JPS639235B2 - - Google Patents

Info

Publication number
JPS639235B2
JPS639235B2 JP3009480A JP3009480A JPS639235B2 JP S639235 B2 JPS639235 B2 JP S639235B2 JP 3009480 A JP3009480 A JP 3009480A JP 3009480 A JP3009480 A JP 3009480A JP S639235 B2 JPS639235 B2 JP S639235B2
Authority
JP
Japan
Prior art keywords
voltage
photoreceptor
electrode
grounded
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3009480A
Other languages
Japanese (ja)
Other versions
JPS56126862A (en
Inventor
Junichi Kumagai
Koichi Kinoshita
Takaaki Konuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3009480A priority Critical patent/JPS56126862A/en
Publication of JPS56126862A publication Critical patent/JPS56126862A/en
Publication of JPS639235B2 publication Critical patent/JPS639235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers

Description

【発明の詳細な説明】 現在ほとんどの電子写真機器に使用されている
のはコロナ帯電器であるが、コロナ帯電器は高圧
を使用するために、危険であり、オゾン発生によ
る大気及び機器の汚染があり、かつ高価なものに
なる点で問題があつた。一方古くから種々試され
てきたローラーやブラシによる帯電方法も感光体
を機械的に傷つけたり、電気的に損傷したりして
繰り返し使用する感光体に適用し得るような方法
は無かつた。
DETAILED DESCRIPTION OF THE INVENTION Corona chargers are currently used in most electrophotographic equipment, but corona chargers use high pressure, which is dangerous, and pollutes the atmosphere and equipment due to ozone generation. There was a problem in that it was expensive. On the other hand, various charging methods using rollers and brushes have been tried for a long time, but none of these methods can be applied to photoreceptors that are used repeatedly because they cause mechanical damage or electrical damage to the photoreceptor.

本発明は、適度な電気抵抗を持つたブラシのよ
うな材料の背面に置かれた電極にDC電圧を印加
すると共に、減衰するAC電圧を印加することに
より、接触型の帯電器を完成したものである。
The present invention has completed a contact-type charger by applying a DC voltage to an electrode placed on the back of a brush-like material with appropriate electrical resistance, and applying an attenuated AC voltage. It is.

以下にその詳細を記述する。 The details are described below.

第1図に示すところは、最も典型的な実施態様
の1つである。図中1は接地された支持部1aに
よつて支持された例えば、ZnOのような感光体が
表面に塗布された感光体ドラムを、2は前記感光
ドラム1に微小間隔を存して対向された裏打ち電
極を、3は例えば細り毛足の密生した布のような
所定の電気抵抗を有する接触子を、4は上記電極
2に直流電圧を印加する接地された直流電源を、
5は電極2に第2のコンデンサー6を介して交流
を印加するための接地された交流電源を、7は
AC電界を減衰せしめるための第1のコンデンサ
を各々示している。前記交流電源の最大電圧は前
記直流電源の電圧よりも小とされている。第2図
は、感光体にかかる電圧を説明するための概念図
である。第1図中のA点では交流電圧が最も高く
なり、B点側に移るにしたがい交流電圧は減衰す
る。これは、電極2が、適度な抵抗を持つことで
容易に実現する。例えば、交流電源5の電圧が、
500ボルトである場合に、AB間の抵抗が、1×
106オームに設定されれば、AB間には、常時500
マイクロ程度の電流が流れ、第2図に示したよう
な交流電圧が実現する。直流電圧としては、例え
ば、1000ボルト程度が採用される。直流電圧は、
第1図中3をもつて示された布のような抵抗材料
の電気抵抗が適度に高ければ、第2図に示したよ
うに、AB間でほとんど不変である。布の様な材
料の電気抵抗は、厚さ方向で測つた時に、例えば
1cm3当り108オーム程度のものが使い易い。交流
電圧をB点で0にすることが、帯電が縞模様にな
らないための必要条件であることは言うまでもな
い。交流電源の周波数は感光体との相対速度及
び、AB間の距離から決められるべきであるが、
例えば500サイクルとが、1Kサイクルのように多
少高い周波数を選んだ方が、如何なる相対速度に
も対応出来、かつ、布のような電気抵抗体3の選
択も容易になる利点がある。
What is shown in FIG. 1 is one of the most typical embodiments. In the figure, 1 is a photosensitive drum whose surface is coated with a photosensitive material such as ZnO, which is supported by a grounded support part 1a, and 2 is a photosensitive drum that faces the photosensitive drum 1 with a small gap therebetween. 3 is a contact having a predetermined electrical resistance, such as a thin cloth with dense piles; 4 is a grounded DC power source that applies a DC voltage to the electrode 2;
5 is a grounded AC power supply for applying AC to the electrode 2 via the second capacitor 6;
Each shows a first capacitor for attenuating the AC electric field. The maximum voltage of the AC power source is lower than the voltage of the DC power source. FIG. 2 is a conceptual diagram for explaining the voltage applied to the photoreceptor. At point A in FIG. 1, the AC voltage is highest, and as it moves toward point B, the AC voltage attenuates. This can be easily achieved by making the electrode 2 have an appropriate resistance. For example, the voltage of the AC power supply 5 is
When the voltage is 500 volts, the resistance between AB is 1×
If set to 106 ohms, there will always be 500 ohms between AB.
A microscopic current flows, and an alternating current voltage as shown in FIG. 2 is realized. For example, about 1000 volts is used as the DC voltage. The DC voltage is
If the electrical resistance of the resistive material, such as the cloth indicated by 3 in FIG. 1, is moderately high, it will remain almost constant between A and B, as shown in FIG. The electrical resistance of a material such as cloth, when measured in the thickness direction, is, for example, about 10 8 ohms per cm 3 . Needless to say, setting the AC voltage to 0 at point B is a necessary condition for preventing charging from forming a striped pattern. The frequency of the AC power source should be determined from the relative speed with the photoreceptor and the distance between A and B.
For example, choosing a slightly higher frequency such as 1K cycle instead of 500 cycles has the advantage of being able to cope with any relative speed and making it easier to select the electrical resistor 3 such as cloth.

実験的に実施された例では、感光体として酸化
亜鉛感光体を塗布したドラムが使用された。AB
間の距離は20mmであり、帯電器の長さは270mmに
選ばれた。電極2にはカーボンをねり込んだ
SBRが使用され、AB間の抵抗は、5×105オー
ムであつた。布3としてナイロンの毛足1.5mmの
別珍が使用された。別珍を電極2に導電接着剤で
貼り付けて使用した。こうして作られた帯電器を
布の厚さ方向での抵抗を計測した結果は、1cm2
り約108オームであつた。この帯電器に交流500ボ
ルト、直流1000ボルトを印加し、相対速度毎秒70
mmでドラムを廻転した結果暗所では約400ボルト
の表面電位を安定して得、20ルツクス秒程度の露
光を行えばほとんど0ボルトとなつた。この帯電
方法は極めて安定した結果を示し、長時間暗所に
保存された感光体を稼動させ始めたときの結果
も、長時間連続稼動させたときの結果も、露光を
与えたり与えなかつたりした場合にもほとんど帯
電電位に変化がなかつた。また、温度湿度等の雰
囲気によつてもほとんど変らない長所が見られ
た。勿論ブラシの毛の密度が充分に高い事は必要
条件であり、帯電器全体がムラなく感光ドラムに
やわらかく当るように機械的な配慮をすることが
必要である。
In experimentally conducted examples, a drum coated with a zinc oxide photoreceptor was used as the photoreceptor. AB
The distance between them was 20 mm, and the length of the charger was chosen to be 270 mm. Electrode 2 was filled with carbon.
SBR was used and the resistance between AB was 5 x 10 5 ohms. Nylon velveteen with a pile of 1.5 mm was used as cloth 3. Velveteen was used by pasting it on the electrode 2 with a conductive adhesive. The resistance of the charger made in this way in the thickness direction of the cloth was measured and was approximately 10 8 ohms per cm 2 . Apply 500 volts AC and 1000 volts DC to this charger, and apply a relative velocity of 70 volts per second.
As a result of rotating the drum at mm, a stable surface potential of about 400 volts was obtained in the dark, and it dropped to almost 0 volts after exposure for about 20 lux seconds. This charging method shows extremely stable results, with both the results obtained when the photoreceptor is started operating after it has been stored in the dark for a long period of time, and the results obtained when it is operated continuously for a long period of time, both with and without exposure to light. In this case, there was almost no change in the charging potential. Furthermore, the advantages were found to be almost unchanged depending on the atmosphere such as temperature and humidity. Of course, it is a necessary condition that the density of the bristles of the brush be sufficiently high, and mechanical consideration must be taken so that the entire charger contacts the photosensitive drum evenly and softly.

上記の実施例に於ける各数値が例に過ぎないこ
とは言うまでもない。また、材料も、この発明の
概念を実現するために偶々採用されたものであつ
て実例の材料に限定されるものではない。例えば
電極2としてはカーボンをすき込んだ紙や、導電
ゴム、その他が容易に使用し得るしナイロン別珍
の代りに、他の布や静電植毛したブラシや、発泡
プラスチツクその他で容易に代置される。
It goes without saying that the numerical values in the above embodiments are merely examples. Moreover, the materials are also used by chance to realize the concept of the present invention, and are not limited to the materials of the examples. For example, as the electrode 2, carbon-filled paper, conductive rubber, etc. can be easily used, and nylon velveteen can be easily replaced with other cloth, a brush with electrostatic flocking, foamed plastic, etc. Ru.

最も機械的に弱い感光体と見られる酸化亜鉛系
を使用した実験の結果でも10000回を越える充放
電の繰り返しによつても帯電器による機械的、電
気的損傷は、ほとんど認められず、コロナ放電器
を使用した場合よりも、はるかに良い結果を得
た。これはいくつかの原因に由来するものと考え
られている。その第1は電源電圧がコロナのそれ
にくらべてはるかに低いことから、電気的な衝撃
がはるかに低くなることである。第2に、イオン
ボンボードがなくなることであり、第3に、オゾ
ンの発生がないことから、化学的な損傷がないこ
とがあげられる。特にZnO系ではオゾンによる劣
化が重大問題であつたが、これが皆無であること
は大きな収かくとなる。実験的に知られた所で
は、感光体に流れる電流はコロナ放電器を使用し
た場合に比し、はるかに小さい。このこともま
た、感光体の劣化の少なさに寄与する。勿論感光
体に限定はない。
As a result of experiments using a zinc oxide type photoreceptor, which is considered to be the most mechanically weak photoreceptor, almost no mechanical or electrical damage due to the charger was observed even after repeated charging and discharging more than 10,000 times, and corona radiation was not observed. I got much better results than if I used an electric appliance. This is thought to be due to several causes. The first is that the power supply voltage is much lower than that of the corona, so the electrical shock is much lower. Second, there is no ion bombardment, and third, there is no ozone generation, so there is no chemical damage. In particular, deterioration due to ozone has been a serious problem for ZnO systems, but the fact that there is no such problem is a big relief. It has been experimentally known that the current flowing through the photoreceptor is much smaller than when using a corona discharger. This also contributes to less deterioration of the photoreceptor. Of course, the photoreceptor is not limited.

電源電圧が低く且つ電流が小さいことで、電源
のワツテージは減激する。これは帯電器の構造の
単純さと合わせて価格の低下に寄与する。
With the power supply voltage being low and the current being small, the wattage of the power supply is reduced. This, together with the simplicity of the structure of the charger, contributes to a reduction in price.

第1図に示した回路は更に種々変形し得る。若
し一層感光体の寿命を長くしようとする場合に
は、第3図の様な結線をすることができる。第3
図は帯電器を抵抗として示したもので、C点でも
交流電圧が0になり第4図に示したような電圧分
布になつている。これにより、急激に交流電圧が
印加されることが防かれる。
The circuit shown in FIG. 1 can be further modified in various ways. If it is desired to further extend the life of the photoreceptor, it is possible to connect the wires as shown in FIG. Third
The figure shows the charger as a resistor, and the AC voltage becomes 0 even at point C, resulting in a voltage distribution as shown in FIG. This prevents sudden application of alternating current voltage.

また、第5図に示した回路を使用すれば、直流
電圧にも傾斜を与えることができる。この場合の
電圧分布は第6図に示した様になる。
Further, by using the circuit shown in FIG. 5, it is possible to give a slope to the DC voltage. The voltage distribution in this case is as shown in FIG.

支持部が接地された移動する感光体に、機械的
に柔軟であり、所定の電気抵抗を有する接触子を
接触させて帯電するものにおいて、前記接触子を
支持するもので、かつ前記接触子を感光体に接触
させる程度の微小間〓を保つて感光体に対向配置
され適度の抵抗を持つた裏打ち電極と、この電極
の感光体移動方向下流側端部に接続された接地さ
れている第1のコンデンサと、この第1のコンデ
ンサと並列に前記電極に接続された接地されてい
る直流電源と、前記電源の感光体移動方向上流側
端部に第2のコンデンサを介して接続され、最大
電圧が前記直流電源の電圧よりも小さい接地され
ている交流電源とを具備したから、効率が向上
し、電源電圧が低下し、オゾン汚染が消失し、結
果的に感光体の寿命が長くなる。
A device that is electrically charged by bringing a mechanically flexible contactor having a predetermined electrical resistance into contact with a moving photoreceptor whose supporting portion is grounded, which supports said contactor and which is electrically charged. A backing electrode which is arranged opposite to the photoreceptor and has an appropriate resistance with a small enough distance to make contact with the photoreceptor, and a grounded first electrode which is connected to the downstream end of this electrode in the direction of movement of the photoreceptor. a grounded DC power supply connected to the electrode in parallel with the first capacitor, and a second capacitor connected to the upstream end of the power supply in the direction of movement of the photoreceptor; and a grounded AC power source whose voltage is lower than that of the DC power source, efficiency is improved, power supply voltage is reduced, ozone pollution is eliminated, and the life of the photoreceptor is extended as a result.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示し感光体に帯電し
ている状態を示す概略的構成図、第2図は感光体
にかかる電圧の説明図、第3図は帯電器を抵抗と
して示した回路図、第4図は第3図の場合の電圧
分布を示す説明図、第5図は帯電器を抵抗として
示した他の実施例の回路図、第6図は第5図の場
合の電圧の分布を示す説明図である。 1……感光体、1a……支持部、3……接触
子、2……裏打ち電極、4……直流電源、5……
交流電源、6……第2のコンデンサ、7……第1
のコンデンサ。
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention and shows the state in which the photoreceptor is charged, Fig. 2 is an explanatory diagram of the voltage applied to the photoreceptor, and Fig. 3 shows the charger as a resistor. Circuit diagram, Figure 4 is an explanatory diagram showing the voltage distribution in the case of Figure 3, Figure 5 is a circuit diagram of another embodiment in which the charger is shown as a resistor, Figure 6 is the voltage distribution in the case of Figure 5. FIG. 2 is an explanatory diagram showing the distribution of DESCRIPTION OF SYMBOLS 1... Photoreceptor, 1a... Support part, 3... Contact, 2... Backing electrode, 4... DC power supply, 5...
AC power supply, 6... second capacitor, 7... first
capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 支持部が接地された移動する感光体に、機械
的に柔軟であり、所定の電気抵抗を有する接触子
を接触させて帯電するものにおいて、前記接触子
を支持するもので、かつ前記接触子を感光体に接
触させる程度の微小間〓を保つて感光体に対向配
置され適度の抵抗を持つた裏打ち電極と、この電
極の感光体移動方向下流側端部に接続された接地
されている第1のコンデンサと、この第1のコン
デンサと並列に前記電極に接続された接地されて
いる直流電源と、前記電源の感光体移動方向上流
側端部に第2のコンデンサを介して接続され、最
大電圧が前記直流電源の電圧よりも小さい接地さ
れている交流電源とを具備することを特徴とする
帯電装置。
1. A device that is electrically charged by bringing a mechanically flexible contactor having a predetermined electrical resistance into contact with a moving photoreceptor whose supporting portion is grounded, which supports the contactor, and A backing electrode is placed facing the photoconductor and has a moderate resistance while maintaining a very small distance between the two electrodes, and a grounded electrode is connected to the downstream end of this electrode in the direction of movement of the photoconductor. 1, a grounded DC power supply connected to the electrode in parallel with the first capacitor, and a second capacitor connected to the upstream end of the power supply in the direction of movement of the photoreceptor, A charging device comprising: a grounded AC power source whose voltage is lower than the voltage of the DC power source.
JP3009480A 1980-03-10 1980-03-10 Electric charging method Granted JPS56126862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3009480A JPS56126862A (en) 1980-03-10 1980-03-10 Electric charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3009480A JPS56126862A (en) 1980-03-10 1980-03-10 Electric charging method

Publications (2)

Publication Number Publication Date
JPS56126862A JPS56126862A (en) 1981-10-05
JPS639235B2 true JPS639235B2 (en) 1988-02-26

Family

ID=12294189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3009480A Granted JPS56126862A (en) 1980-03-10 1980-03-10 Electric charging method

Country Status (1)

Country Link
JP (1) JPS56126862A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168174A (en) * 1986-12-25 1987-07-24 Toshiba Corp Electrostatic charging device
DE69621869T2 (en) * 1995-03-30 2002-12-19 Canon Kk Charging section, process cassette and electrographic device with the charging section

Also Published As

Publication number Publication date
JPS56126862A (en) 1981-10-05

Similar Documents

Publication Publication Date Title
JP2561917B2 (en) Corona generator
US4455078A (en) Charging device having a conductive particle impregnated strand lined contact member
US4371252A (en) Contact type charging device with pliable contact member
US2879395A (en) Charging device
US4761709A (en) Contact brush charging
EP0045595A1 (en) Electrostatographic process and apparatus
US3146385A (en) Xerographic plate charging method and apparatus
US4585320A (en) Corona generating device
US4585323A (en) Corona generating device
US6061539A (en) Charging member, charging device and image forming apparatus
JP3392940B2 (en) Apparatus for developing latent images recorded on surfaces
US2912586A (en) Xerographic charging
JPS6232468B2 (en)
CA1203839A (en) Conductive charge/discharge device
US5220481A (en) Composite to enable contact electrostatic voltage sensing
FI57185B (en) SAETT ATT FRAMSTAELLA EN TRAOD FOER EN KORONAGENERATOR
US3546545A (en) Method of charging a photoconductive insulating layer
EP0004380B1 (en) Scorotron charging apparatus
JPS639235B2 (en)
US5483324A (en) Charging device for an image forming apparatus
EP0055984B1 (en) Method and apparatus of producing a relatively high charge on charge-retaining materials
JP3174306B2 (en) Transfer device and electrophotographic device
US8135309B2 (en) Compact, long life charging device
JPH0324669B2 (en)
US6070033A (en) Charging device for an electrophotographic imaging forming system utilizing thin film conducting members