JPS6390643A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPS6390643A
JPS6390643A JP23640086A JP23640086A JPS6390643A JP S6390643 A JPS6390643 A JP S6390643A JP 23640086 A JP23640086 A JP 23640086A JP 23640086 A JP23640086 A JP 23640086A JP S6390643 A JPS6390643 A JP S6390643A
Authority
JP
Japan
Prior art keywords
combustion
air
fuel ratio
spectral distribution
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23640086A
Other languages
Japanese (ja)
Inventor
Tamotsu Iijima
飯島 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23640086A priority Critical patent/JPS6390643A/en
Publication of JPS6390643A publication Critical patent/JPS6390643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the accuracy of feedback control from the standpoint of responsiveness and improve the extent of combustibility as well as to make improvements in output, fuel consumption and exhaust performance, by controlling a supply air-fuel ratio so as to cause the spectral distribution of combustion light to become a target pattern. CONSTITUTION:The combustion light transmitted by optical fibers 21a-23a having one end in and around an exhaust valve 16a of each combustion chamber 13a (hereinafter stated to a first cylinder only) of a cylinder head 11 is converted into each spectral signal or electric signals of photoelectric transfer elements 30-32 by way of a band pass-filter 17 (an ultraviolet ray area) 28 (visible ray area) 29 (infrared - near infrared ray areas) via fittings 24-26, and outputted to a control circuit 40 which sets spectral distribution corresponding to a desired air-fuel ratio by each input signal out of various sensors, and performs feedback control over a supply air-fuel ratio so as to cause the spectral distribution of the next time combustion light to become the desired spectral distribution. Therefore, such feedback control that has no responsive delay is carried out, thus combustibility is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等内燃機関における燃焼光のスペクト
ル分布を判別し、これが目標パターンとなるように空燃
比を制御する内燃機関の空燃比制御装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is an air-fuel ratio control method for an internal combustion engine that determines the spectral distribution of combustion light in an internal combustion engine such as an automobile, and controls the air-fuel ratio so that this becomes a target pattern. Regarding equipment.

(従来の技術) 近時、燃費の低減・排気の浄化、出力の増大等の要求に
伴って排気中の酸素濃度を検出して空燃比を検出し、こ
の検出情報に基づいて燃料供給量のフィードバック制御
が行われている。
(Prior art) In recent years, with the demand for reduced fuel consumption, purification of exhaust gas, and increased output, the air-fuel ratio is detected by detecting the oxygen concentration in the exhaust gas, and the amount of fuel supplied is adjusted based on this detected information. Feedback control is being performed.

従来のこの種の空燃比制御装置としては、第9図に示さ
れるようなものがある。この装置では、排気マニホール
ド1の途中に設けた酸素センサ2により排気中の酸素濃
度が検出され、コントロールユニット3で酸素濃度と相
関のある空燃比が判断サレる。コントロールユニット3
にはエアフローメータ4からの信号や他の運転状態を示
す各センサ群からの信号が入力されており、コントロー
ルユニットは空燃比検出情報や各センサ群からの信号に
基づき、空燃比が一定範囲内となるように燃料供給量を
制御してインジェクタ5に噴射信号を出力する(実開昭
61−12980号公報参照)。
As a conventional air-fuel ratio control device of this type, there is one shown in FIG. In this device, an oxygen sensor 2 provided in the middle of an exhaust manifold 1 detects the oxygen concentration in the exhaust gas, and a control unit 3 determines an air-fuel ratio that is correlated with the oxygen concentration. control unit 3
A signal from the air flow meter 4 and signals from each sensor group indicating other operating conditions are input to the control unit, and the control unit determines whether the air-fuel ratio is within a certain range based on the air-fuel ratio detection information and the signals from each sensor group. The fuel supply amount is controlled so as to output an injection signal to the injector 5 (see Japanese Utility Model Publication No. 12980/1983).

(発明が解決しようとする問題点) しかしながら、このような従来の内燃機関の空燃比制御
装置にあっては、燃焼室から排出された排気(すなわち
、既に燃焼してしまった混合気)中の酸素濃度に基づい
て空燃比を検出し、この検出情報に基づいて燃料供給量
を制御する構成となっていたため、フィードバック制御
の応答性という面で改善の余地がある。
(Problems to be Solved by the Invention) However, in such a conventional air-fuel ratio control device for an internal combustion engine, the amount of air in the exhaust gas discharged from the combustion chamber (i.e., the air-fuel mixture that has already been combusted) is Since the configuration is such that the air-fuel ratio is detected based on the oxygen concentration and the fuel supply amount is controlled based on this detected information, there is room for improvement in terms of feedback control responsiveness.

すなわち、混合気が燃焼すると、その排気がら空燃比が
検出され、この検出ステップから燃料供給量のフィード
バック制御値が演算されるというプロセスを経ているこ
とから、検出から制御の実行までにおける応答遅れが大
きく、例えば高回転域では目標とする燃料供給ff1(
目標空燃比に対応)に一致するまでに数十サイクルの燃
焼行程を必要とする場合もある。このような場合、目標
値に対するフィードバック制御の精度が低下するから、
燃焼性能が低下し、出力、燃費、排気性能の低下に至る
In other words, when the air-fuel mixture is combusted, the air-fuel ratio of the exhaust air is detected, and the feedback control value for the fuel supply amount is calculated from this detection step, so there is a delay in response from detection to execution of control. For example, in the high rotation range, the target fuel supply ff1 (
In some cases, it may take several tens of combustion strokes to reach the target air-fuel ratio (corresponding to the target air-fuel ratio). In such a case, the accuracy of feedback control for the target value decreases,
Combustion performance deteriorates, leading to reductions in output, fuel efficiency, and exhaust performance.

(発明の目的) そこで本発明は、燃焼によって生ずる燃焼光のスペクト
ル分布を検出し、そのスペクトル分布が目標パターンと
なるように供給空燃比を制御することにより、応答性の
面からフィードバック制御の精度を高めて燃焼性能を向
上させ、出力、燃費、排気性能を向上させることを目的
としている。
(Purpose of the Invention) Therefore, the present invention detects the spectral distribution of combustion light generated by combustion and controls the supplied air-fuel ratio so that the spectral distribution becomes a target pattern, thereby improving the accuracy of feedback control from the viewpoint of responsiveness. The aim is to increase fuel efficiency and improve combustion performance, thereby improving output, fuel efficiency, and exhaust performance.

(問題点を解決するための手段) 本発明による内燃機関の空燃比制御装置は上記目的達成
のため、その基本概念図を第1図に示すように、エンジ
ンの燃焼室内で発生する光を検出する光検出手段aと、
光検出手段aの出力から燃焼光のスペクトル分布を判別
するスペクトル判別手段すと、スペクトル判別手段すの
出力に基づいて燃焼光のスペクトル分布が所定の目標パ
ターンとなるように燃料の供給量あるいは吸入空気量を
制御する制御値を演算する制御手段Cと、制御手段Cの
出力に基づいて燃料の供給量あるいは吸入空気量を操作
する操作手段dと、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the air-fuel ratio control device for an internal combustion engine according to the present invention detects light generated within the combustion chamber of the engine, as shown in FIG. a light detection means a,
The spectral discrimination means for discriminating the spectral distribution of combustion light from the output of the light detection means a determines the amount of fuel supplied or inhaled so that the spectral distribution of combustion light follows a predetermined target pattern based on the output of the spectrum discrimination means. It includes a control means C that calculates a control value for controlling the amount of air, and an operation means d that operates the amount of fuel supplied or the amount of intake air based on the output of the control means C.

く作用) 本発明は、燃焼によって生ずる燃焼光のスペクトル分布
が検出され、そのスペクトル分布が目標パターンとなる
ように供給空燃比が制御される。
In the present invention, the spectral distribution of combustion light generated by combustion is detected, and the supplied air-fuel ratio is controlled so that the spectral distribution becomes a target pattern.

したがって、応答性の面からフィードバック制御の精度
が高まり、燃焼性能の低下が防止されて出力、燃費、排
気性能が向上する。
Therefore, the accuracy of feedback control is increased in terms of responsiveness, combustion performance is prevented from deteriorating, and output, fuel efficiency, and exhaust performance are improved.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜8図は本発明の一実施例を示す図である。2 to 8 are diagrams showing one embodiment of the present invention.

まず、構成を説明する。第2図において、11は直列4
気筒エンジンのシリンダヘッド、12はトランスミッシ
ョンであり、この図に示すシリンダヘッド11はシリン
ダブロックから取り外して下側から見た状態を示してい
る。シリンダへラド11には吸気マニホールド148〜
14dの一端が連結され、これらの吸気マニホールド1
4a〜14dには後述のインジェクタ41a〜41dが
それぞれ配設されている。また、シリンダへラド11に
は4個の燃焼室13a〜13dが形成され、これらの燃
焼室13a〜13dには吸気弁152〜15d、排気弁
16a〜16dおよび点火プラグ17a〜17dがそれ
ぞれ臨んでいる。なお、18a 〜18dは吸気ボート
、192〜19dは排気ボートである。
First, the configuration will be explained. In Figure 2, 11 is 4 in series.
The cylinder head 12 of the cylinder engine is a transmission, and the cylinder head 11 shown in this figure is shown removed from the cylinder block and viewed from below. Intake manifold 148 to cylinder rad 11
One end of 14d is connected to these intake manifolds 1
Injectors 41a to 41d, which will be described later, are arranged at 4a to 14d, respectively. Further, four combustion chambers 13a to 13d are formed in the cylinder head 11, and intake valves 152 to 15d, exhaust valves 16a to 16d, and spark plugs 17a to 17d face each of these combustion chambers 13a to 13d. There is. Note that 18a to 18d are intake boats, and 192 to 19d are exhaust boats.

各燃焼室13a〜13dにはシリンダボア近傍において
それぞれ第1、第2、第3の各光ファイバ21a 〜2
1d、 22a 〜22b、 23a 〜23d  (
光検出手段)の各一端が設けられており、第1、第2、
第3の各光ファイバは点火プラグ17a〜17dから遠
い部分でかつ排気弁16a〜16d近傍にて燃焼室13
a−13dを臨んでいる。第1、第2、第3の各光ファ
イバ21a 〜21d、 22a 〜22b、 23a
 〜23dは燃焼室13a〜13d内の光を検出してこ
れを伝送するもので、第1の光ファイバ21a〜21d
の他端部は金具24により一つに束ねられて波長200
〜400nmの紫外光のみを透過するバンドパスフィル
タ27に接続され、バンドパスフィルタ27の光信号出
力は光電変換素子30に入力される。また、第2の光フ
ァイバ22a〜22dの他端部は金具25により一つに
束ねられて波長400〜600 nmの可視光のみを透
過するバンドパスフィルタ28に接続され、バンドパス
フィルタ28の光信号出力は光電変換素子31に入力さ
れる。さらに、第3の光ファイバ23a〜23dも金具
26により第1、第2の光ファイバ21a〜21d、2
2a〜22dと同様に一つに束ねられて波長600〜1
1000nの赤色〜近赤外光のみを透過するバンドパス
フィルタ29に接続され、バンドパスフィルタ29の光
信号出力は光電変換素子32に入力される。なお、各金
具24.25.26、各バンドパスフィルタ27.28
.29、(スペクトル判別手段)、各光電変換素子30
.31.32はそれぞれ遮光ケース33.34.35に
よって覆われており、遮光ケース33.34.35は光
学ノイズが光電変換素子30.31.32に入るのを防
止する。
Each of the combustion chambers 13a to 13d has first, second, and third optical fibers 21a to 2 in the vicinity of the cylinder bore, respectively.
1d, 22a ~ 22b, 23a ~ 23d (
one end of each of the first, second, and
Each of the third optical fibers is connected to the combustion chamber 13 at a portion far from the spark plugs 17a to 17d and near the exhaust valves 16a to 16d.
I am facing a-13d. First, second, and third optical fibers 21a to 21d, 22a to 22b, 23a
-23d detect the light in the combustion chambers 13a-13d and transmit it, and the first optical fibers 21a-21d
The other end is bundled together by a metal fitting 24 and has a wavelength of 200.
It is connected to a bandpass filter 27 that transmits only ultraviolet light of up to 400 nm, and the optical signal output of the bandpass filter 27 is input to a photoelectric conversion element 30 . The other ends of the second optical fibers 22a to 22d are bundled together by a metal fitting 25 and connected to a bandpass filter 28 that transmits only visible light with a wavelength of 400 to 600 nm. The signal output is input to the photoelectric conversion element 31. Further, the third optical fibers 23a to 23d are also connected to the first and second optical fibers 21a to 21d, 2 by means of the metal fittings 26.
Similar to 2a to 22d, they are bundled together and have a wavelength of 600 to 1.
It is connected to a bandpass filter 29 that transmits only red to near-infrared light of 1000 nm, and the optical signal output of the bandpass filter 29 is input to the photoelectric conversion element 32 . In addition, each metal fitting 24, 25, 26, each band pass filter 27, 28
.. 29, (spectrum discrimination means), each photoelectric conversion element 30
.. 31, 32 are each covered by a light shielding case 33, 34, 35, and the light shielding case 33, 34, 35 prevents optical noise from entering the photoelectric conversion element 30, 31, 32.

第1の光電変換素子30はバンドパスフィルタ27によ
って燃焼光から分離された紫外光域の光エネルギを電気
信号に変換し、スペクトル信号1 uvを制御回路40
(制御手段)に出力する。一方、第2の光電変換素子3
1はバンドパスフィルタ28によって、また第3の光電
変換素子32はバンドパスフィルタ29によってそれぞ
れ燃焼光から分離された可視光域、赤外〜近赤外光域の
光エネルギを各々電気信号に変換しスペクトル信号■8
い 1.とじて制御回路イ0にそれぞれ出力する。制御
手段40にはスペクトル信号■。s  110%  I
Nの他に図示は略されているが、機関回転数信号、吸入
空気温信号、その他運転条件を表す各種信号が入力され
ており、制御回路40は運転条件から目標とするスペク
トル分布(目標空燃比に対応)を設定し、入力されたス
ペクトル信号1 uv、■8い INに基づき次回の燃
焼行程における燃焼光のスペクトル分布がこの目標スペ
クトル分布となるように燃料供給量を演算し、インジェ
クタ41a〜41d (操作手段)に噴射信号を出力す
る。インジェクタ413〜41dは噴射信号に基づいて
吸気マニホールド14a〜14dに連結される吸気ボー
)18a〜18dに燃料を噴射する。
The first photoelectric conversion element 30 converts the light energy in the ultraviolet region separated from the combustion light by the bandpass filter 27 into an electric signal, and transmits the spectrum signal 1 uv to the control circuit 40.
(control means). On the other hand, the second photoelectric conversion element 3
1 and a third photoelectric conversion element 32 convert optical energy in the visible light range and infrared to near-infrared light range separated from the combustion light into electric signals by a band-pass filter 28 and a third photoelectric conversion element 32, respectively, by a band-pass filter 28 and a band-pass filter 29, respectively. Spectrum signal ■8
1. and outputs them to control circuit i0. The control means 40 receives a spectrum signal ■. s 110% I
Although not shown in the figure, in addition to N, various signals representing the engine speed signal, intake air temperature signal, and other operating conditions are input, and the control circuit 40 determines the target spectral distribution (target air temperature) from the operating conditions. Based on the input spectral signals 1 uv, 8 IN, the fuel supply amount is calculated so that the spectral distribution of combustion light in the next combustion stroke corresponds to this target spectral distribution, and the injector 41a - Outputs an injection signal to 41d (operating means). Injectors 413-41d inject fuel into intake bows 18a-18d connected to intake manifolds 14a-14d based on injection signals.

次に、作用を説明する。Next, the effect will be explained.

第3図(a)、(b)、(c)は代表的な混合気濃度3
種類について混合気が燃焼したときの燃焼光のスペクト
ル分布を示す図であり、混合気濃度によって燃焼光のス
ペクトル分布はそれぞれ特徴を有する。例えば、同図(
a)は希薄な混合気が燃焼したときの燃焼光のスペクト
ル分布を示しているが、波長600nm以上の赤色〜赤
外光域の光強度は弱く、波長400nmを中心に300
〜500nmに亘って光エネルギが集中している。同図
(b)は理論空燃比、同図(C)は過濃な混合気がそれ
ぞれ燃焼したときの燃焼光のスペクトル分布を示してい
る。第4図は第3図に示す燃焼光スペクトル分布を波長
帯域毎にバンドパスフィルタ27.28.29によって
分離したときのクランク角と光強度の関係を示す図であ
る。同図(a>は紫外光域(UV : 200〜400
nm)における光強度を示しており、希薄な混合気が燃
焼したとき光強度が最も強い。
Figure 3 (a), (b), and (c) are typical mixture concentrations 3
It is a diagram showing the spectral distribution of combustion light when the air-fuel mixture is combusted for each type, and the spectral distribution of the combustion light has characteristics depending on the air-fuel mixture concentration. For example, in the same figure (
Figure a) shows the spectral distribution of combustion light when a lean air-fuel mixture burns, but the light intensity in the red to infrared light range with a wavelength of 600 nm or more is weak, and the light intensity is 300 nm centered around a wavelength of 400 nm.
The light energy is concentrated over ~500 nm. The figure (b) shows the stoichiometric air-fuel ratio, and the figure (c) shows the spectral distribution of combustion light when a rich air-fuel mixture is combusted. FIG. 4 is a diagram showing the relationship between crank angle and light intensity when the combustion light spectral distribution shown in FIG. 3 is separated by bandpass filters 27, 28, and 29 for each wavelength band. In the same figure (a> is the ultraviolet light range (UV: 200-400
The light intensity is the highest when a lean mixture is combusted.

また、同図(b)は可視光域(B−G:400〜600
nm)における光強度を示しており、理論空燃比の混合
気が燃焼したとき光強度が最も強く、同図(c)では過
濃な混合気が燃焼したとき赤色〜赤外光域(R:600
〜101000nの光強度が最も強い。
In addition, the same figure (b) shows the visible light range (B-G: 400-600
The figure shows the light intensity in the red to infrared light range (R: 600
The light intensity of ~101000n is the strongest.

このように、空燃比に対する燃焼光のスペクトル分布に
は特徴的なパターンがあり、このパターンを検出するこ
とで空燃比が判別できる。
In this way, the spectral distribution of combustion light with respect to the air-fuel ratio has a characteristic pattern, and by detecting this pattern, the air-fuel ratio can be determined.

第8図は各気筒の燃焼サイクルとバンドパスフィルタ3
0.31.32の各出力の関係を示すタイミングチャー
トであり、各気筒は同図に示すような順序(イーホ)で
燃焼サイクルを繰り返している。
Figure 8 shows the combustion cycle of each cylinder and the bandpass filter 3.
This is a timing chart showing the relationship between each output of 0.31.32, and each cylinder repeats a combustion cycle in the order shown in the figure.

燃焼光の発生に伴う作用については説明の都合上第1気
筒(第2図中左端の気筒)を例にとる。
For convenience of explanation, the first cylinder (the leftmost cylinder in FIG. 2) will be taken as an example of the action accompanying the generation of combustion light.

燃焼室13a内で点火プラグ17aにより火花点火が行
われると、混合気の燃焼による燃焼光は光ファイバ21
a 、 22a 、23aによってバンドパスフィルタ
27.28.29にそれぞれ伝送される。バンドパスフ
ィルタではそれぞれのバンドパスフィルタを有する通過
帯域に応じたスペクトル成分のみが通過し、光電変換素
子30.31.32へ入力される。第5図〜第7図は混
合気の空燃比を変えたときの燃焼光に基づく光電変換素
子30.31.32の各出力IuvsIgい ■8を波
長帯域別に示した図であり、光電変換素子30.31.
32の出力1 uv、IacsI)(は前述のように混
合気の空燃比によって信号の強度が異なる。いま、機関
が部分負荷運転状態で供給温合気が理論空燃比でなけれ
ばならないとき、。
When a spark is ignited by the spark plug 17a in the combustion chamber 13a, the combustion light from the combustion of the air-fuel mixture is transmitted through the optical fiber 21.
a, 22a, 23a to bandpass filters 27, 28, 29, respectively. Only the spectral components corresponding to the passbands of the respective bandpass filters pass through the bandpass filters, and are input to the photoelectric conversion elements 30, 31, and 32. Figures 5 to 7 are diagrams showing each output IuvsIg (8) of the photoelectric conversion element 30, 31, and 32 based on combustion light when changing the air-fuel ratio of the air-fuel mixture by wavelength band. 30.31.
32's output 1 uv, IacsI) (as mentioned above, the signal strength differs depending on the air-fuel ratio of the air-fuel mixture. Now, when the engine is in a partial load operating state and the supplied temperature mixture must be at the stoichiometric air-fuel ratio.

制御回路40により光電変換素子30.31.32の出
力(あるいは、その積分された信号強度)■uv、■8
い I8が比較され、その比■uv/IBいあるいはI
R/IIG(以下、強度比という)の各値が最小となる
ように燃料供給量が増減補正される(第6図(b)参照
)。例えば、燃焼室13a内の燃焼光によって光電変換
素子30.31.32の各出力が第5図(希藩混合気の
燃焼光スペクトル分布)のようなパターンであると、強
度比T uv/ I mGの値が大きくなり、制御回路
40によって次回の燃焼サイクルまでに燃料供給量が増
量補正される。第8図イ、ホはこの作用を示しており、
イーe、f、gの各波形は第5図に対応している。また
、ホーe、f、gの各波形は第6図(理論空燃比のとき
の燃焼光スペクトル分布)に対応している。すなわち、
第1気筒の膨張行程で希薄な混合気の燃焼が検出され(
イーa参照)理論空燃比となるように燃料供給量が増量
補正され、ローa (排気)で燃料噴射が行われる。そ
して、ホーe、f、g (次回の燃焼サイクル)に示す
ように各波長は理論空燃比の燃焼光スペクトル分布とな
る。また、燃焼室13a内の燃焼光によって光電変換素
子30.31.32の各出力が第7図(過濃混合気の燃
焼光スペクトル分布)のようなパターンであると、強度
比■8/raGの値が大きくなり、制御回路40によっ
て次回の燃焼サイクルまでに燃料供給量が一$i量補正
される。一方、機関が高負荷運転状態で出力を必要とす
るときには強度比I uv/ I * 、  I tr
r、/ I *の値が最小、あるいは予め出力特性を重
視した実験等により設定された値になるように制御回路
40によって燃料供給量が増減補正される。例えば、燃
焼室13a内の燃焼光によって光電変換素子30.31
.32の各出力が第5図、または第7図のようなパター
ンであると、強度比Iuv/IR1またはI *c/I
、Iの値が大きくなり、制御回路40によって燃料供給
量が増減補正される。
The control circuit 40 controls the outputs of the photoelectric conversion elements 30, 31, and 32 (or their integrated signal strengths) ■uv, ■8
I8 is compared and the ratio uv/IB or I
The fuel supply amount is corrected to increase or decrease so that each value of R/IIG (hereinafter referred to as intensity ratio) is minimized (see FIG. 6(b)). For example, if the outputs of the photoelectric conversion elements 30, 31, and 32 due to the combustion light in the combustion chamber 13a have a pattern as shown in FIG. 5 (combustion light spectral distribution of rare mixture), the intensity ratio T uv/I The value of mG increases, and the control circuit 40 corrects the fuel supply amount to increase until the next combustion cycle. Figure 8 A and H show this effect,
The waveforms of e, f, and g correspond to those shown in FIG. Further, the waveforms of e, f, and g correspond to FIG. 6 (combustion light spectral distribution at the stoichiometric air-fuel ratio). That is,
Combustion of a lean mixture is detected during the expansion stroke of the first cylinder (
(See E-a) The fuel supply amount is corrected to increase so as to reach the stoichiometric air-fuel ratio, and fuel injection is performed at low a (exhaust). Then, as shown in e, f, and g (next combustion cycle), each wavelength becomes a combustion light spectral distribution of the stoichiometric air-fuel ratio. Moreover, if the outputs of the photoelectric conversion elements 30, 31, and 32 due to the combustion light in the combustion chamber 13a have a pattern as shown in FIG. 7 (combustion light spectral distribution of a rich mixture), the intensity ratio ■8/raG becomes larger, and the control circuit 40 corrects the fuel supply amount by one $i amount by the next combustion cycle. On the other hand, when the engine requires output under high load operating conditions, the intensity ratio I uv/I *, I tr
The control circuit 40 increases or decreases the fuel supply amount so that the value of r,/I* becomes the minimum value or a value previously set through experiments with emphasis on output characteristics. For example, the photoelectric conversion elements 30 and 31 are
.. 32 outputs have a pattern as shown in FIG. 5 or FIG. 7, the intensity ratio Iuv/IR1 or I*c/I
, I increases, and the control circuit 40 increases or decreases the fuel supply amount.

以上説明した燃料供給の増減補正の刻み幅は、応答性や
制御精度に応じて適切に設定される。
The step width of the fuel supply increase/decrease correction described above is appropriately set according to responsiveness and control accuracy.

このように、本実施例では燃焼によって生ずる燃焼光の
スペクトル分布が検出され、そのスペクトル分布が目標
パターン、例えば理論空燃比に対応するパターンとなる
ように燃料供給量が増減補正される。この場合、燃焼光
は今回の燃焼サイクル途中の燃焼状態を表しており、そ
の検出速度は従来のような排気酸素濃度に基づく検出精
度にくらべて格段と速い。すなわち、空燃比検出という
点で極めて応答性が高く、燃焼と略同−タイミング(リ
アルタイム)といってよい。したがって、このような略
同−タイミングの検出情報に基づいて燃料供給量のフィ
ードバック補正が成されているので、検出から制御の実
行までにおける応答遅れがほとんどなくなり、制御系に
おける演算時間のみとなる(この処理時間は電気信号に
よるので実際上極めて短い)。そのため、仮に高回転域
での運転であっても目標値への収束時間が極めて短く、
目標値に対するフィードバック制御の精度が格段と高ま
る。その結果、燃焼性能が高められて、出力、燃費、排
気性能を向上させることができる。
As described above, in this embodiment, the spectral distribution of combustion light generated by combustion is detected, and the fuel supply amount is corrected to increase or decrease so that the spectral distribution becomes a target pattern, for example, a pattern corresponding to the stoichiometric air-fuel ratio. In this case, the combustion light represents the combustion state during the current combustion cycle, and its detection speed is much faster than conventional detection accuracy based on exhaust oxygen concentration. In other words, the responsiveness is extremely high in terms of air-fuel ratio detection, and it can be said that the timing is approximately the same as combustion (real time). Therefore, since feedback correction of the fuel supply amount is performed based on such detection information at approximately the same timing, there is almost no response delay from detection to execution of control, and only the calculation time in the control system is reduced ( This processing time is actually extremely short since it is based on electrical signals). Therefore, even when operating in a high rotation range, the time to converge to the target value is extremely short.
The accuracy of feedback control for target values is greatly improved. As a result, combustion performance is enhanced, and output, fuel efficiency, and exhaust performance can be improved.

なお、いま第1気筒の燃焼室13aを例に説明したが、
他の気筒の燃焼室13b〜13dについても全(同様に
燃焼光の検出、燃料供給量の制御が行われる。
In addition, although the description has been made using the combustion chamber 13a of the first cylinder as an example,
For all combustion chambers 13b to 13d of other cylinders, detection of combustion light and control of fuel supply amount are also performed in the same way.

また、本実施例では光ファイバによって伝送された光を
一つの光電変換素子が各燃焼室13a〜13dの同−波
長光毎にまとめて受光することによりコストの低減を図
っているが、このような構成としても制御回路40は各
気筒毎の点火タイミングを判別して制御しているので、
どのタイミングに対して光信号が発生したかを判断する
ことでその光信号がどの気筒の燃焼光に起因するものか
は容易に判別できる。
Furthermore, in this embodiment, a single photoelectric conversion element receives the light transmitted by the optical fiber for each light of the same wavelength in each combustion chamber 13a to 13d, thereby reducing the cost. Even with this configuration, the control circuit 40 determines and controls the ignition timing for each cylinder.
By determining at which timing the optical signal is generated, it is possible to easily determine which cylinder's combustion light causes the optical signal.

さらに、本実施例では空燃比の制御方法として燃料供給
量を可変としているが、空燃比のパラメータとしては空
気もあるから、吸入空気量を操作するようにしてもよい
Further, in this embodiment, the fuel supply amount is made variable as a method of controlling the air-fuel ratio, but since air is also used as a parameter for the air-fuel ratio, the amount of intake air may be manipulated.

(効果) 本発明によれば、燃焼によって生ずる燃焼光のスペクト
ル分布を検出し、そのスペクトル分布が所定の目標パタ
ーンとなるように燃料の供給量あるいは吸入空気量を制
御しているので、空燃比の検出応答性を高めてフィード
バック制御の精度を向上させることができ、燃焼性能を
高めて出力、燃費、排気性能を向上させることができる
(Effects) According to the present invention, the spectral distribution of combustion light generated by combustion is detected and the fuel supply amount or intake air amount is controlled so that the spectral distribution becomes a predetermined target pattern. It is possible to improve the detection response and improve the accuracy of feedback control, which in turn improves combustion performance and improves output, fuel efficiency, and exhaust performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜8図は本発明に係
る内燃機関の空燃比制御装置の一実施例を示す図であり
、第2図はその全体構成図、第3図はその燃焼光のスペ
クトル分布を示す図、第4図はその各波長帯域別のクラ
ンク角に対する光強度の関係を示す図、第5図はその希
薄混合気が燃焼したときの光強度を各波長帯域毎に示す
図、第6図はその理論空燃比の混合気が燃焼したときの
光強度を各波長帯域別に示す図、第7図はその過濃混合
気が燃焼したときの光強度を各波長帯域別に示す図、第
8図はその燃焼行程と各バンドパスフィルタの出力の関
係を示すタイミングチャート、第9図は従来の内燃機関
の空燃比制御装置を示すその全体構成図である。 21a 〜21d、 22a 〜22d、 23a 〜
23d・・・・・・光ファイバ(光検出手段)、27.
28.29・・・・・・バンドパスフィルタ(スペクト
ル判別手段)、 40・・・・・・制御回路(制御手段)、41a〜41
d・・・・・・インジェクタ(操作手段)。
FIG. 1 is a basic conceptual diagram of the present invention, FIGS. 2 to 8 are diagrams showing an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention, FIG. 2 is an overall configuration diagram thereof, and FIG. is a diagram showing the spectral distribution of the combustion light, Figure 4 is a diagram showing the relationship of light intensity to crank angle for each wavelength band, and Figure 5 is a diagram showing the light intensity at each wavelength when the lean mixture burns. Figure 6 shows the light intensity for each wavelength band when a mixture with the stoichiometric air-fuel ratio burns, and Figure 7 shows the light intensity for each wavelength band when the rich mixture burns. FIG. 8 is a timing chart showing the relationship between the combustion stroke and the output of each bandpass filter, and FIG. 9 is an overall configuration diagram showing a conventional air-fuel ratio control device for an internal combustion engine. 21a ~ 21d, 22a ~ 22d, 23a ~
23d... Optical fiber (light detection means), 27.
28.29... Bandpass filter (spectrum discrimination means), 40... Control circuit (control means), 41a to 41
d...Injector (operating means).

Claims (1)

【特許請求の範囲】 a)エンジンの燃焼室内で発生する光を検出する光検出
手段と、 b)光検出手段の出力から燃焼光のスペクトル分布を判
別するスペクトル判別手段と、 c)スペクトル判別手段の出力に基づいて燃焼光のスペ
クトル分布が所定の目標パターンとなるように燃料の供
給量あるいは吸入空気量を制御する制御値を演算する制
御手段と、 d)制御手段の出力に基づいて燃料の供給量あるいは吸
入空気量を操作する操作手段と、 を備えたことを特徴とする内燃機関の空燃比制御装置。
[Scope of Claims] a) light detection means for detecting light generated in the combustion chamber of an engine; b) spectrum discrimination means for discriminating the spectral distribution of combustion light from the output of the light detection means; c) spectrum discrimination means d) control means for calculating a control value for controlling the amount of fuel supplied or the amount of intake air so that the spectral distribution of combustion light becomes a predetermined target pattern based on the output of the control means; An air-fuel ratio control device for an internal combustion engine, comprising: an operating means for controlling a supply amount or an intake air amount.
JP23640086A 1986-10-03 1986-10-03 Air-fuel ratio control device for internal combustion engine Pending JPS6390643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23640086A JPS6390643A (en) 1986-10-03 1986-10-03 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23640086A JPS6390643A (en) 1986-10-03 1986-10-03 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6390643A true JPS6390643A (en) 1988-04-21

Family

ID=17000198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23640086A Pending JPS6390643A (en) 1986-10-03 1986-10-03 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6390643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340129B2 (en) 2004-08-04 2008-03-04 Colorado State University Research Foundation Fiber laser coupled optical spark delivery system
US7412129B2 (en) 2004-08-04 2008-08-12 Colorado State University Research Foundation Fiber coupled optical spark delivery system
JP2008298782A (en) * 2007-05-31 2008-12-11 Avl List Gmbh Method for evaluating combustion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340129B2 (en) 2004-08-04 2008-03-04 Colorado State University Research Foundation Fiber laser coupled optical spark delivery system
US7412129B2 (en) 2004-08-04 2008-08-12 Colorado State University Research Foundation Fiber coupled optical spark delivery system
US7420662B2 (en) 2004-08-04 2008-09-02 Colorado State University Research Foundation Optical diagnostics integrated with laser spark delivery system
JP2008298782A (en) * 2007-05-31 2008-12-11 Avl List Gmbh Method for evaluating combustion

Similar Documents

Publication Publication Date Title
US6502549B1 (en) Engine combustion control device
JP3150429B2 (en) Lean limit detection method using ion current
US6302085B1 (en) Apparatus and method for detecting crank angle of engine
CA1338205C (en) Method of operating an engine and measuring certain operating parameters
US4612902A (en) Knocking control method and apparatus for internal combustion engine
US5664544A (en) Apparatus and method for control of an internal combustion engine
US20110238279A1 (en) Diagnosis for multiple cylinder engine
JPS6017239A (en) Control device of combustion in internal-combustion engine
JPS6390643A (en) Air-fuel ratio control device for internal combustion engine
US4903664A (en) Spark ignition timing control system for internal combustion engine with fail safe system for cylinder pressure sensor
US5676108A (en) Combustion control system for four cycle direct injection engine and the method thereof
JPH06159129A (en) Knocking detection method by ion current
US4608956A (en) Operating apparatus for lean burn internal combustion engine
US6763806B2 (en) Combustion control apparatus and combustion control method of internal combustion engine
JPH048285Y2 (en)
JPS63302163A (en) Lean burn control device
JP2013238111A (en) Air-fuel ratio control device of internal combustion engine
JP2966862B2 (en) Combustion light sensor
JP2000018141A (en) Ignition energy control unit using in-cylinder pressure sensor
SU1339281A1 (en) Control device for multicylinder internal combustion engine
JPS61187558A (en) Control device of engine
JP2855383B2 (en) Interrupt injection control device for electronically controlled fuel injection type internal combustion engine
JPH0914043A (en) Knocking detection device
JPH01305342A (en) Measuring device for air fuel ratio of engine
JPS6156421B2 (en)