JPS6390252A - Direct current compensating circuit - Google Patents

Direct current compensating circuit

Info

Publication number
JPS6390252A
JPS6390252A JP61234392A JP23439286A JPS6390252A JP S6390252 A JPS6390252 A JP S6390252A JP 61234392 A JP61234392 A JP 61234392A JP 23439286 A JP23439286 A JP 23439286A JP S6390252 A JPS6390252 A JP S6390252A
Authority
JP
Japan
Prior art keywords
direct current
circuit
output
amplifier
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61234392A
Other languages
Japanese (ja)
Inventor
Takuya Iwagami
岩上 卓哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61234392A priority Critical patent/JPS6390252A/en
Publication of JPS6390252A publication Critical patent/JPS6390252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulation Of Pulses (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To eliminate a fluctuation in the direct current level of a direct current interrupted Return to Zero input pulse train by providing a slicer, an integration circuit, a direct current amplifier and an adder circuit, detecting the scale of a direct current signal to be compensated and adding a direct current voltage corresponding to the value to the input pulse train. CONSTITUTION:Only the positive part of the pulse (or only negative part) is taken out by the slicer 13, the output is integrated in the integration circuit 14, thereafter, amplified to a proper level by the direct current amplifier 15, the output is added to a main signal by the adder circuit 16, thereby, the direct current can be compensated to the main signal. In this case, the quantity p' of the fluctuation in a direct current level is linearly changed, however, an integrated value is not changed linearly to a mark ratio, so that the direct current cannot be completely compensated. However, for instance, when the gain of the direct current amplifier circuit 15 is determined as indicated by the curve 31 of broken lines in which the difference between an integrated value to mark ratio characteristic and the quantity P' of the fluctuation in the direct current level is minimum, the direct current fluctuation can be suppressed with an error of about 7% of a pulse duration to all the mark ratio.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ディジタル通信システムの受信側装置におい
て、伝送路等により直流成分を遮断され先入力信号に対
して直流成分を補償するだめの回路に関し、特に入力信
号がRZ (リターン・トウ・ゼロ)パルスの場合の直
流補償回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a circuit for compensating the DC component for a previously input signal whose DC component is blocked by a transmission line or the like in a receiving side device of a digital communication system. In particular, the present invention relates to a DC compensation circuit when the input signal is an RZ (return-to-zero) pulse.

従来の技術 従来、この種の直流補償回路は、ダイオードとコンデン
サを用いた直流クランプ回路を、主信号路に入れるのが
一般的であった。第7図はその一例の構成を示すブロッ
ク図であり、クランプ回路71と、入力バッファ72と
、出力バッファ73とからなっていた。したがって、こ
の従来の直流補償回路では、クランプ回路71のダイオ
ードによる直流クランプ動作の誤差を小さくするために
、出力インピーダンスの小さい入力バッファ72と、入
力インピーダンスの大きい出力バッファ73との間に直
流クランプ回路71を接続しているが、入力信号の速度
が数百7がビット/秒以上となるような超高速パルス伝
送装置に、このような回路を適用しようとすると、 (1)このよう々超高速(超広帯域)領域で充分出カイ
ンピーダンスを小さくできる、或いは充分入力インピー
ダンスを大きくできるバッファ回路72および73の実
現が困難となり、クランプが完全に行なわれなくなって
直流補償が不完全になる。
2. Description of the Related Art Conventionally, this type of DC compensation circuit has generally included a DC clamp circuit using a diode and a capacitor in the main signal path. FIG. 7 is a block diagram showing the configuration of one example, which consists of a clamp circuit 71, an input buffer 72, and an output buffer 73. Therefore, in this conventional DC compensation circuit, in order to reduce the error in the DC clamp operation caused by the diode of the clamp circuit 71, a DC clamp circuit is connected between the input buffer 72 with low output impedance and the output buffer 73 with high input impedance. 71 is connected, but when trying to apply such a circuit to an ultra-high-speed pulse transmission device where the input signal speed is several hundred bits per second or more, (1) Such an ultra-high-speed pulse transmission device It becomes difficult to realize buffer circuits 72 and 73 that can sufficiently reduce the output impedance or sufficiently increase the input impedance in the (ultra-wideband) region, and clamping is not performed completely, resulting in incomplete DC compensation.

(2)バッファの周波数対利得特性を超広帯域にわたっ
て平坦とすることが困難になるため、入力信号波形が歪
を受け、これによって直流補償特性が理想値からはずれ
る。
(2) Since it becomes difficult to make the frequency vs. gain characteristic of the buffer flat over an ultra-wide band, the input signal waveform is distorted, which causes the DC compensation characteristic to deviate from its ideal value.

(3)入力バッファおよび出力バッファには通常バイポ
ーラ・トランジスタによるエミツタ7オロワ回路、また
はGaAs  FET (ガリウム砒素FET)等の電
界効果トランジスタによるソースフォロワ回路が用いら
れるが、第7図に示すように、このような回路を2段縦
続に接続すると、超高周波においてきわめて発振しゃす
くなシ、安定な動作が得にくい、などの欠点があった。
(3) For input buffers and output buffers, a seven-emitter follower circuit using bipolar transistors or a source follower circuit using field effect transistors such as GaAs FETs (gallium arsenide FETs) is usually used, but as shown in FIG. When such circuits are connected in two stages in series, there are drawbacks such as extremely low oscillation at extremely high frequencies and difficulty in obtaining stable operation.

発明が解決しようとする問題点 本発明の目的は、上記の欠点、すなわち超高速のパルス
伝送路において、直流補償が不完全になシ、歪をもち、
かつ超高周波において発振し易いなどの問題点を解決し
た直流補償回路を提供することにある。
Problems to be Solved by the Invention The purpose of the present invention is to solve the above-mentioned drawbacks, namely, in ultra-high-speed pulse transmission lines, DC compensation is incomplete and distortion occurs.
Another object of the present invention is to provide a DC compensation circuit which solves problems such as easy oscillation at extremely high frequencies.

問題点を解決するための手段 本発明は上述の問題点を解決するために、直流遮断を受
けた2値R,Z入力信号を接地電位でスライスするスラ
イサと、このスライサの出力を積分する積分回路と、こ
の積分回路の出力信号を増幅する直流増幅器と、この直
流増幅器の出力電圧を前記入力信号に加算する加算回路
とを有する構成を採用するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a slicer for slicing binary R, Z input signals subjected to direct current interruption at a ground potential, and an integrator for integrating the output of this slicer. A configuration is adopted that includes a circuit, a DC amplifier that amplifies the output signal of the integration circuit, and an addition circuit that adds the output voltage of the DC amplifier to the input signal.

作用 本発明は上述のように構成したので、補償すべき入力信
号をスライサによってスライスし、更に積分回路で積分
したのち直流増幅器で適切なレベルに増幅して、主信号
に加算回路を用いて加算して、直流分を補償することが
できる。
Operation Since the present invention is configured as described above, the input signal to be compensated is sliced by a slicer, further integrated by an integrating circuit, amplified to an appropriate level by a DC amplifier, and added to the main signal using an adder circuit. Thus, the DC component can be compensated for.

実施例 次に本発明の実施例について図面を参照して説明する。Example Next, embodiments of the present invention will be described with reference to the drawings.

本発明の一実施例をブロック図で示す第1図を参照する
と、本発明の直流補償回路は、信号入力端子11と、こ
の入力信号を2分割し接地電位でスライスするスライサ
13と、この出力を積分する積分回路14と、この積分
回路14の出力を増幅するVi流流暢幅器15、この出
力を主信号に加算する加算回路16と、加算したデータ
を出力する出力端子12とからなっている。
Referring to FIG. 1, which shows a block diagram of an embodiment of the present invention, the DC compensation circuit of the present invention includes a signal input terminal 11, a slicer 13 that divides this input signal into two and slices it at ground potential, and this output signal. It consists of an integrating circuit 14 that integrates, a Vi fluency amplifier 15 that amplifies the output of this integrating circuit 14, an adding circuit 16 that adds this output to the main signal, and an output terminal 12 that outputs the added data. There is.

次に本実施例の動作釦ついて説明する。簡単のため、パ
ルスは占有率50%の矩形波であるとして扱う。成る一
定時間内に入力端子に到来する2値パルス(マークtた
はスペース)の全数Nに対スるマークの数nの割合をマ
ーク率sn = n / I”Jと称するが、入力パル
ス列が直流遮断を受けている場合、この人力パルス列の
直流レベルは、マーク率によって変動する。この様子を
、N=4の場合について第2図に示す。この図の例で明
らかなように、RZパルスの振幅値を1とするとき、直
流基準レベル(接地電位)からの変動量(正方向をP。
Next, the operation buttons of this embodiment will be explained. For simplicity, the pulse is assumed to be a rectangular wave with an occupancy rate of 50%. The ratio of the number n of marks to the total number N of binary pulses (marks t or spaces) that arrive at the input terminal within a certain period of time is called mark rate sn = n / I''J. When subjected to DC interruption, the DC level of this manual pulse train varies depending on the mark rate.This situation is shown in Figure 2 for the case of N = 4.As is clear from the example in this figure, the RZ pulse train When the amplitude value of is 1, the amount of variation from the DC reference level (ground potential) (positive direction is P).

負方向をyとする)は、任意のマーク率mに対し、P”
(1−m)/2  (0<m≦1)、P’=m/2  
(0≦m≦1)となる。第3図に、マーク率mに対する
直流レベル変動量P′を示す。
(the negative direction is y) is P” for any mark rate m
(1-m)/2 (0<m≦1), P'=m/2
(0≦m≦1). FIG. 3 shows the DC level fluctuation amount P' with respect to the mark rate m.

一方、入力2値R,Zパルス列を接地電位でスライスし
てその正部分のみ(または負部分のみ)を取出し、それ
を積分回路によって積分したときの出力信号は、マーク
率mの変化に対して第4図のように変化する。なお、正
部分のみ取出した場合でも、負部分のみ取出した場合で
も積分値の絶対値は同じであり、極性が異なるだけであ
る。従って、スライサ13によってパルスの正部分のみ
(または負部分のみ)を取出し、その出力を積分回路1
4で積分した後、直流増幅器15で適切なレベルまで増
幅してやり、その出力を加算回路16によシ主信号に加
えることにより、主信号に対し直流補償を行なうことが
できる。この場合、第3図の直流レベル変動量P′は直
線的に変化するのに対して、第4図の積分値はマーク率
の変化に対し直線的には変わらないので、完全に補償す
るととはできないが、たとえば積分値対マーク率特性が
直流レベル変動i p/との差が最少となる第3図破線
の曲a31のように直流増幅回路15の利得を定めれば
、全マーク率に対しパルス幅の7チ程度の誤差で直流変
動を抑えることができて、実用上充分である。
On the other hand, when the input binary R, Z pulse train is sliced at ground potential, only its positive part (or only its negative part) is extracted, and it is integrated by an integrating circuit, the output signal is It changes as shown in Figure 4. Note that the absolute value of the integral value is the same whether only the positive part is extracted or if only the negative part is extracted, and only the polarity is different. Therefore, only the positive part (or only the negative part) of the pulse is extracted by the slicer 13, and the output is sent to the integrating circuit 1.
4, the DC amplifier 15 amplifies the signal to an appropriate level, and the adder circuit 16 adds the output to the main signal, thereby making it possible to perform DC compensation on the main signal. In this case, the DC level fluctuation amount P' in Fig. 3 changes linearly, whereas the integral value in Fig. 4 does not change linearly with respect to changes in mark ratio, so it is not possible to compensate completely. However, if the gain of the DC amplifier circuit 15 is determined as shown in curve a31 of the broken line in FIG. On the other hand, DC fluctuations can be suppressed with an error of about 7 inches in pulse width, which is sufficient for practical use.

なお、スライサがパルスの正部分を取シ出すか負部分を
取シ出すかによって、直流増幅器(第1図15)の入出
力間の位相を正相とするか、逆相とするかを選択すれば
よい。
Depending on whether the slicer extracts the positive part or the negative part of the pulse, it is possible to select whether the phase between the input and output of the DC amplifier (Fig. 1, 15) is positive or negative. do it.

第5図は直流増幅器(第1図の15)の−具体例を示し
、スライサによってパルスの負部分を取シ出す場合に用
いる回路であシ、演算増幅器51および52を縦続接続
することにより正相増幅が行なわれる。53は加算回路
(第1図の16)K印加する直流電圧に適切なオフセッ
ト電圧を加えるための電源である。パルスの正部分を取
り出す場合には、たとえば演算増幅器51を省略し、端
子54に積分回路の出力信号を加えればよい。
FIG. 5 shows a specific example of a DC amplifier (15 in FIG. 1), which is a circuit used when extracting the negative part of a pulse using a slicer. Phase amplification is performed. 53 is a power supply for adding an appropriate offset voltage to the DC voltage applied to the adder circuit (16 in FIG. 1) K. When extracting the positive part of the pulse, for example, the operational amplifier 51 may be omitted and the output signal of the integrating circuit may be applied to the terminal 54.

第6図は加算回路(第1図の16)の−具体例を示し、
直流遮断された入力信号は入力端子61から電界効果ト
ランジスタ62のゲート電極に加えられる。一方、直流
増幅器(第1図の15)の出力として得られる直流補償
信号は、抵抗器63を介して主信号に加えられ、主信号
のマーク率がどのように変動しても常に直流レベルが一
定になるように補償される。この直流補償された出力信
号がFET62で増幅され、出力端子64から出力され
る。
FIG. 6 shows a concrete example of the adder circuit (16 in FIG. 1),
The DC-blocked input signal is applied from the input terminal 61 to the gate electrode of the field effect transistor 62 . On the other hand, the DC compensation signal obtained as the output of the DC amplifier (15 in Figure 1) is added to the main signal via the resistor 63, so that the DC level is always maintained no matter how the mark rate of the main signal changes. compensated to remain constant. This DC-compensated output signal is amplified by the FET 62 and output from the output terminal 64.

なお、パルスの占有率が50%以外の場合においても同
様に直流増幅器の利得を変えることによって直流レベル
を補償することができる。
Note that even when the pulse occupancy is other than 50%, the DC level can be compensated by similarly changing the gain of the DC amplifier.

発明の効果 以上に説明したように、本発明によればスライサと、積
分回路と、直流増幅器と、加算回路とを設け、補償すべ
き直流信号の大きさを検出し、その値に応じた直流電圧
を入力パルス列に加算することKよシ、直流遮断を受け
たRZ入カパルス列の直流レベル変動を無くすことがで
きる。さらに直流補償を行なうための回路が主信号の通
る経路とは別に設けられるため、主信号経路に入カバッ
ファ、出力バッファを入れる必要がない。このため超高
速パルス信号に対しても容易に実用上充分な直流補償特
性が得られる。また主信号経路が簡単となるため帯域劣
化が少なく、歪の少ない出力波形が得られるという効果
がある。さらに、バッファの縦続接続が無いので発振の
恐れもなく、動作が安定であるという効果がある。
Effects of the Invention As explained above, according to the present invention, a slicer, an integrating circuit, a DC amplifier, and an adding circuit are provided, and the magnitude of the DC signal to be compensated is detected, and the DC signal is adjusted according to the value. By adding the voltage to the input pulse train, it is possible to eliminate DC level fluctuations in the RZ input pulse train that has undergone DC interruption. Furthermore, since a circuit for direct current compensation is provided separately from the path through which the main signal passes, there is no need to insert an input buffer or an output buffer in the main signal path. Therefore, practically sufficient DC compensation characteristics can be easily obtained even for ultrahigh-speed pulse signals. Furthermore, since the main signal path is simplified, there is less band deterioration and an output waveform with less distortion can be obtained. Furthermore, since there is no cascade connection of buffers, there is no fear of oscillation and the operation is stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は入力パルス列の直流レベル変動とマーク率の関係
を示す図、第3図は第2図の直流レベル変動量とマーク
率の関係をグラフ表示した図、第4図は積分回路の出力
信号(積分値)とマ〒り率の関係を示す図、第5図は直
流増幅器の一具体例の回路図、第6図は加算回路の一具
体例の回路図、第7図は従来の直流補償回路のブロック
図である。 11・・・・・・信号入力端子、12・・・・・・信号
出力端子、13・・・・・・スライサ、14・・・・・
・積分回路、15・・・・・・直流増幅器、16・・・
・・・加算回路、31・・・・・・積分値対マーク率特
性を示す曲線、51.52・・・・・・演算増幅器、5
3・・・・・・電源、54・・・・・・端子、61・・
・・・・入力端子、62・・・・・・電界効果トランジ
スタ、63・・・・・・抵抗器、64・・・・・・出力
端子。 $ 2 図 茅 3 m 茶 4 百 マー7璋−m
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between DC level fluctuation of an input pulse train and mark rate, and FIG. 3 is a diagram showing the relationship between DC level fluctuation and mark rate in FIG. 2. Fig. 4 is a diagram showing the relationship between the output signal (integral value) of the integrating circuit and the molar ratio, Fig. 5 is a circuit diagram of a specific example of a DC amplifier, Fig. 6 is a circuit diagram of a specific example of an adder circuit, and FIG. 7 is a block diagram of a conventional DC compensation circuit. 11...Signal input terminal, 12...Signal output terminal, 13...Slicer, 14...
・Integrator circuit, 15...DC amplifier, 16...
... Addition circuit, 31 ... Curve showing integral value versus mark rate characteristics, 51.52 ... Operational amplifier, 5
3...Power supply, 54...Terminal, 61...
... Input terminal, 62 ... Field effect transistor, 63 ... Resistor, 64 ... Output terminal. $2 3m brown 4 100m 7m

Claims (1)

【特許請求の範囲】[Claims] ディジタル通信の受信側装置で直流遮断を受けた2値R
Z(リターン・トウ・ゼロ)パルス入力信号の直流分を
補償するための直流補償回路において、前記入力信号を
接地電位でスライスするスライサと、このスライサの出
力を積分する積分回路と、この積分回路の出力信号を増
幅する直流増幅器と、この直流増幅器の出力電圧を前記
入力信号に加算する加算回路とからなることを特徴とす
る直流補償回路。
Binary R that has received DC cut-off at the receiving side device of digital communication
A DC compensation circuit for compensating the DC component of a Z (return-to-zero) pulse input signal includes a slicer that slices the input signal at a ground potential, an integration circuit that integrates the output of this slicer, and this integration circuit. 1. A DC compensation circuit comprising: a DC amplifier that amplifies the output signal of the DC amplifier; and an addition circuit that adds the output voltage of the DC amplifier to the input signal.
JP61234392A 1986-10-03 1986-10-03 Direct current compensating circuit Pending JPS6390252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234392A JPS6390252A (en) 1986-10-03 1986-10-03 Direct current compensating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234392A JPS6390252A (en) 1986-10-03 1986-10-03 Direct current compensating circuit

Publications (1)

Publication Number Publication Date
JPS6390252A true JPS6390252A (en) 1988-04-21

Family

ID=16970278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234392A Pending JPS6390252A (en) 1986-10-03 1986-10-03 Direct current compensating circuit

Country Status (1)

Country Link
JP (1) JPS6390252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353109A (en) * 1999-08-13 2001-02-14 Alstom Uk Ltd Reducing current fluctuations in traction drive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353109A (en) * 1999-08-13 2001-02-14 Alstom Uk Ltd Reducing current fluctuations in traction drive
GB2353109B (en) * 1999-08-13 2004-01-14 Alstom Uk Ltd Drive arrangement

Similar Documents

Publication Publication Date Title
US6404284B1 (en) Amplifier bias adjustment circuit to maintain high-output third-order intermodulation distortion performance
US6275114B1 (en) Impedance matched CMOS transimpedance amplifier for high-speed fiber optic communications
EP0568880B1 (en) Preamplifier for optical communication having a gain control circuit
US5052020A (en) Method of and apparatus for controlling modulation of digital signals in frequency-modulated transmissions
US4029904A (en) Receiver circuit for automatic correction of DC level disturbances
CA1201492A (en) Distortion compensation for a microwave amplifier
MX9605977A (en) High speed transport system.
US4599570A (en) Phase detector with independent offset correction
WO2018140609A1 (en) Bias modulation active linearization for broadband amplifiers
US4178482A (en) Automatic gain control circuit and system for using same
JPS6390252A (en) Direct current compensating circuit
US6525577B2 (en) Apparatus and method for reducing skew of a high speed clock signal
JPH1084228A (en) Optical transmitting device
EP1056248A1 (en) Modulator using separate phase and amplitude stages
US4689678A (en) Gradation distortion compensation by FET pre-emphasis circuit operating in FET saturation region
EP0620637B1 (en) Very high speed precision amplifier
US6714082B2 (en) Semiconductor amplifier circuit
JPS62233921A (en) Dc compensation circuit
CA1040330A (en) Method and apparatus for reducing noise in pam time division networks
GB1513756A (en) Demodulator
US6225864B1 (en) RF amplifier having a dual slope phase modulator
US5113186A (en) Apparatus for converting an alternate mark inversion signal to unipolar signals with frequency dependent amplification
JP3018533B2 (en) DC compensation circuit
JPH03278645A (en) Dc compensation circuit
US6496065B1 (en) Linear amplifier using frequency 2nd order intermodulation feed-forwarding method