JPS6392B2 - - Google Patents

Info

Publication number
JPS6392B2
JPS6392B2 JP53096315A JP9631578A JPS6392B2 JP S6392 B2 JPS6392 B2 JP S6392B2 JP 53096315 A JP53096315 A JP 53096315A JP 9631578 A JP9631578 A JP 9631578A JP S6392 B2 JPS6392 B2 JP S6392B2
Authority
JP
Japan
Prior art keywords
magnesium
hydration
concentration
particle size
hydration reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53096315A
Other languages
Japanese (ja)
Other versions
JPS5488870A (en
Inventor
Juichi Eto
Akira Kitayama
Sadami Kobayashi
Shigemi Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP9631578A priority Critical patent/JPS5488870A/en
Publication of JPS5488870A publication Critical patent/JPS5488870A/en
Publication of JPS6392B2 publication Critical patent/JPS6392B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、混式排煙脱硫方法の改良、さらに詳
しくいえば、マグネシウム化合物含有吸収液を用
いて排ガス中の亜硫酸ガスを除去する混式排煙脱
硫方法において、焼成炉排ガス洗浄液で再生酸化
マグネシウムの水和を行うことにより水和反応速
度を高めるとともに、生成水酸化マグネシウムの
粒径を小さくし、湿式ミルを不要とした改良方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve a mixed flue gas desulfurization method, and more specifically, in a mixed flue gas desulfurization method that uses an absorption liquid containing a magnesium compound to remove sulfur dioxide gas from flue gas, This invention relates to an improved method that increases the hydration reaction rate by hydrating recycled magnesium oxide with a furnace exhaust gas cleaning solution, reduces the particle size of the produced magnesium hydroxide, and eliminates the need for a wet mill.

水酸化マグネシウム、酸化マグネシウム、亜硫
酸マグネシウムなどのマグネシウム化合物が亜硫
酸ガスと反応する性質を利用して、排ガス中の亜
硫酸ガスを除去する方法はよく知られている。こ
の排煙脱硫方法では、亜硫酸ガスをマグネシウム
化合物との反応により生じる亜硫酸マグネシウム
や硫酸マグネシウムを乾燥後焼成して亜硫酸ガス
を回収するとともに酸化マグネシウムを得、次い
でこの酸化マグネシウムに水を加えて水和し水酸
化マグネシウムに変え、これを吸収剤として循環
再使用する。ところで、この再生水酸化マグネシ
ウムの吸収効果を高めるには、水和反応を十分に
行い、またこの反応で生じる水酸化マグネシウム
の粒径を小さくする必要がある。このため、従来
法においては湿式ミルで水酸化マグネシウムを摩
砕し、かつ大型の水和槽を用いて長時間の水和反
応を行わせる必要があつた。
A method of removing sulfur dioxide gas from exhaust gas by utilizing the property that magnesium compounds such as magnesium hydroxide, magnesium oxide, and magnesium sulfite react with sulfur dioxide gas is well known. In this flue gas desulfurization method, magnesium sulfite or magnesium sulfate produced by the reaction of sulfur dioxide gas with a magnesium compound is dried and calcined to recover sulfur dioxide gas and obtain magnesium oxide, and then water is added to this magnesium oxide to hydrate it. It is then converted into magnesium hydroxide, which is recycled and reused as an absorbent. By the way, in order to enhance the absorption effect of this regenerated magnesium hydroxide, it is necessary to sufficiently perform the hydration reaction and to reduce the particle size of the magnesium hydroxide produced in this reaction. For this reason, in the conventional method, it was necessary to mill the magnesium hydroxide using a wet mill and to carry out the hydration reaction for a long time using a large hydration tank.

本発明者らは、このような従来法における欠点
を克服し、水和反応時間を短縮するとともに粒径
の小さい水酸化マグネシウムを形成させる方法に
ついて鋭意研究を重ねた結果、水和反応の際に、
塩化マグネシウム含有焼成炉ガス洗浄廃液で希釈
した焼成物を用い、かつその硫酸マグネシウム濃
度及び処理温度を所定の範囲内に制御することに
よりその目的を達成しうることを見出し、この知
見に基づいて本発明をなすに至つた。
The present inventors have conducted intensive research on a method to overcome the drawbacks of conventional methods, shorten the hydration reaction time, and form magnesium hydroxide with a small particle size. ,
We discovered that the purpose could be achieved by using a fired product diluted with a waste fluid from cleaning furnace gas containing magnesium chloride, and by controlling the magnesium sulfate concentration and processing temperature within a predetermined range.Based on this knowledge, we developed this book. He came up with an invention.

すなわち、本発明は、亜硫酸ガス含有排ガスを
マグネシウム化合物含有吸収液で処理して脱硫
し、吸収液中に蓄積する亜硫酸マグネシウムを回
収し焼成して酸化マグネシウムとし、次いでこの
酸化マグネシウムを水和反応に付したのち、吸収
液中に循環し再使用する混式排煙脱硫方法におい
て、前記水和反応を、塩化マグネシウム濃度1500
〜5000ppm、硫酸マグネシウム濃度16重量%以下
の焼成炉ガス洗浄廃液を用い、40〜80℃の温度範
囲で行うことを特徴とする方法を提供するもので
ある。
That is, the present invention treats sulfite gas-containing exhaust gas with an absorption liquid containing a magnesium compound to desulfurize it, recovers the magnesium sulfite accumulated in the absorption liquid and burns it to produce magnesium oxide, and then subjects this magnesium oxide to a hydration reaction. In the mixed flue gas desulfurization method in which the mixture is recycled into the absorbent and reused, the hydration reaction is carried out at a magnesium chloride concentration of 1500.
The present invention provides a method characterized in that it is carried out at a temperature range of 40 to 80° C. using waste liquid from firing furnace gas cleaning with a magnesium sulfate concentration of 16% by weight or less and a magnesium sulfate concentration of 16% by weight or less.

次に、本発明方法を添付図面に従つて説明す
る。図面は本発明方法の実施態様の1例を示すフ
ローシートであるが、吸収塔1においては、水酸
化マグネシウム、亜硫酸マグネシウム及び硫酸マ
グネシウムを含むスラリーと排ガス中の亜硫酸ガ
スとが接触し、次の反応により亜硫酸ガスが除去
される。
Next, the method of the present invention will be explained with reference to the accompanying drawings. The drawing is a flow sheet showing an example of an embodiment of the method of the present invention. In the absorption tower 1, a slurry containing magnesium hydroxide, magnesium sulfite, and magnesium sulfate comes into contact with sulfur dioxide gas in the exhaust gas, and the following occurs. The reaction removes sulfur dioxide gas.

Mg(OH)2+SO25H2O →MgSO3・6H2O MgSO3+SO2+H2O→Mg(HSO32 Mg(HSO32+Mg(OH)2+4H2O
→2MgSO4・6H2O Mg(OH)2+SO3+6H2O →MgSO4・7H2O MgSO31/2O2+7H2O →MgSO4・7H2O これらの反応生成物及び未反応吸収剤は遠心分
離機2で母液から分けられ乾燥炉3で乾燥された
のち焼成炉4へ送られ、ここで約1000℃の温度に
加熱焼成され、次式に従つて濃度10〜12%の亜硫
酸ガスを回収するとともに酸化マグネシウムを再
生する。
Mg(OH) 2 +SO 2 5H 2 O →MgSO 3・6H 2 O MgSO 3 +SO 2 +H 2 O→Mg(HSO 3 ) 2 Mg(HSO 3 ) 2 +Mg(OH) 2 +4H 2 O
→2MgSO 4・6H 2 O Mg(OH) 2 +SO 3 +6H 2 O →MgSO 4・7H 2 O MgSO 3 1/2O 2 +7H 2 O →MgSO 4・7H 2 O These reaction products and unreacted absorbent is separated from the mother liquor in a centrifuge 2, dried in a drying furnace 3, and then sent to a firing furnace 4, where it is heated and fired at a temperature of about 1000°C to produce sulfur dioxide gas with a concentration of 10 to 12% according to the following formula. and recover magnesium oxide.

MgSO3→MgO+SO2↑ MgSO41/2C →MgO+SO2↑+1/2CO2↑ この焼成炉4で生成したMgOと未反応の
MgSO4の混合物は水和槽5へ送られる。他方、
焼成炉4の排ガスはサイクロン6を経て洗浄塔7
に送られ、ここで洗浄水タンク8から供給される
洗浄水と接触されたのち排出される。この洗浄水
中には、工業用水、燃焼重油、使用薬品などに含
有されている塩素イオンが長期間の運転により循
環洗浄水中に蓄積して生成した塩化マグネシウム
が含まれているので、これを水和槽5へ送り、塩
化マグネシウム濃度1500〜500ppm、硫酸マグネ
シウム濃度16重量%の反応液として用い、40〜80
℃の温度で次式の水和反応を行わせる。
MgSO 3 →MgO+SO 2 ↑ MgSO 4 1/2C →MgO+SO 2 ↑+1/2CO 2 ↑ MgO generated in this firing furnace 4 and unreacted
The MgSO 4 mixture is sent to hydration tank 5. On the other hand,
The exhaust gas from the firing furnace 4 passes through the cyclone 6 and is sent to the cleaning tower 7.
There, it comes into contact with the wash water supplied from the wash water tank 8, and then is discharged. This cleaning water contains magnesium chloride, which is produced when chlorine ions contained in industrial water, combusted heavy oil, and used chemicals accumulate in the circulating cleaning water due to long-term operation. It was sent to tank 5 and used as a reaction solution with a magnesium chloride concentration of 1500 to 500 ppm and a magnesium sulfate concentration of 16% by weight.
The following hydration reaction is carried out at a temperature of °C.

MgO+H2O→Mg(OH)2 このようにして、従来法の1/2〜1/3の反応時間
で粒径50μ以下の細かい水酸化マグネシウムを得
ることができる。
MgO + H 2 O → Mg (OH) 2 In this way, fine magnesium hydroxide with a particle size of 50μ or less can be obtained in 1/2 to 1/3 the reaction time of the conventional method.

本発明方法において水和に用いる焼成炉ガス洗
浄水中の塩化マグネシウム濃度は、1500〜
5000ppmの範囲にあることが必要であり、この濃
度が1500ppm未満では水和反応が遅くなるし、
5000ppmよりも高いと装置の腐食が著しく、使用
に耐えなくなる。また、この中の硫酸マグネシウ
ムの濃度は16重量%以下に制御することが必要で
あり、これよりも濃度が高いと高粘度の複塩の生
成を完全に抑制することが困難になる。
The concentration of magnesium chloride in the firing furnace gas cleaning water used for hydration in the method of the present invention is 1500 to
It needs to be in the range of 5000ppm, and if this concentration is less than 1500ppm, the hydration reaction will be slow.
If the concentration is higher than 5000ppm, the equipment will be severely corroded and will no longer be usable. Furthermore, the concentration of magnesium sulfate in this must be controlled to 16% by weight or less; if the concentration is higher than this, it will be difficult to completely suppress the formation of a high viscosity double salt.

さらに水和反応の際の温度は、水酸化マグネシ
ウムが最も安定に維持される40〜80℃の範囲で行
うことが必要であり、この温度が40℃未満では水
和効率が低下するし、80℃よりも高いと種々の複
塩の副生を免れがたい。
Furthermore, the temperature during the hydration reaction needs to be carried out in the range of 40 to 80 °C, where magnesium hydroxide is maintained most stably; if this temperature is lower than 40 °C, the hydration efficiency will decrease, If the temperature is higher than ℃, it is difficult to avoid the by-product of various double salts.

本発明方法は、反応速度を著しく短縮すること
ができ、また水和用の水の供給を省くことができ
る上に、生成する水酸化マグネシウムの粒径を小
さくできるので湿式ミルが不要となるなどの利点
を有する。
The method of the present invention can significantly shorten the reaction rate, eliminate the need for water supply for hydration, and reduce the particle size of the produced magnesium hydroxide, eliminating the need for a wet mill. It has the following advantages.

次に実施例により本発明をさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

各例中における水酸化マグネシウムの平均粒径
は、光学顕微鏡により測定した粒径を算術平均し
たものである。
The average particle size of magnesium hydroxide in each example is the arithmetic mean of the particle sizes measured using an optical microscope.

実施例 1 図面に示す装置を用い、焼成炉から酸化マグネ
シウム2850Kgと硫酸マグネシウム150Kgの混合物
(平均粒径500μ)を水和槽に送り、また洗浄塔か
ら塩化マグネシウム1800ppm及び硫酸マグネシウ
ム6重量%を含む洗浄廃液10000Kgを水和槽に送
り、かきまぜながら45℃で4時間反応させた。
Example 1 Using the equipment shown in the drawing, a mixture of 2850 kg of magnesium oxide and 150 kg of magnesium sulfate (average particle size 500 μ) was sent from the firing furnace to a hydration tank, and a mixture containing 1800 ppm of magnesium chloride and 6% by weight of magnesium sulfate was sent from the washing tower to a mixture containing 1800 ppm of magnesium chloride and 6% by weight of magnesium sulfate. 10,000 kg of washing waste liquid was sent to a hydration tank and reacted at 45°C for 4 hours while stirring.

この結果、平均粒径40μの水酸化マグネシウム
を90%の水和率で得た。
As a result, magnesium hydroxide with an average particle size of 40μ was obtained with a hydration rate of 90%.

比較例 焼成炉から生成する酸化マグネシウム2850Kg、
硫酸マグネシウム150Kgの混合粉体(平均粒子径
500μ)と水10000Kgを第1水和槽内で45℃で1時
間かきまぜて平均粒径260μの固体を含むスラリ
ーを得た。この処理をさらに3時間継続したが、
固体の平均粒径は100μ以下にならなかつた。前
記の平均粒径260μの固体を含むスラリーに水
1500Kgを加えながら10分間湿式ミルにて粉砕して
平均粒径40μとした後、第2水和槽に入れ45℃で
12時間反応させた結果、水和率は85%であり、実
施例1よりも低かつた。
Comparative example: 2850 kg of magnesium oxide produced from a kiln,
Mixed powder of 150Kg of magnesium sulfate (average particle size
500μ) and 10,000Kg of water were stirred at 45°C for 1 hour in the first hydration tank to obtain a slurry containing solids with an average particle size of 260μ. This process was continued for another 3 hours,
The average particle size of the solids did not fall below 100μ. Add water to the slurry containing solids with an average particle size of 260μ.
Grind in a wet mill for 10 minutes while adding 1500 kg to give an average particle size of 40μ, then place in the second hydration tank and heat at 45℃.
As a result of reacting for 12 hours, the hydration rate was 85%, which was lower than in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の実施態様の1例を示すフロ
ーシートであり、図中符号、1は吸収塔、4は焼
成炉、5は水和槽、7は洗浄塔である。
The drawing is a flow sheet showing an example of an embodiment of the method of the present invention, and the reference numeral 1 in the drawing is an absorption tower, 4 is a calcining furnace, 5 is a hydration tank, and 7 is a washing tower.

Claims (1)

【特許請求の範囲】[Claims] 1 亜硫酸ガス含有排ガスをマグネシウム化合物
含有吸収液で処理して脱硫し、吸収液中に蓄積す
る亜硫酸マグネシウムを回収し焼成して酸化マグ
ネシウムとし、次いでこの酸化マグネシウムを水
和反応に付したのち、吸収液中に循環し再使用す
る混式排煙脱硫方法において、前記水和反応を、
塩化マグネシウム濃度1500〜5000ppm、硫酸マグ
ネシウム濃度16重量%以下の焼成炉ガス洗浄廃液
を用いて、40〜80℃の温度範囲で行うことを特徴
とする方法。
1 The exhaust gas containing sulfur dioxide is treated with an absorption liquid containing a magnesium compound to desulfurize it, the magnesium sulfite accumulated in the absorption liquid is recovered and calcined to form magnesium oxide, and then this magnesium oxide is subjected to a hydration reaction, and then absorbed. In a mixed flue gas desulfurization method that circulates in the liquid and reuses the hydration reaction,
A method characterized in that it is carried out at a temperature range of 40 to 80°C using a waste liquid for cleaning furnace gas with a magnesium chloride concentration of 1500 to 5000 ppm and a magnesium sulfate concentration of 16% by weight or less.
JP9631578A 1978-08-08 1978-08-08 Wet exhaust gas desulfurization method Granted JPS5488870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9631578A JPS5488870A (en) 1978-08-08 1978-08-08 Wet exhaust gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9631578A JPS5488870A (en) 1978-08-08 1978-08-08 Wet exhaust gas desulfurization method

Publications (2)

Publication Number Publication Date
JPS5488870A JPS5488870A (en) 1979-07-14
JPS6392B2 true JPS6392B2 (en) 1988-01-05

Family

ID=14161586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9631578A Granted JPS5488870A (en) 1978-08-08 1978-08-08 Wet exhaust gas desulfurization method

Country Status (1)

Country Link
JP (1) JPS5488870A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3751340B2 (en) * 1995-08-22 2006-03-01 東洋エンジニアリング株式会社 Exhaust gas desulfurization method
CN112090267A (en) * 2020-09-23 2020-12-18 北京沃尔福环保科技有限公司 Flue gas desulfurization process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881771A (en) * 1972-02-04 1973-11-01
JPS4929433A (en) * 1971-06-24 1974-03-15

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929433A (en) * 1971-06-24 1974-03-15
JPS4881771A (en) * 1972-02-04 1973-11-01

Also Published As

Publication number Publication date
JPS5488870A (en) 1979-07-14

Similar Documents

Publication Publication Date Title
US4246245A (en) SO2 Removal
RO103174B1 (en) Cleansing method of exhaust gas hot steam from a boiler installation or a cement kiln
US7179438B2 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide
JP2002293537A (en) Method for manufacturing calcium carbonate
JP4747382B1 (en) Flue gas purification treatment method
JPH0310575B2 (en)
CN102284238A (en) Bialkali-method flue-gas desulphurization process
US9764963B2 (en) Method for the production of free flowing synthetic calcium fluoride and use thereof
JPS593207B2 (en) Gasly Yukara Sankaiou O Jiyokyosuru Hohou
JPH06226042A (en) Method for removal of sulfur dioxide from heated gaseous stream containing sulfur dioxide and for production of alpha type calcined gypsum
EA002798B1 (en) Process for bayer liquors causticisation and apparatus therefor
US5085764A (en) Process for upgrading coal
US3961021A (en) Method for removing sulfur dioxide from combustion exhaust gas
JPH11509586A (en) Separation of impurities from lime and lime sludge, and two-stage causticization of green liquor containing impurities such as silicon
JPS6392B2 (en)
JPS6245394A (en) Simultaneous removal of arsenic and silicon
RU2740015C1 (en) Method of cleaning off-gases from chlorine and sulfur oxide to obtain binder
RU2694937C1 (en) Method for obtaining silicon, aluminum and iron oxides under complex non-waste processing from bottom ash materials
RU2624570C1 (en) Method of processing of sodium-fluorine-carbon-containing waste of electrolytic production of aluminium
RU2198842C2 (en) Method of magnesium oxide producing
RU2746731C1 (en) Method of production of biocide, zinc oxide and magnesium and calcium chloride crystal hydrates from production waste
JP6579317B2 (en) Desalination method of incineration ash
JPS5848490B2 (en) Sansei Gas Nyoruchi Yuwahouhou
RU2027669C1 (en) Method of processing of energy coal ash to alumina and gypsum
RU2572988C1 (en) Method of obtaining calcium fluoride from fluorine-containing solutions