JPS6392658A - Radical polymerization method in the presence of dissolved air oxygen to modify surface of high-molecular material - Google Patents

Radical polymerization method in the presence of dissolved air oxygen to modify surface of high-molecular material

Info

Publication number
JPS6392658A
JPS6392658A JP23888586A JP23888586A JPS6392658A JP S6392658 A JPS6392658 A JP S6392658A JP 23888586 A JP23888586 A JP 23888586A JP 23888586 A JP23888586 A JP 23888586A JP S6392658 A JPS6392658 A JP S6392658A
Authority
JP
Japan
Prior art keywords
radical polymerization
monomer
polymerization method
riboflavin
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23888586A
Other languages
Japanese (ja)
Inventor
Yoshito Ikada
義人 筏
Jiyoukiyuu Gen
丞烋 玄
Yoshikimi Uyama
宇山 良公
Emiko Uchida
内田 恵美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO MATERIAL YUNIBAASU KK
Original Assignee
BIO MATERIAL YUNIBAASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO MATERIAL YUNIBAASU KK filed Critical BIO MATERIAL YUNIBAASU KK
Priority to JP23888586A priority Critical patent/JPS6392658A/en
Publication of JPS6392658A publication Critical patent/JPS6392658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To carry out modification of the surface of a high-molecular compd. by radical polymn. easily and inexpensively with a simple apparatus, by adding a photosensitizing dye or periodic acid, etc. and carrying out irradiation with light without removing oxygen dissolved in monomers or a monomer soln. CONSTITUTION:A radical polymn. reaction is allowed to proceed to modify the surface of a high-molecular compd. without removing oxygen dissolved in monomers or a soln. thereof or purging it with an inert gas. The radical polymn. is carried out by adding a photosensitizing dye (e.g., riboflavin, methylene blue, eosine, flocesine, etc.) or periodic acid or a peroxide such as hydrogen peroxide to the monomers or the soln. thereof and carrying out irradiation with light.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高分子の表面改質のためにビニル化合物など
のラジカル重合反応を行う際にjl’−r+1.体もし
くは単量体溶液に溶存る空気酸素の除去、あるいは不活
性気体よる置換を行うことなく重合させる方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to the use of jl'-r+1. This invention relates to a method for polymerizing without removing atmospheric oxygen dissolved in the monomer or monomer solution or replacing it with an inert gas.

[従来の技術] 従来、ラジカル重合反応を進行させるためには。[Conventional technology] Conventionally, in order to advance a radical polymerization reaction.

過剰の開始剤を添加したり、プラズマ処理とか放射線照
射などによりラジカルin合開始種を導入するとともに
1反応系内の酸素を除去するため、窒素ガスなどの不活
性’A体で置換したり、脱気を行う必要があった。反応
系内で生成できる全ラジカル濃度が溶存酸素によって捕
捉される濃度よりも高い場合には、h記の工程を省略し
ても重合反応が可能であるが高分子を合成するとか、生
成し得る全ラジカル濃度が低い場合には、溶存rv!素
をできるだけ除去することが不可欠である。
Adding an excess initiator, introducing radical initiator species by plasma treatment or radiation irradiation, and removing oxygen in a reaction system by replacing it with an inert 'A' form such as nitrogen gas, It was necessary to perform deaeration. If the total radical concentration that can be generated in the reaction system is higher than the concentration that can be captured by dissolved oxygen, the polymerization reaction is possible even if step h is omitted, but polymers may be synthesized or generated. When the total radical concentration is low, the dissolved rv! It is essential to remove as much of the element as possible.

グラフト重合による高分子表面改質に関しては。Regarding polymer surface modification by graft polymerization.

すでに多くの方法が提唱されているが、脱気工程が装置
の大型化をまねき1反応時間も長くなっているのが現状
である。そのため、優れたグラフト重合方法が確)γさ
れても、低コストで表面改質できない原因の一つとなっ
ている。
Although many methods have already been proposed, the current situation is that the degassing step increases the size of the equipment and the reaction time becomes longer. Therefore, even if an excellent graft polymerization method is established, this is one of the reasons why surface modification cannot be performed at low cost.

[発明が解決しようとする問題点と手段]本発明者らは
、 Ir(合開始種の濃度が低くても。
[Problems and Means to be Solved by the Invention] The present inventors have discovered that Ir (even if the concentration of the initiating species is low).

溶存酸素の妨害をうけることなく表面グラフト重合によ
る高分子材料への表面改質を行う目的で鋭意研究を進め
た結果9本発明を完成するに至った。
As a result of intensive research aimed at surface modification of polymeric materials by surface graft polymerization without interference from dissolved oxygen, the present invention was completed.

本発明によれば、リボフラビンなどの光増感色素や過ヨ
ウ素酸とかその塩を添加して光照射を行う。
According to the present invention, light irradiation is performed by adding a photosensitizing dye such as riboflavin, periodic acid, or a salt thereof.

本発明にいう光増感色素は、特に限定されるものではな
く、リボフラビン(ビタミンB2)、メチレンブルー、
フロセシン(ウラシン)、エオシン、エリスロシンなど
の一般の光増感重合に用いられる色素でよい。
The photosensitizing dye referred to in the present invention is not particularly limited, and includes riboflavin (vitamin B2), methylene blue,
Dyes commonly used in photosensitized polymerization such as furosecin (uracin), eosin, and erythrosin may be used.

光照射に用いる光源としては、高圧水銀灯が一般的であ
るが、低圧水銀灯、さらにキセノンアークランプ、水素
放電イfなどの使用でもよい。これらの光源からの特定
波長域を特にフィルターでカットする必要はない。
As a light source used for light irradiation, a high pressure mercury lamp is generally used, but a low pressure mercury lamp, a xenon arc lamp, a hydrogen discharge lamp, etc. may also be used. There is no need to use a filter to specifically cut out specific wavelength ranges from these light sources.

以下に本発明の特色を列挙する。The features of the present invention are listed below.

1、溶存酸素を除去する工程を省略できるのでラジカル
重合反応を容易に進めることができる。
1. Since the step of removing dissolved oxygen can be omitted, the radical polymerization reaction can be easily carried out.

2、溶存酸素存在下でラジカル重合を行オ〕せるために
添加する光増感色素や過ヨウ素酸は有毒ではない。
2. The photosensitizing dye and periodic acid added to carry out radical polymerization in the presence of dissolved oxygen are not toxic.

3、光照射を行う装置は安価であり、取り扱いも簡単で
ある。
3. The device that performs light irradiation is inexpensive and easy to handle.

以下に実施例を挙げて説明する。Examples will be described below.

実施例】 アクリルアミド(以下AAmと略する)およびN、N−
ジメチルアクリルアミド(以下DMAAと略する)のそ
れぞれ10重量%水溶液にリボフラビンの濃度が0.5
X10−’モル/リットルになるように添加し、400
W高圧水銀灯(理工化学産業(株)製U V L −4
00HA型)を使い。
Examples] Acrylamide (hereinafter abbreviated as AAm) and N, N-
The concentration of riboflavin was 0.5 in each 10% by weight aqueous solution of dimethylacrylamide (hereinafter abbreviated as DMAA).
Add to give a concentration of 400
W high pressure mercury lamp (UV L-4 manufactured by Riko Kagaku Sangyo Co., Ltd.)
00HA type).

30分間光照射を行った。光照射を開始してから10分
後には溶液の445nmにおける光学密度は未照射時の
5分の1に低下し、IK量体溶液の粘度は高くなり、>
R合反応が進行していることがわかった。30分後には
光学密度は10分の1以下にまで低下し、未照射時のリ
ボフラビンの黄色い着色は消失し、溶液の流動性が全く
なくなった。
Light irradiation was performed for 30 minutes. Ten minutes after starting light irradiation, the optical density of the solution at 445 nm decreased to one-fifth of that without irradiation, and the viscosity of the IK polymer solution increased, >
It was found that the R combination reaction was progressing. After 30 minutes, the optical density decreased to one-tenth or less, the yellow coloring of riboflavin that had not been irradiated disappeared, and the solution had no fluidity at all.

ただし溶存酸素が大過剰となる空気と接する界面では重
合はほとんど進行しなかった。また、同じ01M体溶液
に同じ濃度のリボフラビンを添加してf(空脱気を行っ
た場合には、1時1j[Iの光照射においても重合はほ
とんど進まなかったが、4時間後には溶存酸素存在下と
同様に重合が進行することがわかった6本発明によるI
rC合方法においては。
However, polymerization hardly progressed at the interface with air, where there was a large excess of dissolved oxygen. In addition, when riboflavin of the same concentration was added to the same 01M body solution and the same concentration of f(f) was performed, polymerization hardly proceeded even under light irradiation of 1:1j[I, but after 4 hours the dissolved 6 I according to the present invention found that polymerization proceeded in the same manner as in the presence of oxygen
In the rC combination method.

適i℃の溶存酸素の存在するほうがより効果的にラジカ
ル重合を進めることができる。
Radical polymerization can proceed more effectively in the presence of dissolved oxygen at an appropriate temperature of 1°C.

実施例2 シリコーンフィルムを用い、これに9kvの電圧で2m
mの組構間でコロナ放電処理を80秒間施した後、この
前処理フィルムを溶存酸素の除去を行わず実施例1と同
じ濃度のA A mおよびDMAへの水溶液に漬浸し実
施例1と同じ条件で光照射を行った。20分間光照射す
ることによりホモポリマー生成と同時にシリコーンフィ
ルム表面にグラフト重合も進行することがわかった。グ
ラフト化フィルム表面に付着したホモポリマーを除去し
た後に乾燥し、水に対する接触角を測定したところ、未
処理およびコロナ放電処理のシリコーンフィルムではそ
れぞれ105°、80°であるのく対し、AΔmおよび
DMAAをグラフト重合した場合は18°および19°
にまで低下し水濡れ性が向−1ユし、グラフト化により
表面が親水化されていることが才〕かった。
Example 2 A silicone film was used, and a voltage of 9 kv was applied to the film for 2 m.
After applying corona discharge treatment for 80 seconds between the structures of m, this pretreated film was immersed in an aqueous solution of A m and DMA at the same concentration as in Example 1 without removing dissolved oxygen. Light irradiation was performed under the same conditions. It was found that by irradiating with light for 20 minutes, graft polymerization progressed on the silicone film surface at the same time as homopolymer production. After removing the homopolymer attached to the surface of the grafted film, it was dried and the contact angle with water was measured. 18° and 19° when graft polymerized
It was found that the water wettability was improved by 1%, and the surface was made hydrophilic by grafting.

比較例 実施例2で行ったのと同じ方法でコロナ放′1u処理を
施さずシリコーンフィルムへのグラフト重合を試みた。
Comparative Example Graft polymerization onto a silicone film was attempted in the same manner as in Example 2 without the corona radiation treatment.

ΔAm、DMΔAいずれの単量体を用いた場合でも、ホ
モポリマーは生成するが、グラフト重合は進行しないこ
とが、接触角測定によりわかった。
It was found by contact angle measurement that although a homopolymer was produced when either the ΔAm or DMΔA monomer was used, graft polymerization did not proceed.

実施例3 シリコーンフィルムに代えてポリエチレンフィルムをペ
ルジャー型のプラズマ重合装置を用い5Kllzで10
秒間グロー放電処理を施した後、実施例】と同じ方法で
グラフト重合を行った。グラフト化フィルム表面の接触
角はAAm、DMAΔいずれII+、量体を使用した場
合でも15〜20°に低下した。
Example 3 A polyethylene film was used instead of a silicone film using a Pelger type plasma polymerization apparatus at 5 Kllz for 10
After a second glow discharge treatment, graft polymerization was carried out in the same manner as in Example. The contact angle on the surface of the grafted film was reduced to 15 to 20° even when AAm, DMAΔ, II+, and mercury were used.

実施例4 シリコーンフィルムに代えてポリエチレンテレフタレー
ト(以下p r=: ’1’と略す)フィル11を前処
理することな〈実施例1で行ったのと同じ方法でグラフ
ト重合を行った。乾燥後グラフト化フィル11表面の接
触角は、未処理の11 E Tフィルムでは706であ
るのに対し、ΔΔm、DMAAのいずれの単15体をグ
ラフト重合した場合でも15〜20°にまで低下した。
Example 4 Graft polymerization was performed in the same manner as in Example 1 without pretreating a polyethylene terephthalate (hereinafter abbreviated as '1') film 11 instead of the silicone film. After drying, the contact angle on the surface of the grafted film 11 was 706 for the untreated 11ET film, whereas it decreased to 15 to 20° when either ΔΔm or DMAA was graft-polymerized. .

PETフィルムではプラズマ前処理を施さなくてもグラ
フト−R合することがわかった。
It has been found that graft-R bonding can be achieved in PET films without plasma pretreatment.

実施例5 PETフィルムを用い単量体水溶液をスチレンスルホン
酸ナトリウム(NaSS)、2−アクリルアミド−2−
メチルプロパンスルホン酸(ΔMps)、ジメチルアミ
ノプロピルアクリルアミド(DMAPAA)、アクリル
酸(AA)の、それぞれloWL%水溶液を使用する以
外は実施例4と同じ方法でグラフト重合を行った。グラ
フ1−化フィルムの接触角は、 N a S S 、 
A M P S 、 1.) MΔI) AA、を用い
た場合、それぞれ、15°、20°、21°、25°と
なり、いずれもグラフト重合が進行し9表面が親水化さ
れていることがわかった。
Example 5 Using a PET film, a monomer aqueous solution was mixed with sodium styrene sulfonate (NaSS), 2-acrylamide-2-
Graft polymerization was carried out in the same manner as in Example 4, except that loWL% aqueous solutions of methylpropanesulfonic acid (ΔMps), dimethylaminopropylacrylamide (DMAPAA), and acrylic acid (AA) were used. The contact angle of the graph 1-formed film is N a S S ,
AMPS, 1. ) MΔI) AA, the angles were 15°, 20°, 21°, and 25°, respectively, indicating that graft polymerization progressed and the 9 surfaces were made hydrophilic.

実施例6 PETの布を用いるほかは実施例4と実施例5と同じ条
件下でグラフト−r(合を行った。 f:)られたP 
E T布の帯電特性を測定した結果、SKV印加電圧の
゛を減期、木綿布に対するJf擦吊帯電圧も未処理試料
と比較してAA m 、ΔA、DMAA、Na5S、Δ
MI)S、DMAPAAをグラフト重合した場合、それ
ぞれ10分の1,20分の1,10分の1.20分の1
,5分の1,100分の1となり2表面グラフト化によ
り帯電性が大きく改停されることがわかった。
Example 6 Grafting was carried out under the same conditions as in Examples 4 and 5 except that PET cloth was used.
As a result of measuring the charging characteristics of the ET cloth, we found that the SKV applied voltage decreased during the lapse of time, and the Jf rubbing voltage against the cotton cloth also showed AA m, ΔA, DMAA, Na5S, Δ compared with the untreated sample.
When graft polymerizing MI) S and DMAPAA, 1/10, 1/20, 1/10 and 1/20, respectively.
, 1/5, and 1/100, and it was found that the charging property was greatly improved by grafting on two surfaces.

実施例7 種々の濃度のリボフラビン溶液を使用するほかは実施例
1と同じ方法でΔΔmのグラフト重合を行った。リボフ
ラビン濃度が1.XlO”モル/リトル、lXl0−’
モル/リットル、IXLO−”モル/リットルで1時間
光照射を行って得られた■)ト:゛rフィルt1の接触
角は、それぞれ60”、コ30°、55°となり、添加
するリボフラビン濃度に最適値の存在することがわかっ
た。
Example 7 Graft polymerization of ΔΔm was carried out in the same manner as in Example 1 except that riboflavin solutions of various concentrations were used. Riboflavin concentration is 1. XlO"mol/liter, lXl0-'
The contact angles of the t:r filter t1 obtained by light irradiation for 1 hour at mol/liter and IXLO-'' mol/liter were 60'', 30°, and 55°, respectively, and the riboflavin concentration to be added It was found that there is an optimal value for .

実施例8 リボフラビンに代えて1.0X10−)モル/リットル
の過ヨウ素酸ナトリュt1を用いたほかは実施例1で行
ったのと同じ条件で重合反応を行った。
Example 8 A polymerization reaction was carried out under the same conditions as in Example 1, except that 1.0 x 10 -) mol/liter of sodium periodate t1 was used in place of riboflavin.

溶存酸素存在下で2時間の光照射によって、AAm、l
)MΔΔ、いずれの場合もラジカル1rC合反応の進行
することがわかった。
AAm,l by 2 hours of light irradiation in the presence of dissolved oxygen
) MΔΔ, it was found that the radical 1rC combination reaction proceeded in both cases.

実施例9 種々の濃度の過ヨウ未酸ナトリウム溶液を用いて、実施
例4〜6で行ったのと同様の実験を行った。過ヨウ素酸
ナトリウムの濃度が6,6X10−5モル/リットル、
6.6x1o−’モル/リットル、1.0XIO’モル
/リットルで1時間光照射して得られたグラフト化試料
の接触角は、それぞれ、60’ 、21’ 、55”で
あった。過ヨウ、+3酸ナトリウム溶液の場合でもその
添加1.jに最適値の存在することがオ)かった。
Example 9 Experiments similar to those performed in Examples 4-6 were conducted using various concentrations of sodium periodate solutions. The concentration of sodium periodate is 6,6X10-5 mol/liter,
The contact angles of the grafted samples obtained by irradiation for 1 hour at 6.6 x IO' mol/liter and 1.0 x IO' mol/liter were 60', 21', and 55'', respectively. It was found that an optimum value exists for the addition 1.j even in the case of a sodium chloride solution.

実施例10 過ヨウ素酸ナトリウムに代えて過酸化水素を用いた他は
実施例8.および実施例9で行ったのと同様の実験を行
った結果、過酸化水素を使用した場合でもほぼ同じグラ
フト量が得られ接触角も低下することがわかった。
Example 10 Example 8 except that hydrogen peroxide was used in place of sodium periodate. As a result of conducting an experiment similar to that in Example 9, it was found that almost the same amount of grafting was obtained even when hydrogen peroxide was used, and the contact angle was also reduced.

Claims (1)

【特許請求の範囲】 1、単量体もしくは単量体溶液に溶存する空気酸素の除
去あるいは不活性気体による置換を行うことなくラジカ
ル重合を進行させて高分子化合物の表面を改質すること
を特徴とするラジカル重合方法。 2、単量体もしくは単量体溶液に光増感色素の添加で光
照射してラジカル重合を行うことを特徴とする特許請求
の範囲第1項記載のラジカル重合方法。 3、光増感色素としてリボフラビンを用いることを特徴
とする特許請求の範囲第1項および第2項記載のラジカ
ル重合方法。 4、単量体もしくは単量体溶液に添加するリボフラビン
濃度が10^−^5〜10^−^3モル/リットルであ
ることを特徴とする特許請求の範囲第1項〜第3項記載
のラジカル重合方法。 5、単量体もしくは単量体溶液に過ヨウ素酸イオンとか
過酸化水素などの過酸化物の添加で光照射してラジカル
重合を行うことを特徴とする特許請求の範囲第1項記載
のラジカル重合方法。 6、単量体もしくは単量体溶液に添加する過ヨウ素酸イ
オン濃度が10^−^4〜10^−^1モル/リットル
であることを特徴とする特許請求の範囲第1項〜第2項
記載のラジカル重合方法。
[Claims] 1. Modification of the surface of a polymer compound by proceeding radical polymerization without removing atmospheric oxygen dissolved in the monomer or monomer solution or replacing it with an inert gas. Characteristic radical polymerization method. 2. The radical polymerization method according to claim 1, wherein the radical polymerization is carried out by adding a photosensitizing dye to the monomer or monomer solution and irradiating it with light. 3. The radical polymerization method according to claims 1 and 2, characterized in that riboflavin is used as the photosensitizing dye. 4. The riboflavin concentration added to the monomer or monomer solution is 10^-^5 to 10^-^3 mol/liter, according to claims 1 to 3. Radical polymerization method. 5. Radical polymerization according to claim 1, characterized in that radical polymerization is carried out by adding a peroxide such as periodate ion or hydrogen peroxide to a monomer or a monomer solution and irradiating it with light. Polymerization method. 6. Claims 1 to 2, characterized in that the concentration of periodate ion added to the monomer or monomer solution is 10^-^4 to 10^-^1 mol/liter. Radical polymerization method described in section.
JP23888586A 1986-10-07 1986-10-07 Radical polymerization method in the presence of dissolved air oxygen to modify surface of high-molecular material Pending JPS6392658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23888586A JPS6392658A (en) 1986-10-07 1986-10-07 Radical polymerization method in the presence of dissolved air oxygen to modify surface of high-molecular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23888586A JPS6392658A (en) 1986-10-07 1986-10-07 Radical polymerization method in the presence of dissolved air oxygen to modify surface of high-molecular material

Publications (1)

Publication Number Publication Date
JPS6392658A true JPS6392658A (en) 1988-04-23

Family

ID=17036710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23888586A Pending JPS6392658A (en) 1986-10-07 1986-10-07 Radical polymerization method in the presence of dissolved air oxygen to modify surface of high-molecular material

Country Status (1)

Country Link
JP (1) JPS6392658A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637288A1 (en) * 1988-10-01 1990-04-06 Dow Corning Ltd PROCESS FOR THE PREPARATION OF SULFOXIDE ORGANOSILICATED COMPOUNDS
EP1216831A1 (en) 2000-12-13 2002-06-26 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1281515A2 (en) 2001-08-03 2003-02-05 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
WO2007123022A1 (en) 2006-04-18 2007-11-01 Fujifilm Corporation Method for forming metal pattern, metal pattern and printed wiring board
WO2008041622A1 (en) 2006-09-29 2008-04-10 Fujifilm Corporation Membrane electrode assembly and method for producing the same
WO2008050715A1 (en) 2006-10-23 2008-05-02 Fujifilm Corporation Metal-film-coated material and process for producing the same, metallic-pattern-bearing material and process for producing the same, composition for polymer layer formation, nitrile polymer and method of synthesizing the same, composition containing nitrile polymer, and layered product
WO2008050631A1 (en) 2006-10-23 2008-05-02 Fujifilm Corporation Process for producing metal-film-coated substrate, metal-film-coated substrate, process for producing metallic-pattern material, and metallic-pattern material
WO2009084371A1 (en) 2007-12-27 2009-07-09 Fujifilm Corporation Process for adsorbing plating catalysts, process for production of substrates provided with metal layers and plating catalyst containing fluid for use in both processes
WO2009084470A1 (en) 2007-12-27 2009-07-09 Fujifilm Corporation Plating method, method for forming metal thin film, and plating catalyst liquid
WO2009084540A1 (en) 2007-12-27 2009-07-09 Fujifilm Corporation Metal-clad substrate, and method for production thereof
EP2251874A1 (en) 2001-06-27 2010-11-17 Fujifilm Corporation Conductive film
JP2013155307A (en) * 2012-01-30 2013-08-15 Sumitomo Rubber Ind Ltd Surface-modifying method and surface modification elastomer
JP2013159629A (en) * 2012-02-01 2013-08-19 Sumitomo Rubber Ind Ltd Surface modification method and surface-modified elastic body
JP2013159667A (en) * 2012-02-02 2013-08-19 Sumitomo Rubber Ind Ltd Surface modification method and surface-modified elastic body
JP2014132059A (en) * 2013-01-07 2014-07-17 Sumitomo Rubber Ind Ltd Surface modification method and surface modified elastic material
US9339845B2 (en) 2012-05-16 2016-05-17 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9469736B2 (en) 2011-06-03 2016-10-18 Sumitomo Rubber Industries, Ltd. Surface-modifying method and elastic body with modified surface
US9738744B2 (en) 2013-06-11 2017-08-22 Sumitomo Rubber Industries, Ltd. Surface modification method for three-dimensional object and syringe gasket
US9752003B2 (en) 2012-11-30 2017-09-05 Sumitomo Rubber Industries, Ltd. Surface-modified elastic body
US9758605B2 (en) 2012-11-20 2017-09-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9963565B2 (en) 2014-10-02 2018-05-08 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10189944B2 (en) 2013-04-25 2019-01-29 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10214608B2 (en) 2015-08-03 2019-02-26 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified body
US10280274B2 (en) 2014-01-06 2019-05-07 Sumitomo Rubber Industries, Ltd. Method for modifying surface and surface modified elastic body
US10344109B2 (en) 2012-09-10 2019-07-09 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10647829B2 (en) 2013-06-20 2020-05-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface modification body
US10759918B2 (en) 2015-08-03 2020-09-01 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637288A1 (en) * 1988-10-01 1990-04-06 Dow Corning Ltd PROCESS FOR THE PREPARATION OF SULFOXIDE ORGANOSILICATED COMPOUNDS
EP1216831A1 (en) 2000-12-13 2002-06-26 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP2251874A1 (en) 2001-06-27 2010-11-17 Fujifilm Corporation Conductive film
EP1281515A2 (en) 2001-08-03 2003-02-05 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
WO2007123022A1 (en) 2006-04-18 2007-11-01 Fujifilm Corporation Method for forming metal pattern, metal pattern and printed wiring board
WO2008041622A1 (en) 2006-09-29 2008-04-10 Fujifilm Corporation Membrane electrode assembly and method for producing the same
WO2008050631A1 (en) 2006-10-23 2008-05-02 Fujifilm Corporation Process for producing metal-film-coated substrate, metal-film-coated substrate, process for producing metallic-pattern material, and metallic-pattern material
EP2105451A2 (en) 2006-10-23 2009-09-30 Fujifilm Corporation Nitrile group-containing polymer and method of synthesizing the same, composition containing nitrile group-containing polymer, and laminate
WO2008050715A1 (en) 2006-10-23 2008-05-02 Fujifilm Corporation Metal-film-coated material and process for producing the same, metallic-pattern-bearing material and process for producing the same, composition for polymer layer formation, nitrile polymer and method of synthesizing the same, composition containing nitrile polymer, and layered product
WO2009084371A1 (en) 2007-12-27 2009-07-09 Fujifilm Corporation Process for adsorbing plating catalysts, process for production of substrates provided with metal layers and plating catalyst containing fluid for use in both processes
WO2009084470A1 (en) 2007-12-27 2009-07-09 Fujifilm Corporation Plating method, method for forming metal thin film, and plating catalyst liquid
WO2009084540A1 (en) 2007-12-27 2009-07-09 Fujifilm Corporation Metal-clad substrate, and method for production thereof
US9469736B2 (en) 2011-06-03 2016-10-18 Sumitomo Rubber Industries, Ltd. Surface-modifying method and elastic body with modified surface
JP2013155307A (en) * 2012-01-30 2013-08-15 Sumitomo Rubber Ind Ltd Surface-modifying method and surface modification elastomer
JP2013159629A (en) * 2012-02-01 2013-08-19 Sumitomo Rubber Ind Ltd Surface modification method and surface-modified elastic body
JP2013159667A (en) * 2012-02-02 2013-08-19 Sumitomo Rubber Ind Ltd Surface modification method and surface-modified elastic body
US9321872B2 (en) 2012-02-02 2016-04-26 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9339845B2 (en) 2012-05-16 2016-05-17 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10344109B2 (en) 2012-09-10 2019-07-09 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9758605B2 (en) 2012-11-20 2017-09-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9752003B2 (en) 2012-11-30 2017-09-05 Sumitomo Rubber Industries, Ltd. Surface-modified elastic body
US9540493B2 (en) 2013-01-07 2017-01-10 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
JP2014132059A (en) * 2013-01-07 2014-07-17 Sumitomo Rubber Ind Ltd Surface modification method and surface modified elastic material
US10189944B2 (en) 2013-04-25 2019-01-29 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US9738744B2 (en) 2013-06-11 2017-08-22 Sumitomo Rubber Industries, Ltd. Surface modification method for three-dimensional object and syringe gasket
US10647829B2 (en) 2013-06-20 2020-05-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface modification body
US10280274B2 (en) 2014-01-06 2019-05-07 Sumitomo Rubber Industries, Ltd. Method for modifying surface and surface modified elastic body
US9963565B2 (en) 2014-10-02 2018-05-08 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US10214608B2 (en) 2015-08-03 2019-02-26 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified body
US10759918B2 (en) 2015-08-03 2020-09-01 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body

Similar Documents

Publication Publication Date Title
JPS6392658A (en) Radical polymerization method in the presence of dissolved air oxygen to modify surface of high-molecular material
Kang et al. Surface modifications of polyaniline films by graft copolymerization
Tan et al. Surface modification of plasma-pretreated poly (tetrafluoroethylene) films by graft copolymerization
US4267202A (en) Method for modifying the surface properties of polymer substrates
JP4458557B2 (en) Process for surface modification of polymer substrate and polymer formed from the process
Uchida et al. Grafting of water-soluble chains onto a polymer surface
EP3000842B1 (en) Surface modification method and surface modification body
Iwata et al. Oxidation of polyethylene surface by corona discharge and the subsequent graft polymerization
CN1294189C (en) Reaction liquid for modifying polymer film and modifying method
JPH1060142A (en) Method for forming hydrophilic coating film on polymeric support and article having surface coated thereby
JPH10298320A (en) Modification of surface of polymer substrate, use of modified substrate, medical, engineering and sanitary products
JPS6028851B2 (en) Process for treating films made of hydrophilic polymeric substances
JP3993096B2 (en) Modified polymer having improved properties and method for producing the same
Inagaki et al. Surface modification of poly (tetrafluoroethylene) film by plasma graft polymerization of sodium vinylsulfonate
US4965026A (en) Process for hydroxylating hydrophobic polymer surfaces
JP2002113089A (en) Polymer and lens for oculus using it
Kang et al. Surface modifications of poly (3-alkylthiophene) films by graft copolymerization
Huang et al. Atmospheric pressure plasma jet‐assisted copolymerization of sulfobetaine methacrylate and acrylic acid
Li et al. Photoinduced graft polymerization of styrene onto polypropylene substrates
Ogiwara et al. Photoinduced grafting of acrylamide onto polyethylene film by means of two‐step method
Hamilton et al. The surface modification of polyethylene by solution‐phase photochemical grafting using short irradiation times
JPH02173127A (en) Water-absorptive high-molecular material and its preparation
US5304404A (en) Method for grafting hydrophilic monomers containing double bonds onto formed bodies with polymer surfaces
CA1044068A (en) Nitrate polymers as positive resists
GB1601529A (en) Provision of hydrophilic property to the surface of a hydrophobic polymer substrate