JPS6391081A - Modified preformed chemical mediator - Google Patents

Modified preformed chemical mediator

Info

Publication number
JPS6391081A
JPS6391081A JP23598686A JP23598686A JPS6391081A JP S6391081 A JPS6391081 A JP S6391081A JP 23598686 A JP23598686 A JP 23598686A JP 23598686 A JP23598686 A JP 23598686A JP S6391081 A JPS6391081 A JP S6391081A
Authority
JP
Japan
Prior art keywords
magnetic
complex
magnetic material
chemical mediator
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23598686A
Other languages
Japanese (ja)
Inventor
Yuji Inada
稲田 祐二
Yutaka Tamaura
裕 玉浦
Katsunobu Takahashi
勝宣 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIHAMA HISAHARU
Original Assignee
MIHAMA HISAHARU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIHAMA HISAHARU filed Critical MIHAMA HISAHARU
Priority to JP23598686A priority Critical patent/JPS6391081A/en
Publication of JPS6391081A publication Critical patent/JPS6391081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To disperse a complex of a preformed chemical mediator and a magnetic material into an organic solvent stably and to make it possible to carry out organic synthetic reactions incapable of being done by a conventional bioreactor using an aqueous solution, by modifying the preformed chemical mediator with a lipophilic molecule and bonding the magnetic material to the preformed chemical mediator through the lipophilic molecule to prepare the preformed chemical mediator. CONSTITUTION:A preformed chemical mediator modified with a lipophilic molecule and a complex of a magnetic material and the preformed chemical mediator wherein the magnetic material is bonded through the lipophilic molecule to the preformed chemical mediator. 4-20C alkane, polyethylene terephthalate, etc., are used as the lipophilic molecule. A transition metal, ion or oxide thereof or a compound of the transition metal, etc., and another element may be cited as the magnetic material. When formation reaction of the magnetic material is simultaneously carried out, reaction of ferrous ion and ferric ion can be used. The complex of the magnetic material and the preformed chemical mediator can be rapidly and simply recovered from an organic solvent by magnetic separation and can be reused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、親油性(疎水性)分子で修飾した生理活性物
質および親油性分子を介して磁性体と生理活性物質を結
合させて複合体としたもので、疎水性有機溶媒中で安定
に分散またはコロイドとして溶解して生理活性を示し、
更に磁性を利用して液状で生理活性物質の回収を可能と
したバイオリアクターに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a biologically active substance modified with a lipophilic (hydrophobic) molecule and a complex formed by binding a magnetic substance and a physiologically active substance via the lipophilic molecule. It exhibits physiological activity when stably dispersed or dissolved as a colloid in a hydrophobic organic solvent.
Furthermore, the present invention relates to a bioreactor that makes it possible to recover physiologically active substances in liquid form using magnetism.

〔従来の技術〕[Conventional technology]

たとえば酵素は一般に水fdH中でバイオリアクターと
して取)扱われているが、七の生理活性を有機溶媒中で
発現させて、これを有機合成等に利用すればバイオチク
ノロシーの応用範囲と可能性を大きく広げることができ
る。つ416酵素が有機溶媒中に溶解して、その中で高
い触媒効率を示せば、たとえば加水分解の逆反応や水に
溶は難い疎水性物質の酵素処理など、よシ多くの反応に
利用可能となる。このほか酵素以外のタン・9り質を有
機溶媒に可溶化させ、そのタン・9り質の機能を有機溶
媒中で発現させることも可能となる。
For example, enzymes are generally treated as bioreactors in water (fdH), but if the seven physiological activities are expressed in an organic solvent and used for organic synthesis, it is possible to apply biotechnology. You can greatly expand your sexuality. If the 416 enzyme is dissolved in an organic solvent and exhibits high catalytic efficiency, it can be used for many reactions, such as the reverse reaction of hydrolysis and the enzymatic treatment of hydrophobic substances that are difficult to dissolve in water. becomes. In addition, it is also possible to solubilize proteins other than enzymes in organic solvents and to express the functions of proteins and proteins in organic solvents.

しかしながら、更に生理活性物質の利用を拡大するには
これらの回収、再利用が必要となる。
However, in order to further expand the use of physiologically active substances, it is necessary to recover and reuse them.

酵素・タンパク質の分離回収法としては、従来の酵素・
タンパク質を高分子または無機物質の担体と結合させて
不溶化して沈降または遠心分離により回収する方法に代
わって、最近迅速簡便で急速分離が可能となる磁気分離
法が注目を集めている。この方法は、磁性体粒子表面に
タンパク質を直接に吸着させる方法、当該粒子表面に有
機高分子(デキストラン、デンプン、牛血清アルブミン
、セルロース)を吸着もしくは被覆させて、これにタン
・9り質を結合させる方法であり、一般の電磁石では約
30 nmまでの粒子径の磁性体が、超伝導電磁石では
さらに小さいものまで分離可能である。しかしこれらの
複合体は、水浴液中のみに安定に分散し、有機溶媒中で
は凝集して大塊状となって使用できない。そこでB性体
とタンパク質などの生理活性物質との複合体を有@溶媒
中に分散もしくはコロイドとして溶解させる技術につい
て鋭意研究を行った結果、本研究を完成するに至った。
Conventional methods for separating and recovering enzymes and proteins include
In place of methods in which proteins are bound to polymeric or inorganic carriers to be insolubilized and recovered by sedimentation or centrifugation, magnetic separation methods have recently been attracting attention because they are quick, simple, and enable rapid separation. This method involves directly adsorbing proteins onto the surface of magnetic particles, or adsorbing or coating organic polymers (dextran, starch, bovine serum albumin, cellulose) on the surface of the particles, and then adsorbing protein and protein onto the surface of the particles. It is a method of combining magnetic materials, and while a general electromagnet can separate magnetic materials with a particle diameter of up to about 30 nm, a superconducting electromagnet can separate even smaller particles. However, these complexes are stably dispersed only in water bath liquids, and aggregate in organic solvents to form large clumps, making them unusable. Therefore, as a result of intensive research into technology for dispersing or dissolving complexes of B-forms and physiologically active substances such as proteins in solvents as colloids, we have completed this research.

〔発明の構成〕[Structure of the invention]

本発明は、有@d媒に溶解する親油性分子で修飾した生
理活性物質、および親油性分子を介して、磁性体と生理
活性物質が結合した磁性体生理活性物質複合体である。
The present invention relates to a physiologically active substance modified with a lipophilic molecule that dissolves in an @d medium, and a magnetic physiologically active substance complex in which a magnetic substance and a physiologically active substance are bonded via the lipophilic molecule.

残油性分子としては、炭素数4〜20、好ましくは8〜
16のアルカン、炭素数6〜25、好ましくは10〜1
8のアルケンまたはアルキンがあげられる。その外クロ
ロホルム、トリクレン″1九はトルエンなどの有機醪媒
に可溶性のポリスチレン、ポリエチレン、ポリゾロピレ
ンもしくはポリアクリルアミドを用いることもできる。
The residual oil molecule has 4 to 20 carbon atoms, preferably 8 to 20 carbon atoms.
16 alkane, carbon number 6-25, preferably 10-1
8 alkenes or alkynes are mentioned. In addition, polystyrene, polyethylene, polyzolopyrene, or polyacrylamide soluble in an organic medium such as toluene may be used as chloroform or trichlene.

炭素数のさらに大きい親油性分子を使用することもでき
るが、修飾生理活性物質の収率が低下する。
Lipophilic molecules with larger carbon numbers can also be used, but the yield of modified bioactive substances is reduced.

これらの親油性分子は生理活性物質および磁性体と結合
させるために、1分子中2つ以上のカルゲキシル基、ア
ミン基または水酸基を有する。そのような活性アルカン
訪導体としては次のような化合物が用いられる。
These lipophilic molecules have two or more calgexyl groups, amine groups, or hydroxyl groups in one molecule in order to bind to physiologically active substances and magnetic substances. The following compounds are used as such active alkane visiting conductors.

アノビン酸、ピメリン酸、スペリン酸、セパシン酸、1
,9−ノナンジカルダンe、1.10−7’カンジカル
2ン酸、1.11−ウンデカンノカルメン酸、1,12
−ドデカンジヵルメン酸、1.13− )リデカンノカ
ルボン酸、1.14−テトラデカンジカルボン酸、1.
15−ペンタデカンジカルボン酸、1.16−ヘキサゾ
カンノ刀ルl/酸、1,17−ヘデタデカンジカルボン
酸、1.18−オクタデカンシフ!J A/ i y敏
、1.19−ノナデカツノカルボン酸、1.20−エイ
コサンジカルボン酸のようなノカルメン酸;ω−アミノ
吉草酸、ω−アミノカプロン酸、ω−アミノカプリル酸
、ω−アミノラウリ/醸のようなアミノカルボン酸;ω
−とドロキシエイコサテトラエン酸、ω−ヒドロキシ吉
草酸、ω−ヒドロキシステアリン酸、ω−ヒドロキシミ
リスチン酸、ω−ヒドロキシノナデカン散、ω−ヒドロ
キシラクリン酸、ω−ヒドロキシパルミチン酸のような
ヒドロキシカルダン酸:1,4−ジアミノブタン、1.
5−ノアミノベンタン、1,6−ノアミノヘキサン、1
.7−ジアミノへブタン、1.8−ノアミノオクタン、
1.9−ジアミノノナン、1.10−ノアミノデカンの
よりなジアミン;1,4−ブタンジオール、1.5−ベ
ンタンジオール、1,6−ヘキサツノオール、1.7−
ヘプタ/ジオール、1.8−オクタツノオール、1,9
−ノナツノオール、1.10−デカ7ソオール、ピナコ
ールのようなジオールを用いることができる。
Anovic acid, pimelic acid, speric acid, sepacic acid, 1
, 9-nonanedicardane e, 1.10-7'candicardic acid, 1.11-undecanenocarmenic acid, 1,12
-dodecanedicarmenic acid, 1.13-)lidecannocarboxylic acid, 1.14-tetradecanedicarboxylic acid, 1.
15-pentadecane dicarboxylic acid, 1,16-hexazocannotol/acid, 1,17-hedetadecane dicarboxylic acid, 1,18-octadecane dicarboxylic acid! Nocarmenic acids such as 1.19-nonadekatsunocarboxylic acid, 1.20-eicosandicarboxylic acid; ω-aminovaleric acid, ω-aminocaproic acid, ω-aminocaprylic acid, ω- Amino lauri/aminocarboxylic acid like brew; ω
- and hydroxyl acids such as droxyeicosatetraenoic acid, ω-hydroxyvaleric acid, ω-hydroxystearic acid, ω-hydroxymyristic acid, ω-hydroxynonadecane powder, ω-hydroxylacric acid, and ω-hydroxypalmitic acid. Cardic acid: 1,4-diaminobutane, 1.
5-noaminobentane, 1,6-noaminohexane, 1
.. 7-Diaminohebutane, 1,8-noaminooctane,
More diamines such as 1.9-diaminononane, 1.10-noaminodecane; 1,4-butanediol, 1.5-bentanediol, 1,6-hexatsunool, 1.7-
hepta/diol, 1,8-octatsunool, 1,9
Diols such as -nonatuol, 1,10-deca7ol, pinacol can be used.

この外観油性分子として、ポリエチレンテレフタレート
、ナイロン、ポリウレタン、示リカーボネート、ポリオ
キシメチレン、ポリスルフィド、ポリ尿素、ポリビニル
アセタール、ポリフェニレンオキシPなどを用いること
ができる。
As this externally oily molecule, polyethylene terephthalate, nylon, polyurethane, polycarbonate, polyoxymethylene, polysulfide, polyurea, polyvinyl acetal, polyphenyleneoxy P, etc. can be used.

これら高分子は末端の水酸基、カルボキシル基、アミノ
基またはスルフヒドリル基によって生理活性物質および
磁性体と結合する。
These polymers bind to physiologically active substances and magnetic substances through terminal hydroxyl groups, carboxyl groups, amino groups, or sulfhydryl groups.

本発明の複合体を調製する反応は、次の2つの反応様式
で行える。磁性体をM1生理活性物質をE1親油性分子
をPlそして本発明の修飾生理活性物質をP−E、磁性
体生理活性物質複合体をM −P’−Bとする。
The reaction for preparing the complex of the present invention can be carried out in the following two reaction modes. The magnetic material is M1, the bioactive substance is E1, the lipophilic molecule is P1, the modified bioactive substance of the present invention is P-E, and the magnetic bioactive substance complex is M-P'-B.

反応様式(1):まず親油性分子と生理活性物質を化学
結合させてP−Eを合成し、このP−Eを磁性化してM
−P−Eを合成する。
Reaction mode (1): First, a lipophilic molecule and a physiologically active substance are chemically bonded to synthesize P-E, and this P-E is magnetized to form M
-Synthesize P-E.

i)P+E−+P−E        −■71)  
M+P−E→M−P−E      −■反応様式(2
):まず親油性分子を磁性化して複合体M−Pを合成し
、このM−Pに生理活性物質Eを化学結合させてM−P
−Eを合成する。
i) P+E-+P-E-■71)
M+P-E→M-P-E -■Reaction pattern (2
): First, a lipophilic molecule is magnetized to synthesize a complex M-P, and a physiologically active substance E is chemically bonded to this M-P to form M-P.
-Synthesize E.

1)  M+P−+M−P        −■It)
  M−P + E −+ M−P−E    −■P
とEの結合■及びM−PとEの結合■は、好ましくは共
有結合であり、親油性分子の水酸基、カルボキシル基、
アミノ基が生理活性物質の水酸基、アミノ基、カルボキ
シル基、スルフヒドリル基などと共有結合し、たとえば
酸アミド結合、エステル結合、ノスルフイP結合する。
1) M+P-+M-P-■It)
M-P + E -+ M-P-E -■P
The bond (■) between and E and the bond (■) between M-P and E are preferably covalent bonds, and the hydroxyl group, carboxyl group,
The amino group covalently bonds with a hydroxyl group, amino group, carboxyl group, sulfhydryl group, etc. of a physiologically active substance, such as an acid amide bond, an ester bond, or a nosulfuryl-P bond.

MとP−Eとが結合する反応■及びMとPとが結合する
反応■は磁性化反応であり、磁性化反応では予め調製さ
れた磁性体粒子を用いてもよく、また磁性体の生成反応
を同時に行わせてもよい。
The reaction (2) in which M and P-E combine and the reaction (2) in which M and P combine are magnetization reactions. In the magnetization reaction, magnetic particles prepared in advance may be used, and magnetic particles may be generated. The reactions may be carried out simultaneously.

MとPとの間の結合は非可逆的であれば共有結合、イオ
ン結合などの化学結合あるいは物理的化学的吸着などの
いずれの結合様式であってもよい。たとえば、親油性分
子にカルボキシル基、水酸基、アミン基、フェノール基
などがあれば、磁性体の水酸基との共有給仕もしくは配
位結合、あるいは磁性体の金属イオンとの配位結合ある
いはこれらの間での7ア/デルワールス力による結合を
用いることができる。
The bond between M and P may be in any form such as a covalent bond, a chemical bond such as an ionic bond, or a physical chemical adsorption, as long as it is irreversible. For example, if a lipophilic molecule has a carboxyl group, hydroxyl group, amine group, phenol group, etc., it may have a covalent bond or coordination bond with the hydroxyl group of the magnetic substance, or a coordination bond with the metal ion of the magnetic substance, or between these groups. 7A/Der Waals force coupling can be used.

磁性化としては遷移金属またはそのイオン、その酸化物
おるいはこれらと他の元素との化合物、つまり鉄、コバ
ルト、ニッケルなどの金属及びこれらの酸化物、マグネ
タイト、フェライト、ガーネット型酸化物、コランダム
型酸化物、ペロブスカイト型酸化物、ルチル型酸化物、
エルビウムやルテチウム、さらにフェリチンやハイスピ
ン型のデオキシヘモグロビンおよびヘムまたはその銹導
体を用いることができる。
For magnetization, transition metals, their ions, their oxides, or compounds of these with other elements, such as metals such as iron, cobalt, and nickel, and their oxides, magnetite, ferrite, garnet-type oxides, and corundum. type oxide, perovskite type oxide, rutile type oxide,
Erbium, lutetium, ferritin, high-spin type deoxyhemoglobin, heme, or a conductor thereof can be used.

磁性体の生成反応を同時に行わせる場合は、第一鉄イオ
ンと第二鉄イオンとの中性−アルカリでの反応、第一鉄
イオンの酸化による反応、レピドクロサイトあるいはア
カがネサイトと第一鉄イオンとの反応、グリーンラスト
の酸化もしくは自発反応、無定型第二鉄酸化物と笛−鉄
イオンとの反応などを用いることができる。
In order to carry out the reaction to generate magnetic substances simultaneously, the reaction of ferrous ions and ferric ions in neutral-alkali, the reaction of oxidation of ferrous ions, the reaction of lepidocrocite or ferric ions with ferrous ions, etc. Reaction with iron ions, oxidation or spontaneous reaction of green rust, reaction of amorphous ferric oxide with iron ions, etc. can be used.

磁性体生理活性物質複合体全有機溶媒中で安定化させる
には、磁性体粒子径1μm以下であればよく、好ましく
は50nm以下であればよい。
In order to stabilize the magnetic physiologically active substance complex in an all-organic solvent, the particle diameter of the magnetic substance may be 1 μm or less, preferably 50 nm or less.

磁性体生理活性物質複合体粒子の大きさは、予め調製し
た磁性化を用いる場合はその磁性体粒子の大きさとなり
、磁性体生成反応を行う場合はP−EC反応様式(1)
 )−!たはP(反応様式(2))と磁性体生成に用い
る試薬の量とによって決まる。たとえば粒子径50nm
のフェライトを用いた場合は粒子径50 nmの磁性体
生理活性物質複合体となる。tたIFのポリエチレンテ
レフタレート−リパーゼCP−F、)に64η塩化第−
鉄と1511Ni塩化第二鉄を反応させた場合は粒子径
30nmの複合体となり、これらの鉄イオンの量を少な
くすると、たとえば6.4〜塩化第一鉄と15■塩化第
二鉄を反応させた場合は粒子径10nmの複合体となる
The size of the magnetic physiologically active substance composite particles will be the size of the magnetic particles when magnetization prepared in advance is used, and the size of the magnetic body particles will be the size of the magnetic body particles when magnetization prepared in advance is used, and the size of the magnetic body biologically active substance composite particles will be the size of the magnetic body particles when magnetization prepared in advance is used, and the size of the magnetic body biologically active substance composite particles will be the size of the magnetic body particles when pre-prepared magnetization is used, and when the magnetic body production reaction is performed, the size of the magnetic body biologically active substance composite particles will be the size of the magnetic body particles.
)−! or P (reaction mode (2)) and the amount of reagent used to generate the magnetic material. For example, a particle size of 50 nm
When ferrite is used, the result is a magnetic bioactive substance composite with a particle size of 50 nm. 64η chloride to polyethylene terephthalate lipase CP-F,
When iron and 1511Ni ferric chloride are reacted, a complex with a particle size of 30 nm is formed.If the amount of these iron ions is reduced, for example, when 6.4 ~ ferrous chloride and 15 ■ ferric chloride are reacted. In this case, it becomes a composite with a particle size of 10 nm.

磁性体生理活性物質複合体の生理活性、たとえば酵素活
性はその粒子径の大きざに依存し、粒子径が小さいほど
活性は大となる。これは粒子径が小さくなるにともなっ
て粒子の表面積が増大することによる。友とえばC1゜
ノカルゲン酸を用いて合成した磁性体リパーゼ複合体の
ベンゼン中でのエステル合成活性e(C1oノカルゲン
?り−1J )?−ゼ(上記反応様式(1)中のP−E
)と比較すると、粒子径702工び30nmの母性体I
J ノ!−ゼ複合体の活性は(C1oノカルボン酸)−
I7パーゼの活性のそれぞれ10および60%である。
The physiological activity of a magnetic physiologically active substance complex, such as enzyme activity, depends on its particle size, and the smaller the particle size, the greater the activity. This is due to the fact that the surface area of the particles increases as the particle size decreases. For example, the ester synthesis activity in benzene of the magnetic lipase complex synthesized using C1ocargenic acid (C1ocargenic acid -1J)? -ze (P-E in the above reaction scheme (1)
), the mother body I with a particle size of 702 nm and 30 nm
J No! -The activity of the enzyme complex is (C1o-nocarboxylic acid)-
10 and 60% of the activity of I7pase, respectively.

修飾生理活性物質および磁性体生理活性物質複合体は有
機溶媒中に安定に分散する。たとえば修飾1) ノ?−
ゼおよび磁性体リノ臂−ゼ複合体はベンゼン中で200
0 Xgで5分間の遠心では沈澱せず、2日ないし3日
間ベンゼンなどの有機静媒中に分散俗解する。ベンゼン
以外の有機溶媒ではトルエン、クロロホルムなどの塩素
化炭化水素類、ヘキサンなどの炭化水素類、ジオキサ/
、アセトン、ツメチルスルホキサイド、ジメチルホルム
アミげ、メタノールやエタノールなどのアルコール類の
ような有機溶媒中で分散溶解し、活性を示す。
The modified bioactive substance and the magnetic bioactive substance complex are stably dispersed in an organic solvent. For example, modification 1) ノ? −
and the magnetic linose complex in benzene at 200%
No precipitation occurs when centrifuged at 0.times.g for 5 minutes, and it is dispersed in an organic static medium such as benzene for 2 to 3 days. Organic solvents other than benzene include chlorinated hydrocarbons such as toluene and chloroform, hydrocarbons such as hexane, dioxa/
It exhibits activity when dispersed and dissolved in organic solvents such as acetone, trimethyl sulfoxide, dimethylformamide, and alcohols such as methanol and ethanol.

磁性体生理活性物質複合体全構成する磁性体が強磁性体
で粒子径約30 nm以上のものは永久磁石および!磁
石で分離でさ、その他の磁性体では粒子径の大きさを問
わず超低4を出面で分離できる。たとえば粒子径約70
 nmの強磁性体(フェライト)−リノ蓼−ゼ覆合体は
、電磁石を用いた1、 7 an間隔で300エルステ
ツド(Oe)の磁場中で、5分間で100チ回収される
。また粒子径が30 nmのものは、電磁石を用いた1
、7N間隔で5,000(Oe)の磁場中で、7分間で
100チ回収される。また常磁性体(エルビウム)−生
理活性物質複合体は超低導電出石を用いた2テスラ(T
) = 20,000 (Oe)の磁場中で、5分間で
100%回収される。
The magnetic substance that makes up the entire magnetic bioactive substance complex is a ferromagnetic substance with a particle size of approximately 30 nm or more, which is considered a permanent magnet and! Separation can be done with a magnet, but with other magnetic materials, ultra-low 4 particles can be separated at the exit surface regardless of the particle size. For example, the particle size is about 70
100 nanometer ferromagnetic material (ferrite)-linose coatings are recovered in 5 minutes in a magnetic field of 300 oersted (Oe) at intervals of 1.7 am using an electromagnet. In addition, particles with a particle size of 30 nm can be prepared using an electromagnet.
, 100 chips are collected in 7 minutes in a magnetic field of 5,000 (Oe) at 7N intervals. In addition, a paramagnetic material (erbium)-physiologically active substance complex is produced using ultra-low conductivity stone.
) = 20,000 (Oe) in a magnetic field, 100% is recovered in 5 minutes.

本発明は一般に酵素、タンパク質、抗体、抗原、多糖類
、脂質、アミノ酸、補欠分子族(ヘム、す〆フラビンな
ど)、ホルモン、ビタミンなどおよびその構成成分に適
用できる。たとえば酵素としてはリパーゼ、エステラー
ゼ、キモトリプシン、トリプシン、サブチリシンのよう
な加水分解酵素、ペルオキシダーゼ、カタラーゼのよう
な酸化還元酵素であって基質又は生成物が水不溶性であ
る場合に用いられ、有機溶媒中で反応を行うことにより
可逆的に反応を進行させることができる場合も含む。ヘ
ミンを用いた場合にはヘミンを触媒として用いる種々の
反応に利用できる。また特異抗体、コンカナバリンA1
多糖類、アミノ酸、ビタミン、脂質、ホルモンなどのよ
うな物質を用いて、これと親和性を有する物質を有機溶
媒中で分離、f#製、回収することができる。
The present invention is generally applicable to enzymes, proteins, antibodies, antigens, polysaccharides, lipids, amino acids, prosthetic groups (heme, sulfur flavin, etc.), hormones, vitamins, etc., and their constituent components. For example, enzymes include lipases, esterases, hydrolytic enzymes such as chymotrypsin, trypsin, and subtilisin, and oxidoreductases such as peroxidase and catalase, which are used when the substrate or product is water-insoluble, and are used in organic solvents. It also includes cases where the reaction can proceed reversibly by performing the reaction. When hemin is used, it can be used in various reactions using hemin as a catalyst. Also, a specific antibody, concanavalin A1
Substances such as polysaccharides, amino acids, vitamins, lipids, hormones, etc. can be used to separate, f#, and recover substances that have an affinity for them in organic solvents.

〔発明の効果〕〔Effect of the invention〕

本発明の修飾生理活性物質はl)親油性を有する故に有
機溶媒にコロイドとして溶解もしくは分散する。2)従
来の水溶叙を用いるバイオリアクターでは不可能な有機
合成反応もしくは生物活性の発現を可能にする。更に親
油性分子を介して磁性体と生理活性物質が結合した複合
体は、3)有機溶媒中から磁気分離による迅速簡便な回
収が可能となる。4)磁気分離したものは、使用した有
機溶媒に再び溶解もしくは分散し、再使用することが可
能となる。
The modified physiologically active substance of the present invention has l) lipophilicity and is therefore dissolved or dispersed as a colloid in an organic solvent. 2) It enables the expression of organic synthesis reactions or biological activities that are not possible with conventional bioreactors using aqueous solution. Furthermore, a complex in which a magnetic substance and a physiologically active substance are bound via a lipophilic molecule can be rapidly and easily recovered from an organic solvent by magnetic separation. 4) The magnetically separated material can be redissolved or dispersed in the used organic solvent and reused.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例I L)  4.6 f (20mmol )の1,10−
デカンジカルゲン酸と2.3 t (20mmol )
のN−ヒドロキシこはく酸イミドを801Mのジオキサ
ンに溶かし、4.5fのジシクロへキシルカルボヅイミ
ドを加えて、この・ゾカルlン酸のカルボキシル基を活
性化した。200qのシュウトモナス・フルオレスセン
ス菌体よ#)得たリノザーゼを含む20mのリン酸緩衝
水溶液(pi(7,5)に250■の上記活性化ノカル
ゲン酸を加えて、−を6.5−7.5に保ったままで2
5℃で1時間反応させて、修飾リノや一ゼを得た。
Example I L) 4.6 f (20 mmol) of 1,10-
Decanedicargenic acid and 2.3 t (20 mmol)
N-hydroxysuccinimide was dissolved in 801M dioxane, and 4.5f dicyclohexylcarbodiimide was added to activate the carboxyl group of the zocallic acid. Add 250 µ of the above activated nocargenic acid to 20 ml of a phosphate buffered aqueous solution (pi(7,5)) containing linosase obtained from 200 q of Shutomonas fluorescens cells to convert - to 6.5 - 2 while keeping it at 7.5.
The reaction was carried out at 5° C. for 1 hour to obtain modified linose.

b)93岬の修飾リパーゼを3ゴの水に加え、アンモニ
ア水で−を9.0にし、この溶液に13■の塩化第一鉄
と30rqの塩化第二鉄を含む0.1Nの水浴液″f:
滴加した。滴加中はアンモニア水でPHを9.0から9
.5に維持し、室温で十分に攪拌した。水に十分込析し
た後、凍結乾燥によシ磁性体−リパーゼ複合体を得た。
b) Add 93 Misaki's modified lipase to 3 parts of water, adjust the - to 9.0 with aqueous ammonia, and add 0.1N water bath solution containing 13 parts of ferrous chloride and 30 rq of ferric chloride to this solution. ″f:
Added dropwise. During the dropwise addition, adjust the pH from 9.0 to 9 with ammonia water.
.. 5 and stirred thoroughly at room temperature. After sufficiently precipitating in water, the magnetic substance-lipase complex was obtained by freeze-drying.

この礎性体−リパーゼ複合体の磁性体言有量は30チで
、タンパク賀含有率は55チであった。代置的な疎水的
肩も”壷浴媒の一つであるベンゼン中でのラウリン酸ラ
ウリルの合成活性は、15μm01AIFF間/ηタン
パク質であった。磁性体−IJパーゼ複合体は反応溶液
中から2,000エルステツド(Oe)の磁場中で5分
間で完全に回収された。これは再びコロイドとして反応
溶液に浴解し、同様の活性を示した。
The magnetic content of this basic substance-lipase complex was 30%, and the protein content was 55%. The synthetic activity of lauryl laurate in benzene, one of the bath media, was 15μm01AIFF/η protein. It was completely recovered in 5 minutes in a magnetic field of 2,000 Oe. It was dissolved into the reaction solution again as a colloid and showed similar activity.

ベンゼン中にコロイドとして溶解した磁性体−り/9−
ゼ複合体は、11000Xの遠心では沈降せず、600
nmでの濁度測定では1−3時間変化せず、有機溶媒中
に安定に分散することが判った。水溶液中でも同様の分
散安定性がみられた。電子顕微鏡観察によれば、粒径が
2〇−40nmの超微粒子であった。
Magnetic material dissolved as a colloid in benzene/9-
The enzyme complex did not sediment when centrifuged at 11,000X, but at 600X.
The turbidity measurement at nm did not change for 1-3 hours, indicating that it was stably dispersed in the organic solvent. Similar dispersion stability was observed in aqueous solutions. According to electron microscope observation, the particles were ultrafine particles with a particle size of 20-40 nm.

実施例2 a)5j’のポリエチレンテレフタレートをクロロホル
ム50mBに加え、2日間攪拌後上清を取9出し、クロ
ロホルムを蒸発させた後、ジオキサン10チを含むpH
7,0のリン酸後gIs液10mj Ic 浴解させた
。更にそのポリエチレンテレフタレートagにシュウト
モナス・フルオレセンス菌体より得たジノ9−ゼ100
岬と、水浴性カルメジイミド200■を加え25℃で9
0分攪拌しながら反応させた。10%ジオキサンを含む
水に十分透析した後、凍結乾燥し、ポリエチレンテレ7
タレートーリパーゼの複合体を得た。
Example 2 a) Add 5j' of polyethylene terephthalate to 50 mB of chloroform, stir for 2 days, take out the supernatant, evaporate the chloroform, and add dioxane to pH 9.
After 7,0 phosphoric acid solution, 10 mj Ic solution was dissolved. Furthermore, di-9-ase 100 obtained from Shutomonas fluorescens cells was added to the polyethylene terephthalate ag.
Add the cape and 200 μl of water-bathable calmediimide and heat at 25°C.
The reaction was allowed to proceed with stirring for 0 minutes. After thorough dialysis against water containing 10% dioxane, freeze-drying and polyethylene tele7
A talate-lipase complex was obtained.

b)このポリエチレンテレ7タレートーリ/4−ゼ複合
体100qを10チジオキサンを含む蒸留水3m1K加
え、アンモニアでpH9,5に調整し、この溶液に、1
311iFの塩化第一鉄と30ivの塩化第二鉄を含む
0.1−の水浴液を滴下した。
b) Add 100 q of this polyethylene tele-7 tallateli/4-ase complex to 3 ml of distilled water containing 10 thidioxane, adjust the pH to 9.5 with ammonia, and add 1
A 0.1-water bath solution containing 311 iF ferrous chloride and 30 iv ferric chloride was added dropwise.

滴下中はアンモニア水でpHf:9.0−9.5に維持
し、室温で十分に攪拌した。水に十分透析した後、凍結
乾燥により、磁性体−ポリエチレンテレフタレート−リ
パーゼ複合体を得た。
During the dropwise addition, the pH was maintained at 9.0-9.5 with aqueous ammonia, and the mixture was sufficiently stirred at room temperature. After thorough dialysis against water, a magnetic material-polyethylene terephthalate-lipase complex was obtained by freeze-drying.

この磁性体−ポリエチレンテレ7タレートーリ/4−ゼ
複合体の磁性体含有率は50チでタンパク質含有率は3
0チであった0代表的な疎水的有機溶媒の一つであるベ
ンゼン中でのラウリン酸ラウリルの合成活性は25μm
ol/III間/■タン/臂り質でめった。磁性体−ポ
リエチレンテレフタレート−リパーゼ複合体は反応溶液
中から6.000エルステツド(Oe)の磁場中で5分
間で完全に回収された。これは再びコロイドとして反応
溶液に溶解し、同様の活性を示した。
The magnetic material content of this magnetic material-polyethylene tele7 talatori/4-ase composite is 50% and the protein content is 3%.
The synthetic activity of lauryl laurate in benzene, one of the typical hydrophobic organic solvents, was 25 μm.
Between ol/III/■tan/buttock quality. The magnetic material-polyethylene terephthalate-lipase complex was completely recovered from the reaction solution in 5 minutes in a magnetic field of 6,000 Oe. This was again dissolved in the reaction solution as a colloid and showed similar activity.

ベンゼン中にコロイドとして溶解した磁性体−ポリエチ
レンテレフタレート−リパーゼ複合体は、1100Ox
の遠心では沈降せず、600 nmでの濁度測定では1
−3時間変化せず、有機溶媒中に安定に分散することが
判った。を子顕微鏡観察によれば、粒径が20−40 
nmの超微粒子であった。
The magnetic substance-polyethylene terephthalate-lipase complex dissolved as a colloid in benzene is 1100Ox
It does not sediment when centrifuged at
It was found that there was no change for -3 hours and that it was stably dispersed in the organic solvent. According to microscopic observation, the particle size is 20-40
The particles were ultrafine particles.

実施例3 a)140■の塩化ヘミン1loNのピリノンに浴解し
、92!Ivの1.10−ノアミノデカンと0.5fの
モレキュラーシーブを加え3時間攪拌して脱水し友、そ
の後118■のジシクロへキシルカルミノイミドを加え
て、25℃で2日間反応させた。反応溶液に200成の
クロロホルムを加え、ろ過して不浴物を除き、溶媒を蒸
発させた。残存物に100成の水を加えて未反応のカル
メツイミドを加水分解させた後、クロロホルム(200
m)抽出および減圧乾固によシ(C,。ジアミン)−ヘ
ミンを得た。
Example 3 a) 92! 1.10-noaminodecane (IV) and molecular sieve (0.5f) were added and stirred for 3 hours to dehydrate the mixture. Then, 118cm of dicyclohexylcarminoide was added and reacted at 25°C for 2 days. 200% chloroform was added to the reaction solution, filtered to remove impurities, and the solvent was evaporated. After adding 100% water to the residue to hydrolyze unreacted calmetzimide, chloroform (200%
m) Extraction and drying under reduced pressure yielded ci(C,.diamine)-hemin.

b)100岬の(C,。ジアミン)−ヘミンを31の1
01ジオキサンを含む水に加え、アンモニア水で−を9
.5にし、この溶液に13wqの塩化第一鉄と30■の
塩化第二鉄を含む0.11の水溶液を滴下した0滴下中
はアンモニア水で−を9.0−9.5に維持し、室温で
十分に攪拌した。
b) 100 capes of (C,.diamine)-hemin to 31 of 1
01 Add to water containing dioxane and add - to 9 with ammonia water.
.. 5, and a 0.11 aqueous solution containing 13 wq of ferrous chloride and 30 μ of ferric chloride was added dropwise to this solution.During the dropwise addition, - was maintained at 9.0-9.5 with aqueous ammonia. The mixture was thoroughly stirred at room temperature.

10%ジオキサンを含む水に十分透析した後、凍結乾燥
によシ磁性体−(C1oジアミン)−ヘミン複合体を得
た。
After thorough dialysis against water containing 10% dioxane, a magnetic material-(C1o diamine)-hemin complex was obtained by freeze-drying.

この磁性体−(C1゜ジアミン)−ヘミンを触媒として
用いるとクロロホルム中で、還元型クリスタルバイオレ
ットを水素供与体として、過酸化物の定量を0.1μM
以上の感度で行うことができた。この複合体の磁性体含
有率は60チでヘミン含有率は30チであった。S性体
−(010ノアミン)−ヘミン複合体は、反応溶液中か
ら5.000エルステツド(Oe)の磁場中で5分間で
完全に回収され念。これは再びコロイドとじて反応溶液
に溶解し、同様の活性を示した。ベンゼン中にコロイド
として溶解した磁性体−(C,。ジアミン)−へミン複
合体は、1000×gの遠心では沈降せず、600nm
での濁度測定では1−3時間変化せず、有機溶媒中に安
定に分散することがわかった。
Using this magnetic material -(C1゜diamine)-hemin as a catalyst, the amount of peroxide can be determined at 0.1 μM in chloroform using reduced crystal violet as a hydrogen donor.
I was able to do this with higher sensitivity. The magnetic material content of this composite was 60 inches, and the hemin content was 30 inches. The S-isomer-(010 noamine)-hemin complex was completely recovered from the reaction solution in a magnetic field of 5,000 Oe in 5 minutes. This was again dissolved in the reaction solution as a colloid and showed similar activity. The magnetic material-(C,.diamine)-hemin complex dissolved as a colloid in benzene did not sediment when centrifuged at 1000 x g, but at 600 nm.
It was found that the turbidity did not change for 1-3 hours and was stably dispersed in the organic solvent.

実施例4 a)52の1.10−デカフジカル2ン酸を含むクロロ
ホルム511117に500■ノ酸化エルヒr:) A
(粒子径200nm)を加えて、7日間l−ルミールで
粉砕し、クロロホルムを完全に除いて、磁性体−デカン
ジカルボン酸のカルボキシル基にN−ヒドロキシサクシ
ニルイミドをジオキサン中で常法に従い結合させて、活
性化した磁性体−デカンジカルボン酸を合成した。
Example 4 a) 500 μl of Elch oxide in chloroform 511117 containing 52 1.10-decafdicar diphosphoric acid:) A
(particle size: 200 nm), pulverized with l-lumil for 7 days, completely removed chloroform, and bonded N-hydroxysuccinylimide to the carboxyl group of the magnetic material - decanedicarboxylic acid in dioxane according to a conventional method. , an activated magnetic substance-decanedicarboxylic acid was synthesized.

b)5w9ノシユウドモナス・フルオレスセンス菌体よ
り得たソノ9−ゼを含む4Mのリン酸緩衝i (p)1
7.0 )に75Xvの活性化した磁性体−デカ7ノカ
ルボン酸を0.4μのジオキサンに分散し37℃で90
分間反応させた後、n製して、同様の性質を有する磁性
体−リパーゼ複合体を得た。
b) 4M phosphate buffer i (p)1 containing sono9-ase obtained from 5w9 Noseudomonas fluorescens cells
7.0), 75Xv activated magnetic material-decanocarboxylic acid was dispersed in 0.4μ dioxane and heated at 37°C for 90°C.
After reacting for a minute, a magnetic substance-lipase complex having similar properties was obtained.

この磁性体−リパーゼ複合体の磁性体含有率は45%で
、タンパク質含有率は30チであった6代表的彦疎水的
有機H媒の一つであるベンゼン中でのラウリン酸ラウリ
ルの合成活性は、20μmol/時間/■タン・9り質
であった。已性体−リパーゼ複合体は反応溶液中(5m
9/rul)から、ワイヤー存在下で20,000エル
ステツド(Oe)=2テスラtT+のa湯中で5分間で
完全に回収された。これは再びコロイPとして反応浴数
11C浴解し、同様の活性を示した。
The magnetic substance content of this magnetic substance-lipase complex was 45%, and the protein content was 30%.Synthetic activity of lauryl laurate in benzene, one of the 6 representative hydrophobic organic hydrogen media. was 20 μmol/hour/■ tan・9 lithium. The lipase-lipase complex was added to the reaction solution (5 m
9/rul) was completely recovered in 5 minutes in a hot water at 20,000 Oe = 2 Tesla tT+ in the presence of a wire. This was dissolved again in a 11C reaction bath as Colloid P, and showed similar activity.

ベンゼン中にコロイPとして溶解した磁性体+ IJパ
ーゼ複合体は、2000×gの遠心では沈降せず、60
0nmでの濁度測定では24−40時間変化せず、有機
溶媒中に安定に分散することが判った。電子顕微鏡観察
によれば、粒径が50 nmの超微粒子であった。
The magnetic material + IJ pase complex dissolved as Colloid P in benzene did not sediment when centrifuged at 2000 x g, but at 60
Turbidity measurement at 0 nm did not change for 24-40 hours, indicating that it was stably dispersed in the organic solvent. According to electron microscopic observation, the particles were ultrafine particles with a particle size of 50 nm.

実施例5 a)7.8rの1,18−オクタデカンジカルボン酸と
、2.3tのN−ヒドロキシこは<l[−80m1のジ
オキサンに溶かし、4.5tのジシクロヘキシルカルメ
ツイミドを加えて、このジカルボン酸のカルボキシル基
を活性化した。200Hqの抗p−ニトロフェノール抗
体を含む20ゴのりん酸緩衝水溶[(pH7,5)に2
50ηの上記活性化ジカルボン酸を加えてpHi 6.
5−7.5に保ったままで、25℃で1時間反応させて
修飾抗p−ニトロフェノール抗体を得た。
Example 5 a) 7.8 r of 1,18-octadecanedicarboxylic acid and 2.3 t of N-hydroxyl <l [-] are dissolved in 80 ml of dioxane and 4.5 t of dicyclohexyl carmetzimide are added to the solution. The carboxyl group of dicarboxylic acid was activated. 20 μg of phosphate buffered water solution containing 200 Hq of anti-p-nitrophenol antibody [(pH 7,5)
Add 50η of the above activated dicarboxylic acid to pHi 6.
A modified anti-p-nitrophenol antibody was obtained by reacting at 25° C. for 1 hour while maintaining the temperature at 5-7.5.

b)93rIIgの修飾抗p−ニトロフェノール抗体を
3μの10チジオキサンを含む水に加え、アンモニア水
で−を9.0にし、この溶液に13■の塩化第一鉄と3
0wIの塩化第二鉄を含む0.11の水溶??1滴下し
た。滴下中は、アンモニア水で−’i 9.0−9.5
に維持し、室温で十分に攪拌した。10チジオキサンを
含む水に十分透析した後、速結乾燥によシ磁性体−オク
タデカンノカルボン酸−抗p−ニトロフェノール抗体複
合体を得た。
b) Add 93rIIg of modified anti-p-nitrophenol antibody to water containing 3μ of 10 thidioxane, bring the - to 9.0 with aqueous ammonia, and add 13μ of ferrous chloride and 3μ of ferrous chloride to this solution.
0.11 aqueous solution containing 0wI ferric chloride? ? One drop was added. During dripping, use ammonia water -'i 9.0-9.5
and stirred thoroughly at room temperature. After thorough dialysis against water containing 10 thidioxane, a complex of cymagnetic material-octadecanocarboxylic acid-anti-p-nitrophenol antibody was obtained by rapid drying.

この磁性体−オクタデカンジカルボン酸−抗p−ニトロ
フェノール抗体の母性体含肩率は40チで、タンパク質
含有率は60チであった。代表的な疎水的有機溶媒の一
つであるベンゼン中に[1ているp−ニトロフェノール
はこの複合体によって回収された。磁性体−オクタデカ
ンノカルIン酸−抗p−ニトロフェノール抗体複合体は
反応溶液中から6,000エルステツF(Oe)の磁場
中で5分間で完全に回収された。
The maternal shoulder content of this magnetic substance-octadecanedicarboxylic acid-anti-p-nitrophenol antibody was 40%, and the protein content was 60%. p-Nitrophenol, which is present in benzene, one of the typical hydrophobic organic solvents, was recovered by this complex. The magnetic substance-octadecanocarinic acid-anti-p-nitrophenol antibody complex was completely recovered from the reaction solution in 5 minutes in a magnetic field of 6,000 Oe.

これは再びコロイドとして反応浴fiK溶解し、同様の
活性を示した。
This again dissolved fiK in the reaction bath as a colloid and showed similar activity.

ベンゼン中に、コロイドとして溶解した磁性体−オクタ
デカンソカルゲン酸−p−ニトロフェノール抗体複合体
は、1100Oxの遠心では沈降せず、600nmでの
濁度測定では1−3時間変化せず、有機溶媒中に安定に
分散することが判った。電子顕微鏡観察によれば、粒径
が220−40nの超微粒子でめった。
The magnetic substance-octadecanesocargenic acid-p-nitrophenol antibody complex dissolved as a colloid in benzene did not precipitate by centrifugation at 1100Ox, did not change in turbidity measurement at 600nm for 1-3 hours, and did not change in organic solvent. It was found that it was stably dispersed in the medium. According to electron microscope observation, the particles were found to be ultrafine particles with a particle size of 220-40 nm.

Claims (1)

【特許請求の範囲】 1、親油性分子で修飾した生理活性物質。 2、親油性分子が炭素数4〜20のアルカンである特許
請求の範囲第1項記載の物質。 3、親油性分子がポリエチレンテレフタレートである特
許請求の範囲第1項記載の物質。 4、生理活性物質が酵素である特許請求の範囲第1項記
載の物質。 5、酵素がリパーゼである特許請求の範囲第4項記載の
物質。 6、親油性分子を介して、磁性体と生理活性物質が結合
した磁性体生理活性物質複合体。 7、親油性分子が炭素数4〜20のアルカンである特許
請求の範囲第6項記載の複合体。 8、親油性分子がポリエチレンテレフタレートである特
許請求の範囲第6項記載の複合体。 9、磁性体が第一鉄イオンと第二鉄イオンとの反応の生
成体である特許請求の範囲第6項記載の複合体。 10、生理活性物質が酵素である特許請求の範囲第6項
記載の複合体。
[Claims] 1. A physiologically active substance modified with a lipophilic molecule. 2. The substance according to claim 1, wherein the lipophilic molecule is an alkane having 4 to 20 carbon atoms. 3. The substance according to claim 1, wherein the lipophilic molecule is polyethylene terephthalate. 4. The substance according to claim 1, wherein the physiologically active substance is an enzyme. 5. The substance according to claim 4, wherein the enzyme is lipase. 6. A magnetic physiologically active substance complex in which a magnetic substance and a physiologically active substance are bonded via lipophilic molecules. 7. The complex according to claim 6, wherein the lipophilic molecule is an alkane having 4 to 20 carbon atoms. 8. The composite according to claim 6, wherein the lipophilic molecule is polyethylene terephthalate. 9. The composite according to claim 6, wherein the magnetic substance is a product of a reaction between ferrous ions and ferric ions. 10. The complex according to claim 6, wherein the physiologically active substance is an enzyme.
JP23598686A 1986-10-03 1986-10-03 Modified preformed chemical mediator Pending JPS6391081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23598686A JPS6391081A (en) 1986-10-03 1986-10-03 Modified preformed chemical mediator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23598686A JPS6391081A (en) 1986-10-03 1986-10-03 Modified preformed chemical mediator

Publications (1)

Publication Number Publication Date
JPS6391081A true JPS6391081A (en) 1988-04-21

Family

ID=16994119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23598686A Pending JPS6391081A (en) 1986-10-03 1986-10-03 Modified preformed chemical mediator

Country Status (1)

Country Link
JP (1) JPS6391081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138973A (en) * 1988-11-18 1990-05-28 Noda Sangyo Kagaku Kenkyusho Chemically modified enzyme and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138973A (en) * 1988-11-18 1990-05-28 Noda Sangyo Kagaku Kenkyusho Chemically modified enzyme and production thereof

Similar Documents

Publication Publication Date Title
Eivazzadeh-Keihan et al. Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides
Fang et al. Immobilization of pectinase onto Fe3O4@ SiO2–NH2 and its activity and stability
US4814098A (en) Magnetic material-physiologically active substance conjugate
Bharde et al. Extracellular biosynthesis of magnetite using fungi
Ghaemi et al. Study on the adsorption of DNA on Fe 3 O 4 nanoparticles and on ionic liquid-modified Fe 3 O 4 nanoparticles
Zhang et al. Magnetic silica‐coated sub‐microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood
CN100475707C (en) Method for preparing magnetic Nano composite granules coated by cationic polyelectrolyte
Cao et al. Magnetic ZIF-8/cellulose/Fe 3 O 4 nanocomposite: preparation, characterization, and enzyme immobilization
CN107446916B (en) Method for purifying and directionally immobilizing histidine-tagged protein and application
Munaweera et al. Electrospun cellulose acetate-garnet nanocomposite magnetic fibers for bioseparations
Seifan et al. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation
CN1542449A (en) Nuclear/shell type superparamagnetism composite particulate, preparation method and application thereof
Xu et al. A deep eutectic solvent modified magnetic β-cyclodextrin particle for solid-phase extraction of trypsin
Chen et al. Improved performance of immobilized lipase by interfacial activation on Fe 3 O 4@ PVBC nanoparticles
Wang et al. Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides
Liu et al. Progress of recyclable magnetic particles for biomedical applications
De Cuyper Applications of magnetoproteoliposomes in bioreactors operating in high-gradient magnetic fields
CN102001711B (en) Preparation method of water-based ferroferric oxide magnetic fluid
Wang et al. Immobilization of proteins on magnetic nanoparticles
KR20040083095A (en) Organic substance having ferrite bonded thereto and process for producing the same
Carpenter et al. Role of molecular modification and protein folding in the nucleation and growth of protein–metal–organic frameworks
Liu et al. Selective removal of hemoglobin from blood using hierarchical copper shells anchored to magnetic nanoparticles
Le et al. State of the art on the separation and purification of proteins by magnetic nanoparticles
Ponvel et al. Immobilization of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate
Song et al. Affinity adsorption of bromelain on Reactive Red 120 immobilized magnetic composite particles