JPS6391470A - Production unit for frozen grain - Google Patents

Production unit for frozen grain

Info

Publication number
JPS6391470A
JPS6391470A JP23869586A JP23869586A JPS6391470A JP S6391470 A JPS6391470 A JP S6391470A JP 23869586 A JP23869586 A JP 23869586A JP 23869586 A JP23869586 A JP 23869586A JP S6391470 A JPS6391470 A JP S6391470A
Authority
JP
Japan
Prior art keywords
frozen
refrigerant
gas
frozen grain
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23869586A
Other languages
Japanese (ja)
Other versions
JPH0781763B2 (en
Inventor
多計城 秦
多田 益太
宏之 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Sanso Co Ltd
Original Assignee
Taiyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Sanso Co Ltd filed Critical Taiyo Sanso Co Ltd
Priority to JP23869586A priority Critical patent/JPH0781763B2/en
Priority to EP87304480A priority patent/EP0266859A1/en
Priority to US07/072,507 priority patent/US4748817A/en
Publication of JPS6391470A publication Critical patent/JPS6391470A/en
Publication of JPH0781763B2 publication Critical patent/JPH0781763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ブラスト、クリーニング等の表面処理用の砥
粒、研磨材等として好適に用いうる氷粒等の凍結粒を製
造するための装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an apparatus for producing frozen particles such as ice particles that can be suitably used as abrasive particles, abrasive materials, etc. for surface treatments such as blasting and cleaning. It is related to.

(従来の技術) 従来の凍結粒製造装置として1例えば特公昭58−17
392号に開示されたものが知られている。
(Prior art) As a conventional frozen grain production device, for example,
The one disclosed in No. 392 is known.

この装置は、第9図に示す如く、凍結粒製造容器1の」
二部に原料噴霧ノズル3を設け、このノズル3の近傍下
方部位に環状の冷媒噴出管4,5を容器内壁面に沿わせ
て設け、容器底部にスクレーパ6を配設したものである
。したがって、噴出管4.5から容器内方に向けて液体
窒素等の冷媒を噴出すると共にノズル3から水等の液状
原料を下向きに噴霧すると、原料の噴霧粒子2aは、そ
れが自然落下する間に噴出冷媒及びその蒸発ガスと十字
流接触、向流接触又は併流接触して熱交換され、凍結す
る。この凍結粒2bは容器底部に堆積し、スクレーパ6
により容器1外に回収される7かかる装置では、噴出冷
媒の蒸発ガスにより容器1内の冷気相温度が一定温度以
下(例えば、冷媒として液体窒素を用いた場合において
は一60℃以下)となると、噴出管4,5からの噴出冷
媒が蒸発せず、液体のまま容器底部に落下してしまう虞
れがある。このような事態を避けるには、第9図に示す
如く、噴出管4,5をノズル3に近づけて、冷媒の噴出
領域における冷気相温度が一定温度以下に下がらないよ
うにしておく必要がある。
This device, as shown in FIG.
A raw material spray nozzle 3 is provided in the second part, annular refrigerant jet pipes 4 and 5 are provided below the nozzle 3 along the inner wall surface of the container, and a scraper 6 is provided at the bottom of the container. Therefore, when a refrigerant such as liquid nitrogen is ejected from the ejection pipe 4.5 toward the inside of the container and a liquid raw material such as water is sprayed downward from the nozzle 3, the sprayed particles 2a of the raw material are Heat is exchanged with the jetted refrigerant and its evaporated gas through cross-flow contact, counter-current contact, or co-current contact, and the refrigerant is frozen. The frozen particles 2b are deposited on the bottom of the container, and the scraper 6
7 In such a device, when the temperature of the cold gas phase in the container 1 becomes below a certain temperature (for example, below -60°C when liquid nitrogen is used as the refrigerant) due to the evaporated gas of the ejected refrigerant, There is a risk that the refrigerant jetted out from the jetting pipes 4 and 5 will not evaporate and fall to the bottom of the container as a liquid. In order to avoid such a situation, as shown in Fig. 9, it is necessary to move the ejection pipes 4 and 5 close to the nozzle 3 so that the temperature of the cold gas phase in the refrigerant ejection area does not fall below a certain temperature. .

つまり、噴霧粒子2aが噴霧直後に冷媒の噴出領域を通
過するようにして、噴出冷媒の蒸発を噴霧粒子2aとの
熱交換によって促進させるのである。
That is, the spray particles 2a pass through the refrigerant ejection area immediately after being sprayed, and the evaporation of the ejected refrigerant is promoted by heat exchange with the spray particles 2a.

(発明が解決しようとする問題点) ところが、このように噴霧粒子2aが噴霧直後に噴出冷
媒と接触するようにしておくと、噴霧粒子2aがその表
面張力によって球形となる前に噴出冷媒に衝突すること
から、どうしても均一な球形の凍結粒2bを得ることが
できない。例えば卵形の如き歪な形状の凍結粒2bを得
ることができるに過ぎない、しかも、噴出冷媒との衝突
によって噴霧粒子同志がくっつき、そのまま凍結される
虞れがあり、均一粒径の凍結粒2bを得ることができな
い。そして、このような凍結粒2bがブラスト、クリー
ニング等の砥粒、研磨材等としては甚だ不適当なもので
あることは云うまでもない。
(Problem to be Solved by the Invention) However, if the spray particles 2a are brought into contact with the jetted refrigerant immediately after being sprayed, the spray particles 2a collide with the jetted refrigerant before becoming spherical due to their surface tension. Therefore, uniform spherical frozen particles 2b cannot be obtained. For example, it is only possible to obtain frozen particles 2b with a distorted shape such as an oval shape, and there is a risk that the sprayed particles will stick together due to collision with the ejected refrigerant and be frozen as they are, and frozen particles of uniform particle size may be obtained. I can't get 2b. Needless to say, such frozen particles 2b are extremely unsuitable as abrasive grains, polishing materials, etc. for blasting, cleaning, etc.

本発明は、かかる点に鑑み、球形をなす均一粒径の凍結
粒を確実に製造しうる凍結粒製造装置を提供することを
目的とするものである。
In view of the above, an object of the present invention is to provide a frozen grain production apparatus that can reliably produce frozen grains having a uniform particle size and having a spherical shape.

(問題点を解決するための手段) 本発明の凍結粒製造装置は、凍結粒製造容器内を冷気相
領域とその下位の冷媒蒸発ガス発生領域とに区画する網
状体を備えた凍結粒回収手段と、冷媒蒸発ガス発生領域
において液体窒素等冷媒の蒸発ガスを発生させる冷媒蒸
発ガス発生手段と、冷気相領域の上部に設けた冷気排出
口の近傍位において水等の液状被凍結原料を冷気相領域
に噴霧する噴霧手段とを設けて、冷気相領域において。
(Means for Solving the Problems) The frozen grain production apparatus of the present invention has a frozen grain recovery means equipped with a net-like body that partitions the inside of the frozen grain production container into a cold gas phase region and a lower refrigerant evaporation gas generation region. , a refrigerant evaporative gas generating means for generating evaporative gas of a refrigerant such as liquid nitrogen in a refrigerant evaporative gas generating region, and a refrigerant evaporative gas generating means for generating evaporative gas of a refrigerant such as liquid nitrogen, and a refrigerant evaporative gas generating means for generating evaporative gas of a refrigerant such as liquid nitrogen into a cold gas phase from a liquid material to be frozen such as water at a position near a cold air discharge port provided at the upper part of the cold gas phase region. atomizing means for atomizing the region in the cold gas phase region.

網状体を通過して冷気排出口方向に上昇する冷媒蒸発ガ
スと被凍結原料の噴霧粒子とを接触させ熱交換させるこ
とによって、この噴霧粒子を網状体上に落下到達する前
に凍結せしめるように楕成したものである。
By bringing the evaporated refrigerant gas, which passes through the mesh body and rises toward the cold air outlet, into contact with the spray particles of the material to be frozen and causes heat exchange, the spray particles are frozen before they fall onto the network body. It is oval.

(作用) 冷媒蒸発ガスは、冷媒蒸発ガス発生領域から網状体を通
過して冷気相領域に至り、該領域を冷気排出口方向に上
昇する。このとき、冷媒蒸発ガスは、被凍結原料の噴霧
粒子と逐次熱交換することによって密度差を生じながら
冷気排出口方向に徐々に上昇する。
(Operation) Refrigerant evaporative gas passes through the reticulated body from the refrigerant evaporative gas generation region to reach the cold gas phase region, and rises through the region toward the cold air outlet. At this time, the refrigerant evaporated gas gradually rises toward the cold air outlet while generating a density difference by sequentially exchanging heat with the sprayed particles of the raw material to be frozen.

一方、被凍結原料の噴霧粒子は、冷気相領域を自然落下
し、この間において上昇してくる冷媒蒸発ガスと向流接
触して徐々に熱交換が進み、凍結する。このように、噴
霧粒子は冷媒蒸発ガスのみの存在下で凍結することから
、その表面張力による球形形成を妨げられず1球形状の
凍結粒となる。
On the other hand, the sprayed particles of the raw material to be frozen naturally fall through the cold gas phase region, during which they come into countercurrent contact with the rising evaporated refrigerant gas, gradually undergo heat exchange, and are frozen. In this way, since the sprayed particles are frozen in the presence of only the refrigerant evaporation gas, their spherical formation due to surface tension is not prevented and they become spherical frozen particles.

また噴霧粒子は徐々に上昇する冷媒蒸発ガスと接触する
のみであるから、噴霧粒子同志がくっついたりすること
がなく、各噴霧粒子が分散した状態で凍結し、均一粒径
の凍結粒が与えられる。
In addition, since the spray particles only come into contact with the gradually rising evaporated refrigerant gas, the spray particles do not stick together, and each spray particle freezes in a dispersed state, giving frozen particles of uniform particle size. .

そして、凍結粒は網状体上に落下到達し、凍結粒回収手
段により回収される。網状体にはその下方から冷媒蒸発
ガスが通過していることから、網状体上に到達した凍結
粒は冷媒蒸発ガスによって保冷されると共にその流動作
用を受け1回収時に凍結粒の硬度低下又は凍結粒同志の
融着等の不都合が生じることはない。
Then, the frozen particles fall onto the net-like body and are collected by the frozen particle collecting means. Since evaporated refrigerant gas passes through the net-like body from below, the frozen grains that reach the net-like body are kept cool by the evaporated refrigerant gas and are affected by its flow, causing the hardness of the frozen grains to decrease or freeze upon collection. Inconveniences such as fusion of grains do not occur.

(実施例) 以下、本発明の構成を第1図〜第7図に示す実施例に基
づいて具体的に説明する。
(Example) Hereinafter, the structure of the present invention will be specifically explained based on the example shown in FIGS. 1 to 7.

第1図に示す凍結粒製造装置において、11は凍結粒製
造容器、12は凍結粒回収手段、13は噴霧手段、14
は冷媒蒸発ガス発生手段である。
In the frozen grain production apparatus shown in FIG. 1, 11 is a frozen grain production container, 12 is a frozen grain recovery means, 13 is a spraying means, and 14
is a refrigerant evaporative gas generating means.

凍結粒製造容器11は、周壁の上端部に冷気排出口11
aを有する横断面形状正方形(−辺長さ400mm)の
断熱密閉容器に構成しである。
The frozen grain production container 11 has a cold air outlet 11 at the upper end of the peripheral wall.
It was constructed as an insulated closed container with a square cross-sectional shape (-side length 400 mm).

凍結粒回収手段12は、下窄まり角錐状の網状体15と
その最下端部たる中心部に垂設した凍結粒取出管16と
を備えてなる。網状体15は容器11の内周壁に取付け
てあり、容器11内を上位の冷気相領域17aと下位の
冷媒蒸発ガス発生領域17bとに区画している。この網
状体15の構成材としては、耐低温性を有し且つ冷媒蒸
発ガスのみを通過させ得る程度のメッシュ度の金網(例
えば、150メツシユの5US304製網)等を使用す
る。取出管16の下端部は容器底壁を貫通して容器11
外に導いてあり、ロータリーバルブ等の凍結粒取出弁1
6aを設けである。なお、網状体15の水平面に対する
傾斜角θは、冷媒蒸発ガスの蒸発量、凍結粒径等の条件
やスクレーパの採否に応じて設定すればよいが、その角
度はスクレーパを使用しない場合、標準的には45°程
度に選定すればよい。
The frozen grain collecting means 12 includes a pyramid-shaped network body 15 that narrows downward, and a frozen grain extraction pipe 16 that is vertically disposed at the center of the network body 15 at its lowermost end. The mesh body 15 is attached to the inner peripheral wall of the container 11, and divides the inside of the container 11 into an upper cold gas phase region 17a and a lower refrigerant evaporative gas generation region 17b. As a constituent material of the mesh body 15, a wire mesh (for example, a 5US304 mesh of 150 mesh) or the like is used, which has low temperature resistance and has a mesh degree that allows only the evaporated gas of the refrigerant to pass through. The lower end of the take-out pipe 16 penetrates the bottom wall of the container and
A frozen particle removal valve such as a rotary valve that is led outside 1
6a is provided. The inclination angle θ of the mesh body 15 with respect to the horizontal plane may be set depending on conditions such as the evaporation amount of refrigerant evaporation gas and the frozen particle size, and whether or not a scraper is used. The angle may be selected to be about 45°.

噴震手段13は、容器11の土壁中央部位に噴霧器18
を設けると共に、この噴霧器18に液状被凍結原料例え
ば水を供給する原料供給管19及び適宜に加圧且つ冷却
した窒素ガス等の噴霧ガスを導入する噴霧ガス導入管2
0を接続してなり、被凍結原料たる水を噴霧ガスの圧力
によって噴霧器18先端のノズル18aから下方向に霧
状に噴出するものである。この噴霧粒子たる水滴24a
の大きさは、ノズル口径及び噴霧圧力によって適宜に調
整できる。なお、被凍結原料としては、水の他、冷媒蒸
発ガスとの熱交換によって凍結するものであることを条
件として種々の液体を使用することが可能である。
The squirting means 13 includes a sprayer 18 at the center of the earthen wall of the container 11.
and a raw material supply pipe 19 for supplying a liquid material to be frozen, such as water, to the sprayer 18, and a spray gas introduction pipe 2 for introducing a suitably pressurized and cooled spray gas such as nitrogen gas.
0 is connected, and water, which is the raw material to be frozen, is sprayed downward in the form of a mist from the nozzle 18a at the tip of the sprayer 18 by the pressure of the spray gas. Water droplets 24a which are the spray particles
The size can be adjusted as appropriate by the nozzle diameter and spray pressure. In addition to water, various liquids can be used as the raw material to be frozen, provided that they are frozen by heat exchange with the refrigerant evaporation gas.

冷媒蒸発ガス発生手段14は、冷媒蒸発ガス発生領域1
7bに冷媒供給管21から所定量の冷媒例えば液体窒素
22を供給収容し、この冷媒22中にバブリング管23
から窒素ガス、アルゴンガス又は乾燥菟気等のバブリン
グ用ガスを注入することによって、冷媒蒸発ガス22a
を発生させるようにするに のように構成した凍結粒製造装置にあっては、冷媒蒸発
ガス22aは、冷媒蒸発ガス発生領域17bから網状体
15を通過して冷気相領域17aに至り、該領域17a
を冷気排出口11a方向に上昇する。すなわち、冷媒蒸
発ガス22aは、被凍結原料の噴霧粒子つまり霧状の水
滴24aと逐次熱交換することによって密度差を生じな
がら冷気排出口11a方向に徐々に上昇する。一方、水
i1! 24 aは、冷気相領域17aを自然落下し、
この間において上昇してくる冷媒蒸発ガス22aと向流
接触して徐々に熱交換が進んで凍結し、その凍結粒たる
氷粒24bは、スクレーパを使用する代りに傾斜した網
状体15を使用する場合、網状体15上に落下するが、
網状体15上に溜積するすることなく回収される。
The refrigerant evaporative gas generation means 14 includes a refrigerant evaporative gas generation region 1
A predetermined amount of refrigerant, such as liquid nitrogen 22, is supplied from the refrigerant supply pipe 21 to the refrigerant 7b, and a bubbling pipe 23 is inserted into the refrigerant 22.
By injecting bubbling gas such as nitrogen gas, argon gas, or dry smelt gas from the refrigerant evaporated gas 22a,
In the frozen particle manufacturing apparatus configured to generate 17a
is raised toward the cold air outlet 11a. That is, the refrigerant evaporated gas 22a gradually rises toward the cold air outlet 11a while generating a density difference by successively exchanging heat with the sprayed particles of the raw material to be frozen, that is, the mist-like water droplets 24a. On the other hand, water i1! 24a naturally falls through the cold gas phase region 17a,
During this period, the ice grains 24b come into countercurrent contact with the rising refrigerant evaporated gas 22a, gradually proceeding with heat exchange, and are frozen. , falls onto the net-like body 15, but
It is collected without accumulating on the net-like body 15.

ところで、上記装置を用いて本発明者が実験したところ
、ノズル18aからの水噴霧量を0.2Q/+ain 
(12Q/h)とした場合、冷気相領域17aの下部側
部分つまり網状体15の上方近傍領域における平均冷気
相温度が水噴霧状態で一80℃以下となっており、更に
噴霧された水W424a径が300μm以下で且つ水噴
霧圧力が4Kg/cm2以下であれば、冷気相領域17
aの有効高さつまりノズル18aから網状体15までの
高さHを僅か1m程度にまで小さくしても、充分良質の
氷粒24bを得ることができることを見出した。冷気相
温度は冷媒蒸発ガス22aの発生量と密接な関係があり
、0.2Ω/minの水噴霧状態(冷気相領域17aの
横断面積が0・16m2であることから、面積負荷は7
5Kg/m2・hであリ、冷気負荷は25ONm3/m
2・hである)において、液体窒素22の蒸発ガス発生
量を2ONm3/h、4ONm’/h、6ONm”/h
としたときの冷気相領域17aの横断面における温度分
布は第8図に示す通りである。したがって、気相横断面
積が0.16m2、水噴霧量が0.2Q/min (1
2Q/h)、水噴霧粒径が300μm以下の場合、平均
冷気相温度を一80℃以下にするためには冷媒ガス発生
量を4ONm3/h以上にしておく必要がある。この場
合、水噴霧量を微凍結粒とするための冷却時間をとるの
に必要な水噴霧量の落下距離は約1mであった。
By the way, when the inventor conducted an experiment using the above device, the amount of water sprayed from the nozzle 18a was determined to be 0.2Q/+ain.
(12Q/h), the average cold gas phase temperature in the lower part of the cold gas phase region 17a, that is, in the upper vicinity region of the mesh body 15, is 180° C. or less in the water spray state, and the sprayed water W424a If the diameter is 300μm or less and the water spray pressure is 4Kg/cm2 or less, the cold gas phase region 17
It has been found that ice grains 24b of sufficiently high quality can be obtained even if the effective height of a, that is, the height H from the nozzle 18a to the net-like body 15, is reduced to only about 1 m. The cold gas phase temperature is closely related to the amount of refrigerant evaporation gas 22a generated, and the water spray state of 0.2 Ω/min (since the cross-sectional area of the cold gas phase region 17a is 0.16 m2, the area load is 7
5Kg/m2・h, cold air load is 25ONm3/m
2.h), the amount of evaporative gas generated from liquid nitrogen 22 is 2ONm3/h, 4ONm'/h, 6ONm''/h.
The temperature distribution in the cross section of the cold gas phase region 17a is as shown in FIG. Therefore, the cross-sectional area of the gas phase is 0.16 m2, and the amount of water spray is 0.2 Q/min (1
2Q/h), when the water spray particle size is 300 μm or less, the refrigerant gas generation rate needs to be 4ONm3/h or more in order to keep the average cold gas phase temperature below -80°C. In this case, the distance the water spray fell was about 1 m, which was necessary to allow enough cooling time to turn the water spray into finely frozen particles.

このように冷気相領域17aの有効高さHを1m程度に
まで低くすることが可能となることから、凍結粒製造容
器11延いては凍結粒製造装置を思い切って小形化する
ことができる。なお、噴霧圧力が低い場合或は噴霧粒子
径したがって凍結粒径が小さい場合には、被凍結原料の
噴霧方向を上記実施例の如く下向きにして差支えないが
、噴霧圧力が高い場合或は凍結粒径が大きい場合には、
噴霧粒子24aと冷媒蒸発ガス22aとの接触時間を充
分に確保する必要があるため、第1図に示す如くノズル
18aによる噴霧方向を下向きにすると、容器11を大
形化せざるを得ない、したがって、このような場合には
、第4図に示す如く、噴震方向を水平方向にすれば、容
器11を大形化づることなく、噴霧粒子24aと冷媒蒸
発ガス22aとの接触時間を充分に確保し得るので都合
がよい。
Since it is possible to reduce the effective height H of the cold gas phase region 17a to about 1 m in this way, the frozen grain production container 11 and the frozen grain production apparatus can be drastically downsized. Note that when the spray pressure is low or when the spray particle size and therefore the frozen particle size are small, the spraying direction of the raw material to be frozen may be directed downward as in the above example; however, when the spray pressure is high or the frozen particle size is small, If the diameter is large,
Since it is necessary to ensure sufficient contact time between the spray particles 24a and the refrigerant evaporated gas 22a, if the spray direction by the nozzle 18a is directed downward as shown in FIG. 1, the container 11 will have to be made larger. Therefore, in such a case, if the ejecting direction is set horizontally as shown in FIG. 4, the contact time between the spray particles 24a and the refrigerant evaporated gas 22a will be sufficient without increasing the size of the container 11. This is convenient because it can be secured at any time.

網状体lS上に到達した氷粒24bは、網状体15が下
り傾斜していることと冷媒蒸発ガス22aが網状体15
を上方に通過することとから、網状体15上をその傾斜
に沿って流動し、取出管16内に回収される。回収され
た氷粒24bは、取出弁16aの操作により容器11外
に取出すことができ、ブラスト等の用に供せられる。噴
霧した水滴を凍結粒にする条件としては、水噴霧量、凍
結粒を形成するための冷却用気相温度、気相温度を一定
に保つに必要な冷媒ガス発生量2粒径、凍結粒落下速度
、凍結粒の冷気との接触時間を考慮する必要があるが、
これ等は当業者であれば実験によって適宜定め得るとこ
ろである。
The ice particles 24b that have reached the net-like body 1S are caused by the fact that the net-like body 15 is sloped downward and the refrigerant evaporated gas 22a is
, it flows over the net-like body 15 along its slope and is collected into the take-out tube 16 . The collected ice grains 24b can be taken out of the container 11 by operating the take-out valve 16a, and are used for blasting or the like. The conditions for turning sprayed water droplets into frozen particles include the amount of water sprayed, the temperature of the cooling gas phase to form frozen particles, the amount of refrigerant gas generated necessary to keep the gas phase temperature constant2 particle diameter, and the drop of frozen particles. It is necessary to consider the speed and contact time of frozen particles with cold air,
Those skilled in the art can appropriately determine these through experiments.

ところで、氷粒24bの取出管16への回収の良否は、
網状体15の傾斜角θ、鋼状体15上の。
By the way, the quality of collecting the ice grains 24b into the extraction pipe 16 is as follows.
The inclination angle θ of the mesh body 15 on the steel body 15.

温度、冷媒蒸発ガス22aの網状体通過速度、氷粒24
bの粒径に関係するが、このような条件に拘らず、網状
体15にバイブレータ等の振動、揺動又は振盪付与装置
(図示せず)によって連続的若しくは間欠的に適度の振
動、揺動又は振盪を付与するようにしておけば、氷粒2
4bの取出管16への回収を良好に行うことができる。
Temperature, refrigerant evaporation gas 22a passage speed through the mesh, ice particles 24
Although it is related to the particle size of b, regardless of these conditions, the net-like body 15 is continuously or intermittently subjected to moderate vibration or rocking by a vibration, rocking, or shaking device (not shown) such as a vibrator. Or, if you apply shaking, 2 ice particles
4b can be efficiently recovered into the take-out pipe 16.

このような凍結粒回収手段12は、第2図、第3図若し
くは第5図〜第7図に夫々示す如く、製造された氷粒2
4bを容器11外の凍結粒噴射器25に直接供給するよ
うに構成してもよい。
As shown in FIG. 2, FIG. 3, or FIGS. 5 to 7, such frozen grain collecting means 12 collects produced ice grains 2
4b may be configured to be directly supplied to the frozen particle injector 25 outside the container 11.

すなわち、第2図に示す凍結粒回収手段12にあっては
、凍結粒製造容器11の上部に冷気排出口11aを介し
て連通ずる排熱回収室26を設け、この排熱回収室26
の下壁部に凍結粒噴射器25を取付け、この凍結粒噴射
器25に凍結粒取出管16及びドライブガス導入管27
を接続して、適宜圧に加圧した空気、窒素ガス等のドラ
イブガスを導入管27から噴射器25に導入すると、こ
のドライブガスの作用によるエゼクタ効果によって。
That is, in the frozen grain recovery means 12 shown in FIG.
A frozen grain injector 25 is attached to the lower wall of the frozen grain injector 25, and a frozen grain extraction pipe 16 and a drive gas introduction pipe 27 are connected to the frozen grain injector 25.
When a drive gas such as air or nitrogen gas pressurized to an appropriate pressure is introduced into the injector 25 from the introduction pipe 27, an ejector effect is caused by the action of this drive gas.

凍結粒24bが取出g1.6を経て噴射器25に吸引さ
れて、被処理物体28にその表面処理を行うべく噴射さ
れるように構成しである。そして、前記導入管27の排
熱回収室26内における部分29は、ドライブガスを冷
気排出口11aから排熱回収室26にもたらされた冷媒
蒸発ガス22aと熱交換して冷却させる一種の熱交換器
に構成しである。すなわち、この熱交換器たる導入管部
分29は、冷媒蒸発ガス22aとの接触面積を大きくす
べく蛇行状に配管すると共に、第3図に示す如く、外周
部に多数のフィン29aを突設した厚肉管に構成して、
伝熱面積の増大と蓄熱効果の向上を図っている。導入管
部分29の構成材としては熱伝導率の高い銅合金等が適
当である。
The structure is such that the frozen particles 24b are sucked into the injector 25 through the extraction g1.6, and are injected onto the object 28 to be treated to perform surface treatment thereon. A portion 29 of the introduction pipe 27 inside the exhaust heat recovery chamber 26 is a type of heat source that cools the drive gas by exchanging heat with the refrigerant evaporative gas 22a brought into the exhaust heat recovery chamber 26 from the cold air outlet 11a. It is configured in an exchanger. That is, the introduction pipe section 29 serving as the heat exchanger is arranged in a meandering manner to increase the contact area with the refrigerant evaporated gas 22a, and has a large number of fins 29a protruding from the outer periphery as shown in FIG. Constructed into a thick-walled tube,
The aim is to increase the heat transfer area and improve the heat storage effect. A suitable material for the introduction pipe portion 29 is a copper alloy or the like having high thermal conductivity.

このようにしておくと、ドライブガス専用の冷却手段を
設けずとも、ドライブガスを充分冷却し得て、噴射され
る凍結粒24bの硬度低下又は凍結粒24b同志の融着
等を防止し、ブラスト、クリーニング等の処理を良好に
行いうる。しかも、導入管部分29をフィン29a付の
厚肉管に構成したことによって、凍結粒製造装置を間欠
運転する場合において冷媒蒸発ガス22aの発生が行わ
れていないときにも、蓄熱効果によりドライブガスの冷
却を確保することができる。なお、上記構成としておく
ことで、ドライブガスを冷気排出口11、 aから排出
される冷媒蒸発ガス22aの温度近くまで冷却すること
が可能であるが、それ以下に冷却する必要がある場合に
は、例えば液体窒素等の冷媒を排熱回収室26の上部に
設けた冷媒噴霧ノズル30から導入管部分29に噴霧さ
せるようにすればよい。
By doing so, the drive gas can be sufficiently cooled without providing a dedicated cooling means for the drive gas, preventing a decrease in the hardness of the frozen particles 24b to be injected or fusion of the frozen particles 24b, etc., and blasting. , cleaning, etc. can be performed well. Furthermore, by configuring the introduction pipe portion 29 as a thick-walled pipe with fins 29a, even when the refrigerant evaporative gas 22a is not generated in the case of intermittent operation of the frozen particle manufacturing apparatus, the drive gas is cooling can be ensured. Note that with the above configuration, it is possible to cool the drive gas to a temperature close to the temperature of the refrigerant evaporative gas 22a discharged from the cold air outlet 11,a, but if it is necessary to cool it to a temperature lower than that, For example, a refrigerant such as liquid nitrogen may be sprayed into the introduction pipe portion 29 from a refrigerant spray nozzle 30 provided at the upper part of the exhaust heat recovery chamber 26.

また、網状体15を、第1図、第2図、第4図に示す如
く傾斜状に張設せず、第5図に示す如く水平に張設して
、網状体15上に溜積した凍結粒24aを、シリンダー
31等により網状体15上を進退せし、ぬられるスクレ
ーバ32によって、容器11に連設した凍結粒回収室3
3のホッパ一部33aに回収するようにしてもよい。ホ
ッパ一部33aに回収した凍結粒24bは、導入管27
によるドライブガスの導入によって、凍結粒供給管34
を介して噴射器25に吸込まれて被処理物体28に噴射
されるようになっている。
Moreover, the net-like body 15 was not stretched in an inclined manner as shown in FIGS. 1, 2, and 4, but was stretched horizontally as shown in FIG. The frozen grains 24a are moved forward and backward on the net-like body 15 by a cylinder 31 or the like, and are collected in a frozen grain recovery chamber 3 connected to the container 11 by a wetted scraper 32.
Alternatively, the liquid may be collected in the hopper part 33a of No. 3. The frozen grains 24b collected in the hopper part 33a are transferred to the introduction pipe 27
By introducing the drive gas, the frozen grain supply pipe 34
The liquid is sucked into the injector 25 through the injector 25 and is injected onto the object to be treated 28 .

さらに凍結粒回収手段12は、網状体の容器内部分を容
器11外に移動できるように構成したものでもよい。例
えば、第6に示す如く、矢印方向に回行駆動する網状体
たる無端メツシュベルト15′を備えてなるコンベア3
5でもって容器11内を上下二頭域17a、17bに区
画すると共に、コンベア35の搬送終端部を凍結粒回収
室33に導いて、メツシュベルト15′の容器内部分−
ヒ1こ溜積した凍結粒24bをコンベア35の搬送終端
部から凍結粒回収室33のホッパ一部33aに回収する
ようにする。また第7図に示す如く、網状体たる回転盤
15′を適宜の駆動機構36により水平回転させること
によって、回転盤15′の容器内部分上に溜積した凍結
粒24bを凍結粒回収室33内にもたらした上、適宜の
スクレーパ装置37でホッパ一部33aに回収するよう
にする、(発明の効果) 本発明の凍結粒製造装置は、液状被凍結原料の噴霧粒子
を冷媒蒸発ガスのみからなる冷気相中でその冷気との熱
交換により凍結させるように構成したものであるから、
従来装置における如く冷媒の噴出液粒子による衝突作用
によって噴霧粒子の表面張力による球形変化及び分散化
が妨げられるようなことが全くなく、ブラスト、クリー
ニング等の砥粒、研磨材等として最適するところの球形
をなし且つ均一粒径の凍結粒を確実に製造することがで
きるものである。しかも、網状体上に溜積した凍結粒が
網状体を上方に通過する冷媒蒸発ガスによって保冷、流
動せしめられるから、凍結粒の製造を、凍結粒の硬度が
低下したり又は凍結粒同志が融着したりする等の不都合
を生じることなく、良好に行うことができるものである
Further, the frozen grain collecting means 12 may be configured so that the inner part of the reticulated body can be moved out of the container 11. For example, as shown in No. 6, a conveyor 3 is provided with an endless mesh belt 15' which is a mesh body and is driven to rotate in the direction of the arrow.
5 divides the inside of the container 11 into upper and lower two-headed regions 17a and 17b, and guides the conveyance terminal end of the conveyor 35 to the frozen grain collection chamber 33 to separate the inside of the container of the mesh belt 15'.
The accumulated frozen grains 24b are collected from the conveyance terminal end of the conveyor 35 to a part of the hopper 33a of the frozen grain collection chamber 33. Further, as shown in FIG. 7, by horizontally rotating the rotary disk 15', which is a net-like body, by an appropriate drive mechanism 36, the frozen particles 24b accumulated on the inner part of the container of the rotary disk 15' are transferred to the frozen particle collection chamber 33. (Effects of the Invention) The frozen grain manufacturing apparatus of the present invention is capable of producing sprayed particles of a liquid raw material to be frozen only from refrigerant evaporation gas. Because it is configured to freeze by heat exchange with the cold air in the cold air phase,
Unlike conventional devices, the collision effect of the ejected liquid particles of the refrigerant does not impede the spherical change and dispersion of the sprayed particles due to the surface tension, making it ideal for use as abrasive grains and abrasive materials for blasting, cleaning, etc. It is possible to reliably produce frozen particles having a spherical shape and a uniform particle size. Furthermore, since the frozen particles accumulated on the net are kept cool and made to flow by the refrigerant evaporation gas passing upward through the net, production of frozen particles can be prevented by reducing the hardness of the frozen particles or by causing the frozen particles to melt together. This can be done successfully without causing any inconveniences such as staining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る凍結粒製造装置の一実施例を示す
概略の縦断側面図、第2図は同装置の変形例を示す概略
の縦断側面図、第3図はその要部の拡大断面図、第4図
〜第7図は夫々同装置の他の変形例を示す概略の縦断側
面図、第8図は冷気層領域における冷気相の温度分布と
冷媒蒸発ガス発生領域における冷媒蒸発ガスの発生量と
の関係を示すグラフであり、第9図は従来装置を示す概
略の縦断側面図である。 11・・・・凍結粒製造容器、lla・・・・冷気排出
口、12・・・・凍結粒回収手段、]3・・・・噴霧手
段。 14・・・・冷媒蒸発ガス発生手段、15H15’ 4
15′・・・・網状体、16・・・・凍結粒取出管、1
7a・・・・冷気相領域、17b・・・・冷媒蒸発ガス
発生領域、18・・・・噴霧器、21・・・・冷媒供給
管、22・・・・冷媒、22a・・・・冷媒蒸発ガス、
23・・・・バブリング管、24a・・・・被凍結原料
の噴霧粒子、24b・・・・凍結粒、25・・・・凍結
粒噴射器、26・・・・排熱回収室、27・・・・ドラ
イブガス導入管。 28・・・・被処理物体、29・・・・導入管部分(熱
交換器)、30・・・・冷媒噴射ノズル、32・・・・
スクレーパ、33・・・・凍結粒回収室、33a・・・
・ホッパ一部、34・・・・凍結粒供給管、35・・・
・コンベア、37・・・・スクレーパ装置。 特許出願人  大陽酸素株式会社 gB図 ンシクIJtヒ円1場1にコ5・け1イま!シ【第1図 第2図 113図 第4図 @5図 第6図 第7図 第9図 O
FIG. 1 is a schematic vertical side view showing an embodiment of the frozen grain manufacturing device according to the present invention, FIG. 2 is a schematic vertical side view showing a modification of the same device, and FIG. 3 is an enlarged view of the main parts thereof. 4 to 7 are schematic longitudinal sectional side views showing other modifications of the same device, and FIG. 8 shows the temperature distribution of the cold gas phase in the cold air layer region and the refrigerant evaporation gas in the refrigerant evaporation gas generation region. FIG. 9 is a graph showing the relationship between the generation amount of 11...Frozen grain production container, lla...Cold air outlet, 12...Frozen grain collection means, ]3...Spraying means. 14... Refrigerant evaporative gas generating means, 15H15' 4
15'... Reticular body, 16... Frozen grain removal tube, 1
7a... Cold gas phase region, 17b... Refrigerant evaporation gas generation region, 18... Sprayer, 21... Refrigerant supply pipe, 22... Refrigerant, 22a... Refrigerant evaporation gas,
23... Bubbling pipe, 24a... Sprayed particles of raw material to be frozen, 24b... Frozen particles, 25... Frozen particle injector, 26... Exhaust heat recovery chamber, 27... ...Drive gas introduction pipe. 28...Object to be treated, 29...Introduction pipe portion (heat exchanger), 30...Refrigerant injection nozzle, 32...
Scraper, 33... Frozen grain collection chamber, 33a...
・Part of hopper, 34... Frozen grain supply pipe, 35...
・Conveyor, 37...Scraper device. Patent applicant: Taiyo Sanso Co., Ltd. [Figure 1 Figure 2 Figure 113 Figure 4 @ Figure 5 Figure 6 Figure 7 Figure 9 O

Claims (5)

【特許請求の範囲】[Claims] (1)凍結粒製造容器内を冷気相領域とその下位の冷媒
蒸発ガス発生領域とに区画する網状体を備えた凍結粒回
収手段と、冷媒蒸発ガス発生領域において液体窒素等冷
媒の蒸発ガスを発生させる冷媒蒸発ガス発生手段と、冷
気相領域の上部に設けた冷気排出口の近傍位において水
等の液状被凍結原料を冷気相領域に噴霧する噴霧手段と
を設けて、冷気相領域において、網状体を通過して冷気
排出口方向に上昇する冷媒蒸発ガスと被凍結原料の噴霧
粒子とを接触させ熱交換させることによって、この噴霧
粒子を網状体上に落下到達する前に凍結せしめるように
構成したことを特徴とする凍結粒製造装置。
(1) Frozen grain recovery means equipped with a net-like body that divides the inside of the frozen grain production container into a cold gas phase region and a lower refrigerant evaporative gas generation region; In the cold gas phase region, a refrigerant evaporative gas generating means is provided, and a spraying means is provided for spraying a liquid material to be frozen, such as water, into the cold gas phase region at a position near a cold air outlet provided at the upper part of the cold gas phase region. By bringing the evaporated refrigerant gas, which passes through the mesh body and rises toward the cold air outlet, into contact with the spray particles of the material to be frozen and causes heat exchange, the spray particles are frozen before they fall onto the network body. A frozen grain production device characterized by the following configurations.
(2)前記凍結粒回収手段が、下方向に傾斜する金網等
からなる前記網状体とこの網状体の最下部に接続した凍
結粒取出管とを備えてなることを特徴とする、特許請求
の範囲第1項に記載する凍結粒製造装置。
(2) The frozen grain collection means comprises the net-like body made of a wire mesh or the like that slopes downward, and a frozen grain extraction pipe connected to the lowest part of the net-like body. Frozen grain manufacturing equipment as described in Scope 1.
(3)前記凍結粒回収手段が、前記網状体に振動、揺動
若しくは振盪を付与する装置を備えてなることを特徴と
する、特許請求の範囲第2項に記載する凍結粒製造装置
(3) The frozen grain manufacturing apparatus according to claim 2, wherein the frozen grain collecting means includes a device that applies vibration, rocking, or shaking to the net-like body.
(4)前記凍結粒回収手段が、前記網状体の容器内部分
を凍結粒製造容器外に移動可能に構成してなることを特
徴とする、特許請求の範囲第1項に記載する凍結粒製造
装置。
(4) Frozen grain production according to claim 1, wherein the frozen grain recovery means is configured to be able to move the inner part of the reticulated body to the outside of the frozen grain production container. Device.
(5)前記冷媒蒸発ガス発生手段が、前記冷媒蒸発ガス
発生領域に収容した液体窒素に窒素ガス、アルゴンガス
又は乾燥空気を注入することによって、冷媒蒸発ガスを
発生させるように構成することを特徴とする、特許請求
の範囲第1項、第2項、第3項又は第4項に記載する凍
結粒製造装置。
(5) The refrigerant evaporative gas generation means is configured to generate refrigerant evaporative gas by injecting nitrogen gas, argon gas, or dry air into the liquid nitrogen contained in the refrigerant evaporative gas generation region. A frozen grain production apparatus according to claim 1, 2, 3, or 4.
JP23869586A 1986-10-06 1986-10-06 Frozen grain production equipment Expired - Fee Related JPH0781763B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23869586A JPH0781763B2 (en) 1986-10-06 1986-10-06 Frozen grain production equipment
EP87304480A EP0266859A1 (en) 1986-10-06 1987-05-20 Method and apparatus for producing microfine frozen particles
US07/072,507 US4748817A (en) 1986-10-06 1987-07-13 Method and apparatus for producing microfine frozen particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23869586A JPH0781763B2 (en) 1986-10-06 1986-10-06 Frozen grain production equipment

Publications (2)

Publication Number Publication Date
JPS6391470A true JPS6391470A (en) 1988-04-22
JPH0781763B2 JPH0781763B2 (en) 1995-09-06

Family

ID=17033922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23869586A Expired - Fee Related JPH0781763B2 (en) 1986-10-06 1986-10-06 Frozen grain production equipment

Country Status (1)

Country Link
JP (1) JPH0781763B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211784A (en) * 2011-03-30 2012-11-01 Toyota Motor Corp Atomization inspection device
JP6482691B1 (en) * 2017-11-09 2019-03-13 チュン コー ジェームズ Production equipment for fine ice containing salt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211784A (en) * 2011-03-30 2012-11-01 Toyota Motor Corp Atomization inspection device
JP6482691B1 (en) * 2017-11-09 2019-03-13 チュン コー ジェームズ Production equipment for fine ice containing salt
JP2019086273A (en) * 2017-11-09 2019-06-06 チュン コー ジェームズ Production device of fine ice containing salt content

Also Published As

Publication number Publication date
JPH0781763B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US4748817A (en) Method and apparatus for producing microfine frozen particles
US5435945A (en) Method and apparatus for generating sulphur seed particles for sulphur granule production
CN102089605A (en) Freeze-drying device and freeze-drying method
KR101961809B1 (en) Method and device for producing L-menthol in solid form
US20200023402A1 (en) Fluid bed granulation process
WO2000054876A1 (en) Device and method for producing granules
CN102089606A (en) Freeze-drying device and freeze-drying method
JPS6012895B2 (en) Granulation equipment
RU2283171C2 (en) Method of granulation in fluidized bed and granulator for realization of this method (versions)
JPH0314764B2 (en)
JPS6391470A (en) Production unit for frozen grain
JPH074511B2 (en) Method and apparatus for producing fine frozen particles
JPH0757471B2 (en) Frozen particle injection device
JP3996499B2 (en) Cleaning material manufacturing method, manufacturing apparatus therefor, and cleaning system using the same
JPH0799302B2 (en) Ice grain production equipment
JPH0753704Y2 (en) Frozen grain production equipment
JPS62258976A (en) Frozen-grain production unit
JPS5817392B2 (en) Frozen particulate production equipment
JP4500143B2 (en) Ice blasting device using ice blast
JP2524714B2 (en) Frozen grain manufacturing method
JPH06181689A (en) Method for granulating liquid-like material by freezing and apparatus therefor
JPH05261349A (en) Method and apparatus for washing interior of pipe
JPH081345B2 (en) Ultrafine frozen particle generator
JPH0350472A (en) Frozen particle manufacturing device
JP2605267Y2 (en) Nozzle cleaning structure in fluidized bed processing device for medium sphere

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees