6393184A - Manufacture of buried semiconductor laser element - Google Patents

Manufacture of buried semiconductor laser element

Info

Publication number
JPS6393184A
JPS6393184A JP23947286A JP23947286A JPS6393184A JP S6393184 A JPS6393184 A JP S6393184A JP 23947286 A JP23947286 A JP 23947286A JP 23947286 A JP23947286 A JP 23947286A JP S6393184 A JPS6393184 A JP S6393184A
Authority
JP
Japan
Prior art keywords
layer
substrate
buried
grown
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23947286A
Other languages
Japanese (ja)
Inventor
Saburo Yamamoto
三郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP23947286A priority Critical patent/JPS6393184A/en
Priority to DE87308888T priority patent/DE3788841T2/en
Priority to EP87308888A priority patent/EP0264225B1/en
Priority to US07/105,945 priority patent/US4868838A/en
Publication of JPS6393184A publication Critical patent/JPS6393184A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute the growth process of a BH-VSIS semiconductor laser twice by forming an n-i-p-n junction when a substrate takes a p type and a p-i-n-p junction when the substrate takes an n type during a buried growth process and blocking currents by a reverse bias junction. CONSTITUTION:A V-shaped striped groove is notched to the crystal growth surface of a substrate 1, a p<-> GaAlAs clad layer 2, a p or n-GaAlAs (GaAs) active layer 3, an n-GaAlAs clad layer 4 and an n+-GaAs cap layer 5 are laminated in succession, and multilayer crystal structure for laser oscillation operation in which the active layer 3 is held by double hetero-junction surfaces is liquid-phase-epitaxial-grown. A first buried layer 7 having a conductivity type reverse to the substrate 1 is grown so as not to go beyond the active layer 3 on the side surface of a mesa on the substrate 1 first by the buried growth process of mesa type crystal structure through a liquid-phase epitaxial method as a second crystal growth process, and a high resistance layer is grown as a second buried layer 8. A third buried layer 9 having the same conductivity type as the substrate 1 and a fourth buried layer 10 having the conductivity type reverse to the substrate 1 are laminated in succession and grown.

Description

【発明の詳細な説明】 く技術分野〉 本発明は埋め込み領域を流れる漏れ電流の小さい低しき
い値埋め込み型半導体レーザ素子の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing a low-threshold buried semiconductor laser device with a small leakage current flowing through a buried region.

〈従来技術〉 従来の半導体レーザ素子において、実用面で重要となる
低しきい値レーザ発振を実現するためにはBH(Bur
ied Heterostructure)構造の半導
体レーザが最適である。第2図に示すBH型半導体レー
ザは基板1上にレーザ発振用活性層3を両面からクラッ
ド層2,4で挾み込んだダブルへテロ接合構造をメサ型
にエツチングし、このメサ型構造の左右両側を活性層よ
りも屈折率が低く、禁制帯幅の大きい結晶で埋め込み、
さらに電極11との界面に酸化膜14を介在させて電流
を狭窄しているので光とキャリアがメサ部活性層3に完
全に閉じ込められ、その結果、電極11.12を介して
供給されるレーザ発振のしきい値電流が10〜20mA
程度の低い値になる。
<Prior art> In conventional semiconductor laser devices, BH (Burn
A semiconductor laser having an iED (heterostructure) structure is optimal. The BH type semiconductor laser shown in FIG. 2 has a mesa-shaped double heterojunction structure in which a laser oscillation active layer 3 is sandwiched between cladding layers 2 and 4 from both sides on a substrate 1. Both the left and right sides are filled with crystals that have a lower refractive index and a larger forbidden band width than the active layer,
Furthermore, since the oxide film 14 is interposed at the interface with the electrode 11 to constrict the current, light and carriers are completely confined in the mesa active layer 3, and as a result, the laser beam supplied via the electrodes 11 and 12 Oscillation threshold current is 10-20mA
It becomes a low value.

しかしながら、従来のBH型半導体レーザ素子は埋め込
み層13の屈折率及びメサ幅に相当する導波路幅Wを最
適値に制御して作製しないと高次横モードで発振すると
いう欠点がある。従って、製作条件に制約が多く、導波
路幅Wが2μm以下と狭いので、レーザ共振端面が比較
的低出力でも破壊し易い。
However, the conventional BH type semiconductor laser device has a drawback that it oscillates in a high-order transverse mode unless the refractive index of the buried layer 13 and the waveguide width W corresponding to the mesa width are controlled to optimum values. Therefore, there are many restrictions on manufacturing conditions, and the waveguide width W is as narrow as 2 μm or less, so the laser resonant end face is easily destroyed even at a relatively low output.

以上述べた従来のBHレーザの欠点を改良するために、
第3図で示すようなVSIS型半導体レーザにおいて基
板1に形成されたV−チャネル溝の両側を埋め込んだB
H−VSISレーザと呼ばれる半導体レーザが提案され
ている。この半導体レーザは安定基本横モード発振とい
うVSIS半導体レーザの特徴を生かしたままで20m
A以下の低しきい値電流をもつという大きな利点がある
。しかし、第3図で示すような従来のBH−VSIS型
半導体レーザは、p−GaAs基板1上にn−GaAs
電流阻止層6を成長させるのでダブルへテロ接合構造の
成長及び埋め込み成長と合わせて3回の結晶成長工程が
必要である。ところでこの結晶成長の回数はできるだけ
少ない方が再現性、量産性の観点からは望ましい。
In order to improve the drawbacks of the conventional BH laser mentioned above,
In a VSIS type semiconductor laser as shown in FIG.
A semiconductor laser called an H-VSIS laser has been proposed. This semiconductor laser takes advantage of the VSIS semiconductor laser's characteristic of stable fundamental transverse mode oscillation, and has a distance of 20m.
It has the great advantage of having a low threshold current of less than A. However, the conventional BH-VSIS type semiconductor laser as shown in FIG.
Since the current blocking layer 6 is grown, three crystal growth steps are required including the growth of the double heterojunction structure and the buried growth. Incidentally, it is desirable from the viewpoint of reproducibility and mass production that the number of times of this crystal growth is as small as possible.

〈発明の目的〉 本発明は上記問題点に鑑み、第1回目の結晶成長工程で
あるn−GaAs電流阻止層の成長が不要なりH−VS
 I S型レーザ素子の製造方法を提供することを目的
とする。
<Object of the Invention> In view of the above-mentioned problems, the present invention eliminates the need for the growth of an n-GaAs current blocking layer in the first crystal growth step, thereby improving the H-VS.
An object of the present invention is to provide a method for manufacturing an IS type laser device.

〈実施例〉 本発明は埋め込み成長工程中に基板がp型の場合n1p
n接合を、基板がn型の場合pinp接合を作り込みn
ip又はpinの逆バイアス接合により電流を阻止する
ものでり、以下実施例に従って詳細に説明する。第1図
は本発明の1実施例の説明に供するBH−VSISレー
ザの模式構造図である。
<Example> In the present invention, when the substrate is p-type during the buried growth process, n1p
If the substrate is n-type, create a pinp junction.
The current is blocked by a reverse bias junction of IP or PIN, and will be explained in detail below according to an embodiment. FIG. 1 is a schematic structural diagram of a BH-VSIS laser for explaining one embodiment of the present invention.

p−GaAs基板1の結晶成長面にV字状のストライプ
溝を刻設した後、この結晶成長面上にp−GaA/As
クラッド層2、p又はn −G a A I A 5(
GaAs)活性層3、n  GaAlA3クラッド層4
、n+−GaAsキャップ層5を順次積層して活性層3
がダブルへテロ接合面で挟設されたレーザ発振動作用多
層結晶構造を液相エピタキシャル成長させる。以上が第
1回の結晶成長工程である。次にこの多層結晶の左右両
側をエツチングしてGaAs基板1かも除去し、ストラ
イプ溝を中心とするメサ型の結晶構造とする。さらに第
2回目の結晶成長工程としてLPEC液相エピタキシャ
ル)法によるメサ型結晶構造の埋め込み成長プロセスで
まず基板1と反対導電をの第1埋込層7を基板1上にメ
サ側面で活性層3を超えないように成長される。
After V-shaped stripe grooves are carved on the crystal growth surface of the p-GaAs substrate 1, p-GaA/As is formed on the crystal growth surface.
Cladding layer 2, p or n-G a A I A 5 (
GaAs) active layer 3, n GaAlA3 cladding layer 4
, n+-GaAs cap layer 5 are sequentially stacked to form the active layer 3.
A multilayer crystal structure with laser oscillation action is grown by liquid phase epitaxial growth, in which the crystals are sandwiched between double heterojunction surfaces. The above is the first crystal growth process. Next, the left and right sides of this multilayer crystal are etched to remove the GaAs substrate 1 as well, resulting in a mesa-type crystal structure centered on the stripe groove. Furthermore, as a second crystal growth process, a first buried layer 7 with a conductivity opposite to that of the substrate 1 is placed on the mesa side surface of the active layer 3 in a buried growth process of a mesa type crystal structure using the LPEC (liquid phase epitaxial) method. will grow so as not to exceed.

これは溶液の過飽和度を適当に小さくすることによって
実現される。次に、第2埋込層8として高抵抗(i)層
を成長させる。この高抵抗層はk1組成比の十分大きい
アンドープGaAJAs によって容易に実現される。
This is achieved by appropriately reducing the degree of supersaturation of the solution. Next, a high resistance (i) layer is grown as the second buried layer 8. This high resistance layer can be easily realized using undoped GaAJAs having a sufficiently large k1 composition ratio.

引き続き、基板1と同一導電型の第3埋込層9、基板1
と反対導電型の第4埋込み層10を順次積層して成長さ
せる。第1〜3埋込層7〜9は成長時間が短いのでキャ
ップ層5上には成長しない。第4埋込層10は成長時間
を長くして、キャップ層5上にも成長させ、表面全体が
平坦になるようにする。第1埋込み層7はレーザ光を吸
収しないようなGaAA’Asの方が良い。
Subsequently, a third buried layer 9 of the same conductivity type as the substrate 1 and the substrate 1 are formed.
A fourth buried layer 10 of the opposite conductivity type is sequentially stacked and grown. The first to third buried layers 7 to 9 do not grow on the cap layer 5 because the growth time is short. The fourth buried layer 10 is grown for a long time so that it is also grown on the cap layer 5 so that the entire surface becomes flat. The first buried layer 7 is preferably made of GaAA'As, which does not absorb laser light.

この方がpnipn(又はnpinp )構造のターン
オノが起りにくいからである。第3埋込層9はGaAs
でもGa/’l!Asのいずれでも良い。第4埋込層1
0はオーミック抵抗を低くするためにGaAsの方が良
い。
This is because turn-on of the pnipn (or npinp) structure is less likely to occur. The third buried layer 9 is made of GaAs.
But Ga/'l! Either As may be used. Fourth buried layer 1
0 is preferably GaAs in order to lower the ohmic resistance.

本発明のBH−VS I Sレーザを実際に製作したと
ころ、しきい値電流は発振波長830nmで従来の電流
阻止層6つきのBH−VSISレーザと同じ20mAで
あった。
When the BH-VSIS laser of the present invention was actually manufactured, the threshold current was 20 mA, the same as the conventional BH-VSIS laser with the current blocking layer 6, at an oscillation wavelength of 830 nm.

〈発明の効果〉 本発明によればBH−VS I S半導体レーザの成長
工程が2回で良く基板導電型をp型、n型のいずれでも
用いることができる。
<Effects of the Invention> According to the present invention, only two growth steps are required for a BH-VS IS semiconductor laser, and the substrate conductivity type can be either p-type or n-type.

尚、本発明により得られる半導体レーザ素子は、上述の
BH−VSISレーザに限定されず、その他のBHレー
ザにも応用することができる。また、GaAA’As系
の他に、InGaAsP型、InGaAsP系等のBH
レーザにも応用することができる。
Note that the semiconductor laser device obtained by the present invention is not limited to the above-mentioned BH-VSIS laser, but can also be applied to other BH lasers. In addition to GaAA'As-based BH, InGaAsP-type, InGaAsP-based, etc.
It can also be applied to lasers.

成長方法はLPE(液相エピタキシャル)洗身外にも、
MOCVD (有機金属熱分解)法、VPE(気相エピ
タキシャル)法、M B E (分子線エピタキシャル
)法等を利用してもよい。
The growth method is LPE (liquid phase epitaxial).
MOCVD (metal organic pyrolysis) method, VPE (vapor phase epitaxial) method, MBE (molecular beam epitaxial) method, etc. may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の説明に供するBH−VSI
Sレーザの構造図である。第2図は従来のBHレーザの
構造図である。第3図は従来のBH−VS I Sレー
ザの構造図である。 1・・・基板、2.4・・・クラッド層、3・・・活性
層、5・・・キヤ、ブ層、6・・・電流阻止層、7・・
・第1埋込層、8・・・第2埋込層、9・・・第3埋込
層、10・・・第4埋込層、11.12・・・電極、1
3・・・従来の埋込層、14・・・酸化膜。
FIG. 1 shows a BH-VSI for explaining one embodiment of the present invention.
It is a structural diagram of an S laser. FIG. 2 is a structural diagram of a conventional BH laser. FIG. 3 is a structural diagram of a conventional BH-VS IS laser. DESCRIPTION OF SYMBOLS 1... Substrate, 2.4... Clad layer, 3... Active layer, 5... Cavity layer, 6... Current blocking layer, 7...
・First buried layer, 8... Second buried layer, 9... Third buried layer, 10... Fourth buried layer, 11.12... Electrode, 1
3... Conventional buried layer, 14... Oxide film.

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に刻設されたストライプ溝を含む結晶成長面
上にレーザ発振用活性層を有する多層結晶構造をエピタ
キシャル成長させる工程と、前記多層結晶構造の両側に
埋込層をエピタキシャル成長させ、前記基板と接する埋
込層に逆バイアス接合を形成するとともに前記活性層と
接する埋込層を高抵抗層とする工程と、を具備して成る
埋込型半導体レーザ素子の製造方法。
1. A step of epitaxially growing a multilayer crystal structure having an active layer for laser oscillation on a crystal growth surface including stripe grooves carved on a substrate, and epitaxially growing a buried layer on both sides of the multilayer crystal structure, 1. A method of manufacturing a buried semiconductor laser device, comprising the steps of: forming a reverse bias junction in a buried layer in contact with the active layer, and making the buried layer in contact with the active layer a high-resistance layer.
JP23947286A 1986-07-10 1986-10-08 Manufacture of buried semiconductor laser element Pending JPS6393184A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23947286A JPS6393184A (en) 1986-10-08 1986-10-08 Manufacture of buried semiconductor laser element
DE87308888T DE3788841T2 (en) 1986-10-07 1987-10-07 Semiconductor laser device and method of manufacturing the same.
EP87308888A EP0264225B1 (en) 1986-10-07 1987-10-07 A semiconductor laser device and a method for the production of the same
US07/105,945 US4868838A (en) 1986-07-10 1987-10-07 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23947286A JPS6393184A (en) 1986-10-08 1986-10-08 Manufacture of buried semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS6393184A true JPS6393184A (en) 1988-04-23

Family

ID=17045277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23947286A Pending JPS6393184A (en) 1986-07-10 1986-10-08 Manufacture of buried semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS6393184A (en)

Similar Documents

Publication Publication Date Title
JPS6218783A (en) Semiconductor laser element
JPS6393184A (en) Manufacture of buried semiconductor laser element
JPS61284988A (en) Semiconductor laser element
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2940158B2 (en) Semiconductor laser device
JP3229085B2 (en) Semiconductor laser device and method of manufacturing the same
CA1150388A (en) High power diode lasers
JP2804533B2 (en) Manufacturing method of semiconductor laser
JP2672872B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JPH0195583A (en) Buried-type semiconductor laser device
JPH0680869B2 (en) Semiconductor laser device
JPH0256836B2 (en)
JPH0567849A (en) Semiconductor light emitting element
JP2538258B2 (en) Semiconductor laser
JPH0680868B2 (en) Semiconductor laser device
JPS6392078A (en) Semiconductor laser element
JPS63181392A (en) Buried semiconductor laser element
JPS60224288A (en) Manufacture of semiconductor light emitting device
JPS6393185A (en) Manufacture of buried semiconductor laser element
JPS6393183A (en) Buried semiconductor laser element
JPH0239106B2 (en)
JPH0543309B2 (en)
JPS62159486A (en) Semiconductor light emitting device