JPS6392935A - Stroboscopic device - Google Patents

Stroboscopic device

Info

Publication number
JPS6392935A
JPS6392935A JP23800486A JP23800486A JPS6392935A JP S6392935 A JPS6392935 A JP S6392935A JP 23800486 A JP23800486 A JP 23800486A JP 23800486 A JP23800486 A JP 23800486A JP S6392935 A JPS6392935 A JP S6392935A
Authority
JP
Japan
Prior art keywords
capacitor
charging
light emission
discharge
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23800486A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kumakura
敏之 熊倉
Takayuki Tsuboi
孝之 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Precision Inc
Original Assignee
Canon Inc
Canon Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Precision Inc filed Critical Canon Inc
Priority to JP23800486A priority Critical patent/JPS6392935A/en
Publication of JPS6392935A publication Critical patent/JPS6392935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Stroboscope Apparatuses (AREA)

Abstract

PURPOSE:To suppress the continuous discharge of a flash discharging tube within a short period by providing the titled device with a charging command means of forcedly releasing the inhibition of charge to a capacitor based upon charge control at the time of detection based upon a continuous discharge detecting means to detect the continuous discharge of a flash discharge tube. CONSTITUTION:Since current flows through a resistor 29 at the time of continuous discharge, the cathode voltage of a Xe tube 18 reaches about 10-200V for about 1ms. Thereby, a resistor 20 is arranged between the cathode of the Xe tube 18 and the base of a transistor (TR) 17. When continuous discharge is started, current flows into the base of the TR 17 through the resistor 20, the TR 17 is turned on, the thyristor 8 is turned on, and current flowing from a DC/DC converter 3 flows into also a light emitting capacitor 11. Namely, charge to the capacitor 11 is executed simultaneously with charge to the capacitor 10. Thereby, the charging voltage to the capacitor 10 is not suddenly boosted and the coninuous discharge can be ended within a short period.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、小容量の発光起動用キャパシタと大容量の閃
光発光用キャパシタとを備えたストロボ装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to an improvement in a strobe device equipped with a small-capacity light emission starting capacitor and a large-capacity flash light emission capacitor.

(発明の背景) 従来より、通常の閃光発光用キャパシタの他に、先に充
電される発光起動用キャパシタをも備え、前記閃光発光
用キャパシタが充電完了しない前であっても、瞬時に充
電可能な発光起動用キャパシタの充電電荷を発光起動用
として用いることで、速写性に対応した。安定した撮影
を可能とするストロボ装置が提案されている。
(Background of the Invention) Conventionally, in addition to a normal flashlight emission capacitor, a light emission activation capacitor that is charged first has been provided, and it is possible to instantly charge the flashlight emission capacitor even before charging is completed. By using the charged charge of the light emission activation capacitor for light emission activation, it is compatible with quick shooting. Strobe devices that enable stable photography have been proposed.

この様に発光起動用キャパシタを発光起動電圧まで充電
した後、閃光発光用キャパシタの充電を開始する方式の
装置においては、閃光発光時、発光起動用キャパシタの
電圧もキャノン管(以後Xe管と記す)の発光終止電圧
まで下降する為、直ちに該発光起動用キャパシタへの充
電が開始される。この時前記X e管の両端の電圧は発
光終止電圧ではあるが、Xeイオンが残っている為、こ
の発光起動用キャパシタへの充電エネルギーがXe管を
通して流れてしまい、持続放電を起す危険性があった。
In a device that starts charging the flash light emission capacitor after charging the light emission starting capacitor to the light emission starting voltage in this way, the voltage of the light emission starting capacitor also changes when the flash fires. ), charging of the light emission starting capacitor immediately starts. At this time, the voltage at both ends of the Xe tube is the emission final voltage, but since Xe ions remain, the charging energy to the capacitor for starting the emission will flow through the Xe tube, and there is a risk of causing a sustained discharge. there were.

(発明の目的) 本発明の目的は、閃光放電管の持続放電を短時間に抑え
ることのできるストロボ装置を提供することである。
(Object of the Invention) An object of the present invention is to provide a strobe device that can suppress sustained discharge of a flash discharge tube in a short period of time.

(発明の特徴) 上記目的を達成するために、本発明は、充電制御手段に
て閃光発光に伴って直ちに第1のキャパシタへの充電が
開始されることに起因して生じる閃光放電管の持続放電
を検知する持続放電検知手段と、該持続放電検知手段に
よる検知により充電制御手段による第2のキャパシタへ
の充電禁止を強制的に解く充電指令手段を設け、以て、
閃光放電管の持続放電を検知することにより、第1及び
第2のキャパシタの並行充電を行わせて、この間前記第
1のキャパシタへの充電が瞬時に行われない様にしたこ
とを特徴とする。
(Features of the Invention) In order to achieve the above object, the present invention provides a continuous flash discharge tube caused by the charging control means immediately starting charging the first capacitor in conjunction with flash light emission. A sustained discharge detection means for detecting discharge, and a charging command means for forcibly releasing the inhibition of charging to the second capacitor by the charge control means based on the detection by the sustained discharge detection means,
The first and second capacitors are charged in parallel by detecting sustained discharge of the flash discharge tube, and the first capacitor is not charged instantaneously during this period. .

(発明の実施例) 以下、本発明を図示の実施例に基づいて詳細に説明する
(Embodiments of the Invention) Hereinafter, the present invention will be described in detail based on illustrated embodiments.

第1図は本発明の第1の実施例を示す回路図であり、l
は電源であるところの電池、2は電源スィッチ、3は公
知の電池電圧昇圧用D C/D Cコンバータ、4〜7
はダイオード、8はサイリスタ、9は抵抗、10は瞬時
に充電可能な発光起動用のキャパシタ、11は閃光発光
用キャパシタ、12は抵抗、13は前記発光起動用キャ
パシタ10の充電電圧設定用の高圧ツェナーダイオード
、14.15は抵抗、16.17はトランジスタ、18
は前記発光起動用キャパシタ10及び閃光発光用キャパ
シタ11よりの充電エネルギにより閃光発光するXe管
、19は公知のトリガ回路、20は持続放電を検知し、
前記トランジスタ17をオンさせる為の抵抗、21は前
記Xe管18の制御用サイリスタ、22はコイル23.
スイッチ24と共に前記X e %i’ 18の発光を
停止させる発光停止回路を構成する転流用キャパシタ、
25はキャパシタ26と共に前記サイリスク21を始動
させる為の抵抗、27はキャパシタ28と共に前記サイ
リスタ21の保護回路を構成する抵抗、29.30は前
記キャパシタ22の充電用抵抗である。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
is a battery which is a power source, 2 is a power switch, 3 is a known DC/DC converter for boosting battery voltage, 4 to 7
8 is a diode, 8 is a thyristor, 9 is a resistor, 10 is a capacitor for starting light emission that can be charged instantly, 11 is a capacitor for flash light emission, 12 is a resistor, and 13 is a high voltage for setting the charging voltage of the capacitor 10 for starting light emission. Zener diode, 14.15 is resistor, 16.17 is transistor, 18
19 is a known trigger circuit; 20 detects sustained discharge;
21 is a resistor for turning on the transistor 17, 21 is a thyristor for controlling the Xe tube 18, 22 is a coil 23.
a commutation capacitor that constitutes a light emission stop circuit that stops the light emission of the X e % i' 18 together with the switch 24;
25 is a resistor for starting the thyristor 21 together with the capacitor 26, 27 is a resistor that together with the capacitor 28 constitutes a protection circuit for the thyristor 21, and 29.30 is a resistor for charging the capacitor 22.

次に動作について説明する。電源スィッチ2がオンされ
ると、DC/DCコンバータ3が働き、ダイオード4の
出力側に整流された電流が発生する。また前記電源スィ
ッチ2のオンにより抵抗14を介してトランジスタ16
のベースへ電流が流れ、該トランジスタ16がオンする
為、サイリスタ8はオフ状態となる。従って、まずダイ
オード7を介して発光起動用キャパシタ10への充電が
開始されることになる。そして該発光起動用キャパシタ
10の充電電圧がある値以上になると、抵抗12を介し
てツェナーダイオード13がオン(導通状態)となり、
抵抗15を介してトランジスタ17のベースに電流が流
れて該トランジスタ17がオンとなる。この様にトラン
ジスタ17がオンとなると、抵抗14を通った電流が該
トランジスタ17に流れ込む為、前記トランジスタ16
はオフし、これに伴ってサイリスタ8のゲートに抵抗9
を介した電流が流れるようになる為、サイリスタ8がオ
ンとなる。よって今度は該サイリスタ8.ダイオード5
を介して閃光発光用キャパシタ11への充電が開始され
る。前記閃光発光キャパシタ11への充電中は発光起動
用キャパシタlOへの充電は行われていない為、該発光
起動用キャパシタ10の充電電圧は徐々に放電されてい
き、その結果この充電電圧がツェナーダイオード13を
オンさせる事のできる値を下まわると、前記トランジス
タ17がオフし、トランジスタ16がオンとなって前記
サイリスタ8がオフする。これにより再び発光起動用キ
ャパシタlOへの充電が開始される。以後この様な動作
が公知の様に繰返し行われる。
Next, the operation will be explained. When the power switch 2 is turned on, the DC/DC converter 3 operates, and a rectified current is generated on the output side of the diode 4. Further, when the power switch 2 is turned on, the transistor 16 is connected to the transistor 16 via the resistor 14.
A current flows to the base of the transistor 16, which turns on the thyristor 8, so that the thyristor 8 is turned off. Therefore, first, charging of the light emission starting capacitor 10 via the diode 7 is started. When the charging voltage of the light emission starting capacitor 10 exceeds a certain value, the Zener diode 13 turns on (conducts) via the resistor 12.
Current flows through the resistor 15 to the base of the transistor 17, turning on the transistor 17. When the transistor 17 is turned on in this way, the current passing through the resistor 14 flows into the transistor 17, so the transistor 16
is turned off, and along with this, a resistor 9 is connected to the gate of thyristor 8.
Since current starts to flow through the thyristor 8, the thyristor 8 is turned on. Therefore, this time the thyristor 8. diode 5
Charging of the flashlight capacitor 11 is started via the flashlight emitting capacitor 11. During the charging of the flashlight emission capacitor 11, the light emission starting capacitor 10 is not being charged, so the charging voltage of the light emission starting capacitor 10 is gradually discharged, and as a result, this charging voltage is applied to the Zener diode. When the value falls below a value that can turn on the transistor 13, the transistor 17 is turned off, the transistor 16 is turned on, and the thyristor 8 is turned off. As a result, charging of the light emission starting capacitor lO is started again. Thereafter, such operations are repeated in a known manner.

その後前記閃光発光用キャパシタ11の充電電圧が一定
電圧以上になると、発光起動用キャパシタ10の電圧が
上昇し、これにより抵抗12゜ツェナーダイオード13
を介してトランジスタ17は常時オン、又トランジスタ
16は常時オフとなり、サイリスタ8のゲートとカソー
ド間に抵抗9を介して常時−元以上の電流が流れること
から該サイリスタ8が常時オン状態となる。従って、以
後は発光起動用キャパシタ10と閃光発光用キャパシタ
11への充電が同時に続行される。
After that, when the charging voltage of the flashlight emission capacitor 11 becomes equal to or higher than a certain voltage, the voltage of the light emission starting capacitor 10 increases, and as a result, the resistance 12° Zener diode 13
Transistor 17 is always on through transistor 17 and transistor 16 is always off, and since a current higher than the current always flows between the gate and cathode of thyristor 8 through resistor 9, thyristor 8 is always on. Therefore, thereafter, charging of the light emission starting capacitor 10 and the flash light emission capacitor 11 continues simultaneously.

次にカメラ側よりシンクロ信号が送られてきた場合の動
作について説明する。
Next, we will explain the operation when a synchronization signal is sent from the camera side.

トリガ回路19にカメラ側よりシンクロ信号が入力され
ると、該トリガ回路19にトリガ信号が発生し1発光起
動用キャパシタ10及び閃光発光用キャパシタ11の充
電エネルギーがXe管18、キャパシタ22.26及び
抵抗25を通りサイリスタ21をオンさせる。これによ
り前記Xe管18が前記充電エネルギにより閃光発光す
る。
When a synchronization signal is input to the trigger circuit 19 from the camera side, a trigger signal is generated in the trigger circuit 19, and the charging energy of the capacitor 10 for starting one light emission and the capacitor 11 for flash light emission is transferred to the Xe tube 18, the capacitors 22, 26, and It passes through the resistor 25 and turns on the thyristor 21. As a result, the Xe tube 18 emits flash light due to the charging energy.

そして発光終止電圧に達した時前記X e vl 8で
の閃光発光は停止し、同時に前記サイリスタ21は保持
電流以下になる為にオフとなる。
When the light emission end voltage is reached, the flash light emission at the X e vl 8 is stopped, and at the same time, the thyristor 21 is turned off because the current becomes less than the holding current.

前述の様な充電方式では、閃光発光時、サイリスク21
がオンしている時は発光起動用キャパシタ10の充電電
圧は発光終止電圧まで下降するが、この時トランジスタ
17がオフしているので該発光起動用キャパシタlOへ
の充電は既に開始している。すなわち、閃光発光時、キ
ャパシタ1O911及びDC/DCコンバータ3からの
電流が該発光に関与する。しかし、サイリスタ21の保
持電流はD C70Cコンバータ3からの電流値よりも
大きい事が多く、発光終止電圧に達した時前記サイリス
タ21はオフする。この時xe管18内にはまだXeイ
オンが残っている為、前記DC/DCコンバータ3より
の電流が前記Xe管18、抵抗29を介して流れる。こ
の状態が持続放電であり、該放電時間は数m〜数100
m5とさまざまである。
With the charging method described above, when the flash fires, Cyrisk 21
When the light emission starting capacitor 10 is on, the charging voltage of the light emission starting capacitor 10 drops to the light emission end voltage, but at this time, since the transistor 17 is off, charging of the light emission starting capacitor 10 has already started. That is, when the flash light is emitted, the current from the capacitor 10911 and the DC/DC converter 3 is involved in the light emission. However, the holding current of the thyristor 21 is often larger than the current value from the DC70C converter 3, and the thyristor 21 is turned off when the light emission end voltage is reached. At this time, since Xe ions still remain in the Xe tube 18, the current from the DC/DC converter 3 flows through the Xe tube 18 and the resistor 29. This state is a sustained discharge, and the discharge time is several meters to several hundred
m5 and various others.

以下、持続放電時について述べる。持続放電時は抵抗2
9を介して電流が流れるので、Xe管18のカソード電
圧は1ms程で数10〜200V程に達する。そこで抵
抗20を前記Xe管18のカソードとトランジスタ17
のベース間に配置している。これにより持続放電が始ま
ると抵抗20を介してトランジスタ17のベースに電流
が流れ、該トランジスタ17がオンし、これに伴ってサ
イリスタ8がオンし、前記D C70Cコンバータ3よ
りの電流が発光用キャパシタ11へも流れる様に、すな
わち発光用キャパシタ11への充電が発光起動用キャパ
シタ10への充電と並行して行われるようになる。よっ
て、前記発光起動用キャパシタ10の充電電圧が急激に
上昇することはなく、従って持続放電が短時間で終了す
ることになる。
The sustained discharge time will be described below. Resistor 2 during continuous discharge
Since current flows through the Xe tube 9, the cathode voltage of the Xe tube 18 reaches several tens to 200 V in about 1 ms. Therefore, the resistor 20 is connected to the cathode of the Xe tube 18 and the transistor 17.
It is placed between the bases. As a result, when sustained discharge begins, current flows through the resistor 20 to the base of the transistor 17, which turns on the transistor 17. Accordingly, the thyristor 8 turns on, and the current from the DC70C converter 3 flows into the light emitting capacitor. 11, that is, charging of the light emission capacitor 11 is performed in parallel with charging of the light emission starting capacitor 10. Therefore, the charging voltage of the light emission starting capacitor 10 does not rise suddenly, and therefore, the sustained discharge ends in a short time.

第2図は本発明の第2の実施例を示すもので、St図図
示の抵抗20とトランジスタ17のベース間に、時定回
路を構成する抵抗31.キャパシタ32及び逆流防止用
ダイオード33.34を付加した構成となっている。
FIG. 2 shows a second embodiment of the present invention, in which a resistor 31 . It has a configuration in which a capacitor 32 and backflow prevention diodes 33 and 34 are added.

この様に抵抗31.キャパシタ32から成る時定回路を
備えることにより、持続放電時に抵抗20を流れる電流
がキャパシタに充電され、その結果、ここで定まる時間
トランジスタ17のオン状態を保証することができる為
、第1図実施例に比べて若干持続放電時間は長くなるが
、それ以後の持続放電をより確実に防止する確率が高く
なる。
In this way, resistance 31. By providing a time-fixed circuit consisting of a capacitor 32, the current flowing through the resistor 20 during sustained discharge charges the capacitor, and as a result, it is possible to guarantee that the transistor 17 is in an on state for a predetermined period of time. Although the sustained discharge time is slightly longer than in the example, the probability that subsequent sustained discharges can be more reliably prevented is increased.

第3図は本発明の第3の実施例を示すもので、第2図図
示のXe管18のカソードと転流キャパシタ22との間
に、逆流防止用ダイオード35を付加した構成となって
いる。
FIG. 3 shows a third embodiment of the present invention, in which a backflow prevention diode 35 is added between the cathode of the Xe tube 18 shown in FIG. 2 and the commutation capacitor 22. .

前記第2図図示実施例との違いは調光時にある。すなわ
ち第2図図示実施例では、調光時、第4図(a)に示す
様に、発光用キャパシタ11の充放電の為、Xe管18
のカソード電圧がLoomS以上100V程ある。その
影響でトランジスタ17がオンし続けて発光用キャパシ
タ11への充電は進んでも1発光起動用キャパシタ10
への充電は行われない為、速写時、前記発光起動用キャ
パシタ10の充電電圧が発光起動電圧以下であることか
ら閃光発光がなされない恐れがある。これを防ぐには、
抵抗20の値を大きくすれば良いが、該抵抗20の値が
大きくなると持続放電検知の時間遅れが大きくなる。又
閃光発光時、前記力ンード電圧が100〜150v程し
かならない場合、抵抗20だけでは閃光発光時か調光時
かの区別ができずその制御が難しい。
The difference from the embodiment shown in FIG. 2 is in dimming. That is, in the embodiment shown in FIG. 2, during dimming, as shown in FIG. 4(a), the Xe tube 18 is
The cathode voltage of LoomS is about 100V. Due to this influence, the transistor 17 continues to be turned on, and even though the charging of the light emitting capacitor 11 progresses, only one light emitting starting capacitor 10 is charged.
Since charging is not performed, there is a possibility that a flash will not be emitted during quick shooting because the charging voltage of the light emission starting capacitor 10 is lower than the light emission starting voltage. To prevent this,
The value of the resistor 20 may be increased, but as the value of the resistor 20 increases, the time delay in detecting sustained discharge increases. Further, when the power voltage is only about 100 to 150 V during flash emission, it is difficult to control the flash light emission or dimming because it cannot be distinguished by the resistor 20 alone.

ところが第3図実施例の様にダイオード35を付加する
ことにより、調光時、転流キャパシタ22への充電が行
われている時はカソード電圧は上昇するものの、その時
間は短く、一方転流キャパシタ22の放電時は前記ダイ
オード35の働きによりXe管18のカソードは通らな
い為、第4図(b)に示す様な電圧となり、前記問題点
(Xe管18のカソード電圧上昇による誤動作)を解消
できる。また、ダイオード35を付加したことにより、
抵抗20の値を小さくでき、その結果持続放電検知時間
を短くすることができる。尚調光時。
However, by adding the diode 35 as in the embodiment shown in FIG. 3, although the cathode voltage rises during dimming and when the commutation capacitor 22 is being charged, the period of time is short; When the capacitor 22 is discharged, the cathode of the Xe tube 18 does not pass through due to the action of the diode 35, so the voltage becomes as shown in FIG. It can be resolved. Also, by adding the diode 35,
The value of the resistor 20 can be made small, and as a result, the sustained discharge detection time can be shortened. In addition, when dimming.

発光起動用キャパシタ10への充電は行われないが、そ
の時間は短く、その間発光用キャパシタ11への充電が
進むので実害はない。
Although charging of the light emission starting capacitor 10 is not performed, the time is short and charging of the light emission capacitor 11 progresses during that time, so there is no actual damage.

第5図は本発明の第4の実施例(前記i33図図示実施
の変形例)を示すもので、第2図図示の抵抗20とダイ
オード34との間に、抵抗20を通った電流のパルス成
分のみをトランジスタ17へ伝える為のキャパシタ36
を付加した構成となっている。
FIG. 5 shows a fourth embodiment of the present invention (a modification of the embodiment shown in FIG. Capacitor 36 for transmitting only the component to transistor 17
It has a configuration with the addition of.

この様な構成にすることにより、閃光発光時、調光時と
もに応答遅れを生じるといった不都合を除けば、前記第
3図図示実施例と同様の効果を得ることが可能となる。
By adopting such a configuration, it is possible to obtain the same effects as the embodiment shown in FIG. 3, except for the disadvantage that a response delay occurs during both flash emission and dimming.

(発明と実施例の対応) 第1図図示実施例において、閃光発光用キャパシタ11
が本発明の第2のキャパシタに、発光起動用キャパシタ
10が第1のキャパシタに、サイリスタ8.トランジス
タ16.17が充電制御手段に、抵抗20が持続放電検
知手段に、前記充電制御手段を成すサイリスタ8.トラ
ンジスタ16.17が充電指令手段に(つまり兼用され
ている)、それぞれ相当し、第2.3.5図図示実施例
においては、ダイオード34.キャパシタ32、抵抗3
1が充電指令手段に相当する。
(Correspondence between the invention and the embodiments) In the embodiment shown in FIG.
is the second capacitor of the present invention, the light emission starting capacitor 10 is the first capacitor, and the thyristor 8. The transistors 16 and 17 serve as charge control means, the resistor 20 serves as sustained discharge detection means, and the thyristor 8.17 serves as the charge control means. Transistors 16, 17 respectively correspond to charging command means (that is, they are also used), and in the embodiment shown in FIG. 2.3.5, diodes 34. capacitor 32, resistor 3
1 corresponds to the charging command means.

(発明の効果) 以上説明した様に、本発明によれば、充電制御手段にて
閃光発光に伴って直ちに$1のキャパシタへの充電が開
始されることに起因して生じる閃光放電管の持続放電を
検知する持続放電検知手段と、該持続放電検知手段によ
る検知により充電制御手段による第2のキャパシタへの
充電禁止を強制的に解く充電指令手段を設け、以て、閃
光放電管の持続放電を検知することにより、第1及び第
2のキャパシタの並行充電を行わせて、この間前記第1
のキャパシタへの充電が瞬時に行われない様にしたら、
閃光放電管の持続放電を短時間に抑えることができる。
(Effects of the Invention) As explained above, according to the present invention, the continuation of the flash discharge tube caused by the charge control means immediately starting charging the $1 capacitor with the flash light emission. A sustained discharge detection means for detecting discharge, and a charge command means for forcibly releasing the inhibition of charging to the second capacitor by the charge control means based on the detection by the sustained discharge detection means, thereby preventing the sustained discharge of the flash discharge tube. , the first and second capacitors are charged in parallel, and during this time the first
If we prevent the capacitor from charging instantly,
The sustained discharge of a flash discharge tube can be suppressed for a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す回路図、第2図は
本発明の第2の実施例を示す回路図、第3図は本発明の
第3の実施例を示す回路図、第4図は第2.3図図示実
施例における調光時のXe管のカソード電圧を説明する
図、第5図は本発明の第4の実施例を示す回路図である
。 l・・・・・・電池、2・・・・・・電源スィッチ、4
〜7ダイオード、8・・・・・・サイリスタ、10・・
・・・・発光起動用キャパシタ、11・・・・・・閃光
発光用キャパシタ、16.17・・・・・・トランジス
タ、18・・・・・・Xe管、19・・・・・・トリガ
回路、20・・・・・・抵抗、21・・・・・・サイリ
スタ、22・・・・・・転流キャパシタ、31・・・・
・・抵抗、32・・・・・・キャパシタ、35・・・・
・・ダイオード。 36・・・・・・キャパシタ。
Fig. 1 is a circuit diagram showing a first embodiment of the invention, Fig. 2 is a circuit diagram showing a second embodiment of the invention, and Fig. 3 is a circuit diagram showing a third embodiment of the invention. , FIG. 4 is a diagram for explaining the cathode voltage of the Xe tube during dimming in the embodiment shown in FIGS. 2.3, and FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention. l...Battery, 2...Power switch, 4
~7 diodes, 8...thyristors, 10...
... Capacitor for starting light emission, 11 ... Capacitor for flash light emission, 16.17 ... ... Transistor, 18 ... Xe tube, 19 ... Trigger Circuit, 20... Resistor, 21... Thyristor, 22... Commutation capacitor, 31...
...Resistance, 32...Capacitor, 35...
··diode. 36...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] (1)発光起動用の小容量の第1のキャパシタと、閃光
発光用の大容量の第2のキャパシタと、前記第1及び第
2のキャパシタの充電エネルギーによって閃光発光する
閃光放電管と、該閃光放電管の閃光発光により直ちに充
電される前記第1のキャパシタの充電電圧が発光起動電
圧に達するまでは前記第2のキャパシタの充電を禁止し
、達した後は前記第2のキャパシタへの充電を開始する
充電制御手段とを備えたストロボ装置において、前記充
電制御手段にて閃光発光に伴って直ちに第1のキャパシ
タへの充電が開始されることに起因して生じる前記閃光
放電管の持続放電を検知する持続放電検知手段と、該持
続放電検知手段による検知により前記充電制御手段によ
る前記第2のキャパシタへの充電禁止を強制的に解く充
電指令手段を設けたことを特徴とするストロボ装置。
(1) A first capacitor with a small capacity for starting light emission, a second capacitor with a large capacity for flashlight emission, and a flashlight discharge tube that emits a flashlight by the charging energy of the first and second capacitors; Charging of the second capacitor is prohibited until the charging voltage of the first capacitor, which is immediately charged by the flash light emission of the flash discharge tube, reaches a light emission starting voltage, and after reaching the light emission starting voltage, charging of the second capacitor is prohibited. In the strobe device, a continuous discharge of the flash discharge tube occurs due to the charge control means starting charging the first capacitor immediately upon flash emission. What is claimed is: 1. A strobe device comprising: a sustained discharge detecting means for detecting a continuous discharge; and a charging command means for forcibly releasing the inhibition of charging of the second capacitor by the charging control means upon detection by the sustained discharge detecting means.
JP23800486A 1986-10-08 1986-10-08 Stroboscopic device Pending JPS6392935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23800486A JPS6392935A (en) 1986-10-08 1986-10-08 Stroboscopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23800486A JPS6392935A (en) 1986-10-08 1986-10-08 Stroboscopic device

Publications (1)

Publication Number Publication Date
JPS6392935A true JPS6392935A (en) 1988-04-23

Family

ID=17023705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23800486A Pending JPS6392935A (en) 1986-10-08 1986-10-08 Stroboscopic device

Country Status (1)

Country Link
JP (1) JPS6392935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056126A1 (en) * 1999-03-15 2000-09-21 Hamamatsu Photonics K.K. Xenon flash lamp, and socket and rectifier for xenon flash lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056126A1 (en) * 1999-03-15 2000-09-21 Hamamatsu Photonics K.K. Xenon flash lamp, and socket and rectifier for xenon flash lamp

Similar Documents

Publication Publication Date Title
US3644818A (en) Electronic flashlamp power supply
US3814985A (en) Electronic flash unit having protective circuit for flash terminating switch
JP2970881B2 (en) Flash light emitting device
US4330737A (en) Electronic flash system
US5668445A (en) Electronic flash apparatus with constant duration repeated flash
JPS6392935A (en) Stroboscopic device
JPS6392936A (en) Stroboscopic device
JPH0220088B2 (en)
US4561751A (en) Flash device
US4158155A (en) Ignition circuit for extinguishing tubes in electronic flash equipment
US3890536A (en) Electronic flash device for photography
EP0146599B1 (en) Electronic photoflash control circuit
JP2967587B2 (en) Flash light emitting device
US4249110A (en) Controlled energy cut-off for an electronic flash device
JP2006084608A (en) Electronic flash apparatus stroboscope apparatus
JPS6392934A (en) Stroboscopic device
GB2133644A (en) Photographic flash apparatus
JPH04256936A (en) Flash light emitting device
JPH0421998B2 (en)
JPH0712979Y2 (en) Sustainable discharge prevention electronic flash device
US4370042A (en) Ready-to-flash condition indicating device for a camera
JPS631571B2 (en)
JPH06302390A (en) Stroboscope device
JP2507177B2 (en) Strobe device
JPH0143700Y2 (en)