JPS6390231A - Abnormality checking method for loop optical transmission line - Google Patents

Abnormality checking method for loop optical transmission line

Info

Publication number
JPS6390231A
JPS6390231A JP61235548A JP23554886A JPS6390231A JP S6390231 A JPS6390231 A JP S6390231A JP 61235548 A JP61235548 A JP 61235548A JP 23554886 A JP23554886 A JP 23554886A JP S6390231 A JPS6390231 A JP S6390231A
Authority
JP
Japan
Prior art keywords
station
inspection
optical transmission
transmission line
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61235548A
Other languages
Japanese (ja)
Inventor
Kazuo Yoshida
和雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61235548A priority Critical patent/JPS6390231A/en
Publication of JPS6390231A publication Critical patent/JPS6390231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To prevent an accident that loop communication is impossible, by detecting whether the level of the quantity of received light in an optical transmission line is reduced or not or the position of this reduction by a master station before the level of the quantity of received light in the optical transmission line is reduced to a level lower than the level where communi cation is impossible. CONSTITUTION:A checking reception station receives each test data transmitted in every intensity level and records numbers m1, m2,... of failures indicating whether respective signals are normally received or not. The masterstation transmits a transmission text F3 including at least a check end command C2, which instructs a terminal stations to terminate the abnor mality check, to each ter minal station, and checking reception stations except the master station transmit data of numbers m1, m2,... of failures to the master station as a transmission text F4 on the basis of this transmission. The master station discriminates the abnormality in the optical transmission line based on the data of numbers m1, m2,... of failures transmitted from reception stations or data of numbers m1, m2,... of failures recorded by the master station itself as the reception station and displays the abnormality. Thus, countermeasures like replacement or repair of the abnormal position before an important trouble like impossibil ity of communication is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野] 本発明は交信を制御する主局と、複数の端末局とを、順次、光信号の伝送路(光ファイバなど、以下光伝送路という)を介して結合したループ式データ伝送システムにおいて、前記光伝送路の異常を予め事故前に点検する方法に関する。 なお以下各図において同一の符号は同一または相当部分を示す。 【従来技術とその問題点】[Technical field to which the invention pertains] The present invention provides a loop data transmission system in which a main station that controls communication and a plurality of terminal stations are sequentially coupled via an optical signal transmission path (such as an optical fiber, hereinafter referred to as an optical transmission path). This invention relates to a method for checking abnormalities in a transmission line before an accident occurs. Note that in the following figures, the same reference numerals indicate the same or corresponding parts. [Prior art and its problems]

第10図はこの種の光伝送路を用いたループ式データ伝
送システムの基本構成を示すブロック図、第11図は第
10図中の各局に設けられた外部交信部の要部構成を示
すブロック図、第9図は前記外部交信部内の要部回路の
一例である。 第10図において1は主局、2 (21〜2n)は端末
局、3 (30,31〜3n)はこの各局1.2を順次
結合する、光ファイバ等からなる光伝送路、4(4R,
4S)は各局1,2に設けられたデジタルリンクである
。なおこのデジタルリンク4R94Sは、第11図に述
べる外部交信部TIに属するもので4Rを受信用デジタ
ルリンク、4Sを送信用デジタルリンクと読んで区別す
る。 各局が交信する際の光信号は光伝送路3を介し同図内の
矢印のように順次各局をループ状に連ねて伝達される。 各局1.2内の外部交信部TIの構成は第11図のよう
になっており、光伝送路3より入力された光信号は受信
用デジタルリンク4R内のO/E変換器5を介して、電
気信号(受信々号8R)に変換されて伝送制御部7に与
えられる。また伝送制御部7から出力された電気信号(
送信々号8S)は送信用デジタルリンク4S内のE10
変換器6(61,または62)を介して光信号に変換さ
れ次の光伝送路3に送出される。 ここで伝送制御部7は自局が受信局となったときは受信
々号8Rを内部に取り込むと同時に、同じ信号を再び送
信々号8Sに変えて(つまり受信々号8Rに自局をバイ
パスさせて)送出する。また自局が送信局となったとき
は自局が送信した送信々号8Sが他の各局をループ状に
一巡して再び受信々号8Rとして自局に戻ったときは前
記のバイパス動作は行わず、これにより誤交信を防ぐ。 このように各局1.2の送信々号は送信のっどこのルー
プ式伝送路を一巡して各局に伝達されるようになってい
る。 第9図は従来のE10変換器6内の回路構成例であり、
■、は所定電圧の直流電源、LEDlは発光ダイオード
、R1はこのダイオードLED 1の負荷抵抗、N1は
送信々号8S(8S1)を入力信号として発光ダイオー
ドLED1をON10FF駆動するNOT素子である。 ところでこのようなループ式伝送路の異常を検知する方
法としては本出願人の出願になる特願昭59−2442
49号「データ伝送システムのループ断表示方法」があ
る。この方法はループ式伝送路内にループ伝送断の異常
が発生し、ループ内を一巡する交信々号の伝達が不可能
になった段階において、その異常個所を検知するのに有
効である。 しかしながら、このようなループ断異常の原因としては
、■光伝送路に信号光を出力する発光ダイオードの経時
的な発光量の低下、■光伝送路を構成する光ファイバと
デジタルリンクの着脱のくり返しに基づく汚れ増加によ
る光量損失の増加、■光ファイバの移動、折り曲げによ
る軽度の損傷に基づく光量損失の増加等があり、これら
の場合には、受信側の局の受光量が時間の経過と共にゆ
るやかに、または段階的に低下しついに交信が不能とな
るという過程をたどる。従って第10図のようなループ
式光伝送システムの稼動率を向上するためには前記のよ
うにループ交信が不可能になってからの異常検知では不
充分であり、予め光伝送路内の信号光の強度レベル(光
量レベルともいう)の漸次低下を検知して、未然にルー
プ交信不能事故を防止することが望ましいという問題点
がある。
Figure 10 is a block diagram showing the basic configuration of a loop data transmission system using this type of optical transmission line, and Figure 11 is a block diagram showing the main configuration of the external communication section provided at each station in Figure 10. 9 are examples of main circuits in the external communication section. In Fig. 10, 1 is the main station, 2 (21 to 2n) are terminal stations, 3 (30, 31 to 3n) is an optical transmission line consisting of an optical fiber, etc., which sequentially connects each station 1.2, and 4 (4R ,
4S) is a digital link provided at each station 1 and 2. This digital link 4R94S belongs to the external communication unit TI shown in FIG. 11, and is distinguished by reading 4R as a reception digital link and 4S as a transmission digital link. Optical signals used when each station communicates are transmitted through the optical transmission line 3, sequentially connecting each station in a loop as shown by the arrows in the figure. The configuration of the external communication section TI in each station 1.2 is as shown in FIG. , is converted into an electric signal (receive signal 8R) and given to the transmission control section 7. Also, the electrical signal output from the transmission control section 7 (
Transmission number 8S) is E10 in the transmission digital link 4S
It is converted into an optical signal via the converter 6 (61 or 62) and sent to the next optical transmission line 3. Here, when the own station becomes a receiving station, the transmission control unit 7 takes in the received signal 8R internally, and at the same time changes the same signal again to the transmitted signal 8S (that is, bypasses the own station to receive signal 8R). send). In addition, when the own station becomes a transmitting station, the above-mentioned bypass operation is not performed when the transmitting number 8S transmitted by the own station goes around the other stations in a loop and returns to the own station as the receiving number 8R. This prevents erroneous communication. In this way, the transmission signals from each station 1.2 are transmitted to each station by going around this loop transmission path. FIG. 9 is an example of the circuit configuration inside the conventional E10 converter 6,
(2) is a DC power supply of a predetermined voltage, LEDl is a light emitting diode, R1 is a load resistance of this diode LED 1, and N1 is a NOT element that drives the light emitting diode LED1 ON10FF using the transmission signal 8S (8S1) as an input signal. By the way, a method for detecting abnormalities in such a loop transmission line is disclosed in Japanese Patent Application No. 59-2442 filed by the present applicant.
There is No. 49, ``Method for indicating loop breakage in data transmission systems''. This method is effective in detecting the location of an abnormality when a loop transmission interruption abnormality occurs in a loop transmission line, making it impossible to transmit the communication signals that circulate within the loop. However, the causes of such a loop breakage abnormality include: ■ Decrease in the amount of light emitted by the light emitting diode that outputs signal light to the optical transmission line over time, and ■ Repeated connection and disconnection of the optical fiber and digital link that make up the optical transmission line. In these cases, the amount of light received by the receiving station gradually decreases over time. or gradually deteriorate until communication becomes impossible. Therefore, in order to improve the operating efficiency of a loop type optical transmission system as shown in Fig. 10, it is insufficient to detect an abnormality after loop communication becomes impossible as described above. There is a problem in that it is desirable to detect a gradual decrease in the light intensity level (also referred to as the light intensity level) to prevent loop communication failure accidents.

【発明の目的】[Purpose of the invention]

本発明は前記の問題点を解決し、光伝送路内の受光量の
レベルが交信不可能となるレベル以下に低下する以前に
、その低下の有無やその個所を主局で検知可能とするよ
うなループ式光伝送路の異常点検方法を提供することを
目的とする。
The present invention solves the above-mentioned problems, and enables the main station to detect whether or not the amount of light received in the optical transmission line has decreased and the location thereof before the level decreases below a level that makes communication impossible. The purpose of this paper is to provide a method for inspecting loop-type optical transmission lines for abnormalities.

【発明の要点】[Key points of the invention]

本発明の要点は、交信を制御する主局(1など)と複数
の端末局(2(21〜2n)など)とを順次、(光ファ
イバなどの)光伝送路(3(30〜3n)など)を介し
て結合したループ式データ伝送システムにおいて、 主局は前記光伝送路の異常点検を開始すべき旨を指令す
るコマンド(点検開始コマンド01など)と、自局を含
む各局のうち互いに隣接する2局を指定するデータであ
って、この2局のうちの一方の局を送信局、他方の局を
受信局に指定するデータ(送信側アドレスAi、受信側
アドレスAj など)と、を少くとも含む点検開始信号
(送信文F1など)を前記の各端末局に送信し、 この送信に基づいて、前記送信局は所定の複数の強度レ
ベル(Ll〜LNなど)の信号光のうち、高い強度レベ
ル(Llなど)のものから順次、低い強度レベルの信号
光を選択しつつ、この選択ごとに当該強度レベルに対応
する所定の点検用データ(テストデータT1〜TNなど
)を、(送信文F21〜F2Nなどとして)所定回数づ
つ、当該強度レベルの信号光を用いて、前記受信局へ送
信し、前記受信局は、前記の各強度レベルごとに送信さ
れる前記の各点検用データを受信すると共に、この各信
号の成否を示す点検結果データ(失敗回数ml、m2・
−・など)を記録し、 次に主局は前記異常点検を終了すべき旨を指令するコマ
ンド(点検終了コマンド02など)を少くとも含む点検
終了信号(送信文F’ 3など)を各端末局に送信し、 この送信に基づいて主局であるものを除く前記受信局は
前記点検結果データを(送信文F4などとして)主局に
送信し、 主局は前記受信局から送信された前記点検結果データ、
または自局が前記受信局となって記録した前記点検結果
データに基づいて前記光伝送路内の異常を判別するよう
にして異常表示などを行うようにした点、またはさらに
前記送信局は、前記光伝送路に前記信号光を送出する発
光ダイオード(LEDIなど)の通電々流(IF)を(
負荷抵抗R1,R2の切換え、またはD/Aコンバータ
DACIとオペアンプOPIの組合わせなどを介して)
変化させることにより前記信号光の強度レベルを可変す
るものとした点にある。
The gist of the present invention is to sequentially connect a main station (such as 1) that controls communication with a plurality of terminal stations (such as 2 (21 to 2n)) through an optical transmission line (such as an optical fiber) (3 (30 to 3n)). In a loop data transmission system that is connected via a network (e.g.), the main station sends a command (inspection start command 01, etc.) instructing to start an abnormality inspection of the optical transmission line, and sends a command (inspection start command 01, etc.) Data that specifies two adjacent stations, and specifies one of the two stations as a transmitting station and the other station as a receiving station (sending side address Ai, receiving side address Aj, etc.). An inspection start signal (such as transmission text F1) containing at least one of the signal lights is transmitted to each terminal station, and based on this transmission, the transmission station selects one of the signal lights of a plurality of predetermined intensity levels (Ll to LN, etc.). While sequentially selecting signal lights with low intensity levels from high intensity levels (Ll, etc.), for each selection, predetermined inspection data (test data T1 to TN, etc.) corresponding to the intensity level is (transmitted). (as sentences F21 to F2N, etc.) a predetermined number of times, using the signal light of the intensity level, to the receiving station, and the receiving station receives each of the inspection data transmitted for each of the intensity levels. At the same time, inspection result data indicating the success or failure of each signal (number of failures ml, m2,
-, etc.), and then the main station sends an inspection completion signal (transmission message F' 3, etc.) to each terminal, which includes at least a command (inspection completion command 02, etc.) instructing the abnormality inspection to end. Based on this transmission, the receiving stations other than the main station transmit the inspection result data (as transmission message F4, etc.) to the main station, and the main station receives the inspection result data sent from the receiving station. inspection result data,
Alternatively, the own station serves as the receiving station and determines an abnormality in the optical transmission line based on the recorded inspection result data, and displays an abnormality, or furthermore, the transmitting station The current flow (IF) of a light emitting diode (LEDI, etc.) that sends the signal light to the optical transmission line is (
(via switching load resistors R1 and R2, or a combination of D/A converter DACI and operational amplifier OPI, etc.)
The present invention is characterized in that the intensity level of the signal light can be varied by changing the intensity level of the signal light.

【発明の実施例】[Embodiments of the invention]

以下第1図〜第8図に基づいて本発明の詳細な説明する
。第1図は本発明の一実施例としての゛ 主局1と端末
局2(この場合点検送信局および点検受信局)間の要部
交信のシーケンスの説明図、第2図は同じく、点検送信
局の送信光量レベルの説明図、第3図、第4図、第5図
は同じくそれぞれ点検送信局、点検受信局、主局の要部
動作を説明するためのフローチャート、第6図は同じく
、隣接局間の光伝送路における光信号の光量レベル損失
特性の説明図、第7図、第8図は本発明のそれぞれ異な
る実施例としての、各局内のE10変換器の要部構成を
示す回路図である。 第6図の光量レベルの損失特性において、縦軸は信号光
の光量レベル、横軸は隣接する局1と2)または2と2
間の、一方(送信側)の局のE10変換器6(または後
述の61.62)から他方(受信側)の局のO/E変換
器5に到るまでの、光伝送路3内の各点の位置を、信号
光の経路の順に示している。なおこの光伝送路3は図外
の光ファイバ。 光コネクタなどから構成されている。ここで正常時の特
性をAO−BO−Co−DO−EO(、つまり送信局か
らAOの光量レベルで出力された信号光は光伝送路中で
順次BO〜DOの光量レベルに減衰し受信局の入力光量
レベルはEOとなる)とすると、例えば光ファイバの一
部(前記特性のCOの部分)に傷ができた場合の特性は
AO−BO−CO−FO−Go−HOとなりこの傷の部
分で光量レベルはCo−FOのように低下する。 L winは受光レベルの下限値を示し、受信局が受信
する際の入力光量レベルがこのレベルLmin以下とな
ったときは受信失敗を起こすものとする。 本発明では光伝送路3の信号光の伝送能力(従って前記
損失特性)の劣化の有無の点検を隣接局の一方が他方の
局にテストデータを送信する際の出力光量レベルを段階
的に所定量減少させて行うものである。同図におけるA
l−B1−C1−DI−Elの特性はこの点検時におい
て光伝送路3が正常な場合に送信局が出力光量レベルを
AO−A1に減少させた場合の損失特性の例であり隣接
送信局の出力光量が減少した場合でも隣接受信局の′受
光レベル(点E1の光量レベル)は下限値Lminより
大きく、受信失敗を生じない。しかし前記のように光フ
ァイバに傷がある場合には、この点検時の損失特性はA
l−Bl−CI−Fl−Gl−Hlとなって隣接受信局
(点H1)の受光レベルは下限値L minを下回り、
この際の交信は失敗となる。 このように隣接送信局の送信光量を所定量だけ減少させ
、これに対応する交信失敗の有無を判別することによっ
て光伝送路の伝送特性の劣化を事故前に検知することが
できる。 ここで−旦第9図における従来のE10変換器6の回路
に戻ると、送信信号8S1はNOT素子N1を介して発
光ダイオードLEDIを駆動するが、このとき発光ダイ
オードLEDIを流れる電流IFは(1)式で与えられ
る。 I F = (VCVF −Vex) /R1−=−・
(1)但し■、:この回路に供給される直流電源電圧、
■、:発光ダイオードLED1の順方向電圧降下、 ■ct:NOT素子N1を構成するトランジスタのコレ
クターエミッタ間電圧。 発光ダイオードLED1から出力される光量はこの電流
IFによって定まるので、第6図における光転送路正常
時の隣接受信局の点EOの入力光量レベルが受光レベル
下限値Lminを越えるように、抵抗R1の値、従って
前記電流IFが設定されている。 第7図は本発明の一実施例としての外部交信部TI内の
E10変換器61の回路図である。この図では第9図に
比し、NOT素子N2.抵抗R2と送信信号8S (8
S2)が付加されており、発光ダイオードLED1の出
力光量レベルを2段階に変化させることができる。即ち
抵抗R1の値は、伝送信号8S1によりNOT素子N1
を構成するトランジスタのみが導通したときに、発光ダ
イオードLED1の出力光量が、第6図の隣接送信局の
点AOの光量レベルとなるように決定されている。同様
に、抵抗R2の値は送信信号8S2によりNOT素子N
2を構成するトランジスタのみが導通したときに、発光
ダイオードLED1の出力光量レベルが第6図の点A1
の光量となるように決定されている。 第8図は本発明の他の実施例としての外部交信部TI内
のE10変換器62の回路図である。送信信号8S (
8S3)はnビットのデジタル信号からなり、この信号
はD/AコンバータDACIを介して電圧■。1のアナ
ログ信号に変換される。この電圧■。1はオペアンプO
PIへ入力され、その出力電圧■。2の値は電圧■。、
と等しい。ここで発光ダイオードLEDIを流れる電流
IFは(2)式で与えられる。 1 F = (VO2Vy ) / R1−=−−−−
−−−−−−−−−(21但し■。1=VO2<VC1 VF 二発光ダイオードLED1の順方向の電圧降下、 R1=負荷抵抗R1の抵抗値。 この回路では電圧VOWの変更が送信信号8S3により
容易に可能であるから、隣接送信局が出力する光量レベ
ルを第7図の方式に比しより多段階に変化させることが
できる。 第1図は本発明の主局1と端末局2の交信のシーケンス
を示す図である。この例は主局1が隣接する2つの端末
局2(2i)と端末局2 (2i+1)を指定して、こ
の端末局2 i、 2 t+を間の光伝送路3(31)
の点検を行う場合を示している。ここで前者の端末局2
1が前記隣接送信局であり送信側端末局または点検送信
局ともいう。また、後者の端末局21+1が前記隣接受
信局であり受信側端末局または点検受信局ともいう。同
図は横方向に各局1、2 i、 2 i+1間における
交信データの流れを示し、縦方向はシーケンス(11〜
(4)の順に時間的経過を示している。即ち、 シーケンス(1):主局1は最初に点検開始を指令する
コマンドとしての点検開始コマンドCI、送借倒端末局
(点検送信局)2iのアドレス(送信側アドレスともい
う)A1、受信側端末局(点検受信局)2i+1のアド
レス(受信側アドレスともいう)Aj、を含む送信文F
1を送信する。これにより全ての端末局2は送信文F1
を受信し、ここで端末局21がアドレスAiを、端末局
21+1がアドレスAjをそれぞれ自己のアドレスであ
ることを検知する。 シーケンス(2−1)〜(2−N):次に、端末局21
は端末局21+1に対してそれぞれ既知のテストデータ
Tl、T2・−・・TNを含む各送信文F21.  F
22.−・、F2Nを、それぞれ必要に応じて1または
所定の複数回づつ順番に送信する。そしてこの順番に端
末局21は送信する信号光の光景レベルを例えば第2図
に示すようにLl、L2−・〜、LNと変化(減少)さ
せて行く。この場合の光量レベルの切換の段階Nの値は
、点検の精度に応じて任意の複数段階に選択すればよい
。なお、ここで光量レベルL1は、通常の光量レベル(
例えば第6図AO点の光量レベル)とする。またこのよ
うに光量レベルを複数段階Nに変化させるには点検送信
局における外部交信部TI内のE/○変換器の構成を、
段階Nが2段階でよければ第7図のE10変換器61の
ような構成とすればよく、さらに多数段階に切換えるに
は第8図のE10変換器62のような構成とすればよい
。 さて他方、受信側端末局21+1は受信データF21、
  F22・−・・F2N内のテストデータT1〜TN
を点検し、そのつど交信の成功または失敗の判定を行い
、光量レベルLl、Ll−別の成功または失敗の回数m
1.m2 −・・を計放し、記憶する。 シーケンス(3):主局1は点検終了を指令するコマン
ドとしての点検モード終了コマンドC2)送信側端末局
21のアドレスAI、受信側端末局2i+1のアドレス
Ajを含む送信文F3を送信する。 シーケンス(4):このようにして受信側端末局2i+
lは、点検モード終了コマンドC2と自己のアドレスと
一致するアドレスAjを受信すると、自己のアドレスA
j1光量レベルL、1.L2 −・−・LN別の失敗回
数ml、m2−・mNを含む送信文F4を送信する。従
って主局lはこの送信文F4を受信し当該の光伝送路3
1部分の光伝送特性の劣化の有無およびその程度を知る
ことができる。 第1図では隣接端末局2の一方が送信局、他方が受信局
となってこの2つの端末局2間の光伝送路3の点検を行
う場合を説明したが、同様な点検は主局1とこれに隣接
する端末局2との間の光伝送路3についても実施する必
要があり、この場合には第1図における端末局2 t、
 2 i+1の何れか一方が主局1に置換ねるとともに
、他方の端末局が主局1に隣接する端末局2)つまり第
10図の21または2nとなる。 ここで第1図の端末局21が主局1に置換わり、同じく
端末局21+1が21となった場合には、主局1が点検
送信局、端末局21+1が点検受信局となって光伝送路
30の点検が行われることとなる。また第1図の端末局
21+1が主局1に置換わり、同じく端末局21が2n
となった場合には、端末局2nが点検送信局、主局1が
点検受信局となって光伝送路3nの点検が行われること
となる。 なお前者の場合には第1図の送信文Fl、F3における
アドレスAiが主局1の、また同じくアドレスAjが端
末局21の各アドレスとなり、また後者の場合にはアド
レスAjが端末局2nの、またアドレスAjが主局1の
各アドレスとなる。 第3図、第4図および第5図はそれぞれ点検送信局9点
検受信局および主局の光転送路点検モード時の動作を説
明するフローチャートである。 第3図において、点検送信局に指定される前の当該局は
ステップ101で主局1から点検開始コマンドCIが含
まれている送信文F1を受信したか否かを判定し、NO
であれば、ステップ104へ進み、YESであればステ
ップ102へ進む。 ステップ102では前記送信文F1で送信されてきた送
信側アドレスAt と自己のアドレスを比較し、一致し
ていない時は(No)、ステップ104へ進むが、この
場合一致するので(YES)、ステップ103−1に進
んで点検モードの動作を開始する。 ステップ103−1では点検受信局へテストデータT1
を含む送信文F21を送信光量レベルL1として複数回
送信する。同様にステップ103−2.〜.103−N
においてそれぞれテストデータT2.〜.TNを送信光
量レベルL2.〜.LNとして複数回づつ送信を行い、
ステップ104へ進む。 ステップ104では主局1から点検終了コマンドC2が
含まれて送信文F3を受信したか否かを判定し、Noで
あれば直接図外の処理へ進むが、YESであればステッ
プ105に進み、当該局は点検モードの動作を終了し、
通常の交信モードへ復帰する。 但し、当該局が主局1と一致する場合には、前記ステッ
プ101および104では、それぞれ自局(主局l)が
送信文F1およびF3を送信したか否かを判別すること
となるし、またステップ102では自局が送信した送信
文F1中の送信側アドレスAtが自局のアドレスに一致
するか否かを判別することとなる。 第4図において点検受信局に指定される前の当該局はス
テップ201で主局1から点検開始コマンドC1が含ま
れている送信文F1を受信したか否かを判定し、NOで
あればステップ204へ進み、YESであればステップ
202へ進む。 ステップ202では前記送信文F1で送信されて来た受
信側アドレスAjと自局のアドレスを比較し、一致して
いない時は(No)、ステップ204へ進むが、この場
合一致するので(YES) 、ステップ203−1に進
んで点検モードの動作を開始する。 ステップ203−1では点検送信局から送信されてきた
送信文F21を受信し、以下同様にステップ203−2
.〜.ステップ203− Hにおいて、それぞれ送信文
F22〜F2Nの受信を行う。次にステップ203−M
においては、このように受信した送信文F21〜F2N
中の各テストデータT1〜TNを自己の既知のテストデ
ータと比較し、一致している時は交信が成功と判定し、
不一致の時は交信が失敗と判定し、各テストデータ別(
従って光量レベルト1〜LN別)のそれぞれの受信失敗
回数を計数し、記憶したうえ、次のステップ204へ進
む。 ステップ204では第3図のステップ104と同様に、
主局から点検終了コマンドC2が含まれている送信文F
3を受信したか否かを判定し、NOであれば直接図外の
処理へ進むが、YE、Sであれば205−1へ進む。 ステップ205−1では当該局は主局1へ前記ステップ
203−Mで作成した光量レベルLl−LNO別の交信
の失敗(または成功)の回数を送信文F4で送信し、次
にステップ205−2へ進み、点検モードの動作を終了
し、通常の交信モードへ復帰する。 但し当該局が主局1と一敗する場合には、前記ステップ
201および204では、それぞれ自局(主局1)が送
信文F1およびF3を送信したか否かを判別することと
なるし、ステップ202では自局が送信した送信文F1
中の受信側アドレスAjが自局のアドレスに一敗するか
否かを判別することとなる。また前記ステップ205−
1は省略される。 第5図において主局1はステップ301において点検開
始コマンドCIを含む送信文F1を送信する。このステ
ップ301は前記ステップ101,201に対応する。 次に一定時間後に主局はステップ304において点検終
了コマンドC2を含む送信文F3を送信する。このステ
ップ304は前記ステップ104.204に対応する。 次にステップ305で点検受信局(即ち受信側アドレス
Ajをもつ局)から送信されてきた送信文F4を受信す
る。次にステップ306において、主局1はこの送信文
F4に含まれる光量レベルト1〜LN別の受信の失敗回
数m1〜mNを点検する。 隣接局間光伝送路3中の光量損失が正常時には、点検受
信局の受光レベルは下限値L min以上にあり、前記
光量損失が異常時には該受光レベルは下限値Lmin未
満となって交信が失敗することがあるから、例えば点検
送信局の出力光量レベルL1(通常のレベル)で交信が
成功しており、同しベルL2以下において交信が失敗し
ている時は、異常有りと判定する。ステップ307では
前記ステップ306での判定結果をもとに、前記の異常
が有る時はステップ309へ進み、異常表示を行う。 この異常表示では、例えば、点検送信局と点検受信局の
それぞれのアドレスAt とAjを表示してもよい。ス
テップ307で異常がないと判定した時は、ステップ3
08へ進み、正常表示を行う。 但し第5図において主局1が点検受信局と一致した場合
にはステップ305は送信文F4内のデータに相当する
自局(主局1)内の光量レベル別の受信失敗回数の記憶
データを読出す動作に置換ねる。
The present invention will be described in detail below based on FIGS. 1 to 8. FIG. 1 is an explanatory diagram of the main communication sequence between the main station 1 and the terminal station 2 (in this case, an inspection transmitting station and an inspection receiving station) as an embodiment of the present invention. 3, 4, and 5 are flowcharts for explaining the main operations of the inspection transmitting station, inspection receiving station, and main station, respectively. FIGS. 7 and 8 are explanatory diagrams of light intensity level loss characteristics of optical signals in optical transmission lines between adjacent stations, and are circuits showing the main part configurations of E10 converters in each station as different embodiments of the present invention. It is a diagram. In the light intensity level loss characteristics shown in Figure 6, the vertical axis is the light intensity level of the signal light, and the horizontal axis is the adjacent stations 1 and 2) or 2 and 2.
In the optical transmission line 3 from the E10 converter 6 (or 61.62 described later) of one (transmitting side) station to the O/E converter 5 of the other (receiving side) station between The positions of each point are shown in the order of the signal light path. Note that this optical transmission line 3 is an optical fiber not shown. It consists of optical connectors, etc. Here, the normal characteristics are AO-BO-Co-DO-EO (that is, the signal light output from the transmitting station at the light intensity level of AO is attenuated sequentially to the light intensity level of BO to DO in the optical transmission path, and the receiving station For example, if a part of the optical fiber (CO part of the above characteristics) is scratched, the characteristics will be AO-BO-CO-FO-Go-HO, and the damage will be AO-BO-CO-FO-Go-HO. The light intensity level decreases in some parts like Co-FO. Lwin indicates the lower limit value of the light reception level, and when the input light amount level at the time of reception by the receiving station becomes less than this level Lmin, a reception failure occurs. In the present invention, the output light amount level is set in stages when one of the adjacent stations transmits test data to the other station to check for deterioration of the signal light transmission capability (therefore, the loss characteristics) of the optical transmission line 3. This is done by reducing the amount by a fixed amount. A in the same figure
The characteristic of l-B1-C1-DI-El is an example of the loss characteristic when the transmitting station reduces the output light level to AO-A1 when the optical transmission line 3 is normal at the time of this inspection. Even if the output light quantity of the adjacent receiving station decreases, the light reception level of the adjacent receiving station (the light quantity level of point E1) is greater than the lower limit value Lmin, and reception failure will not occur. However, as mentioned above, if the optical fiber is damaged, the loss characteristic during this inspection will be A.
l-Bl-CI-Fl-Gl-Hl, and the received light level of the adjacent receiving station (point H1) falls below the lower limit L min.
Communication in this case will fail. In this way, by reducing the amount of transmitted light from an adjacent transmitting station by a predetermined amount and determining whether there is a corresponding communication failure, deterioration in the transmission characteristics of the optical transmission line can be detected before an accident occurs. Returning now to the circuit of the conventional E10 converter 6 in FIG. ) is given by the formula. IF = (VCVF −Vex) /R1−=−・
(1) However, ■: DC power supply voltage supplied to this circuit,
■: Forward voltage drop of the light emitting diode LED1; ■ct: Collector-emitter voltage of the transistor forming the NOT element N1. Since the amount of light output from the light emitting diode LED1 is determined by this current IF, the resistor R1 is adjusted so that the input light amount level at the point EO of the adjacent receiving station when the optical transfer path is normal in FIG. The value and therefore the current IF is set. FIG. 7 is a circuit diagram of the E10 converter 61 in the external communication section TI as an embodiment of the present invention. In this figure, compared to FIG. 9, NOT element N2. Resistor R2 and transmission signal 8S (8
S2) is added, and the output light level of the light emitting diode LED1 can be changed in two stages. That is, the value of the resistor R1 is changed by the transmission signal 8S1 to the NOT element N1.
The output light amount of the light emitting diode LED1 is determined to be the light amount level at the point AO of the adjacent transmitting station in FIG. Similarly, the value of the resistor R2 is changed by the transmission signal 8S2 to the NOT element N.
When only the transistor constituting LED 2 is conductive, the output light level of the light emitting diode LED1 is at point A1 in FIG.
The amount of light is determined to be . FIG. 8 is a circuit diagram of an E10 converter 62 in the external communication section TI as another embodiment of the present invention. Transmission signal 8S (
8S3) consists of an n-bit digital signal, and this signal is converted to a voltage of 1 through the D/A converter DACI. 1 analog signal. This voltage ■. 1 is operational amplifier O
Input to PI and its output voltage■. The value of 2 is the voltage ■. ,
is equal to Here, the current IF flowing through the light emitting diode LEDI is given by equation (2). 1 F = (VO2Vy) / R1-=----
------------- (21 However, ■. 1 = VO2 < VC1 VF Forward voltage drop of dual light emitting diode LED1, R1 = resistance value of load resistor R1. In this circuit, changing the voltage VOW is the transmission signal Since this is easily possible with 8S3, the light intensity level output by the adjacent transmitting station can be changed in more steps than in the method shown in Fig. 7. Fig. 1 shows main station 1 and terminal station 2 of the present invention. In this example, main station 1 specifies two adjacent terminal stations 2 (2i) and 2 (2i+1), and communicates between these terminal stations 2 i and 2 t+. Optical transmission line 3 (31)
This shows the case where an inspection is performed. Here, the former terminal station 2
1 is the adjacent transmitting station, which is also called a transmitting terminal station or a check transmitting station. The latter terminal station 21+1 is the adjacent receiving station and is also referred to as a receiving terminal station or a check receiving station. The figure shows the flow of communication data between each station 1, 2i, and 2i+1 in the horizontal direction, and the sequence (11 to 2i+1) in the vertical direction.
The time course is shown in the order of (4). That is, sequence (1): The main station 1 first issues an inspection start command CI as a command to start an inspection, the address (also referred to as the transmitting side address) A1 of the default terminal station (inspection transmitting station) 2i, and the receiving side. Transmission text F containing the address (also called the receiving side address) Aj of the terminal station (inspection receiving station) 2i+1
Send 1. As a result, all terminal stations 2 send the transmitted message F1
The terminal station 21 detects that the address Ai is its own address, and the terminal station 21+1 detects that the address Aj is its own address. Sequence (2-1) to (2-N): Next, the terminal station 21
are the respective transmission messages F21 . . . containing known test data Tl, T2 . F
22. -., F2N are sequentially transmitted once or a predetermined number of times as necessary. Then, in this order, the terminal station 21 changes (decreases) the sight level of the signal light to be transmitted, for example, as shown in FIG. In this case, the value of the step N for switching the light amount level may be selected from a plurality of arbitrary steps depending on the accuracy of the inspection. Note that the light level L1 here is the normal light level (
For example, the light amount level at point AO in FIG. In addition, in order to change the light intensity level in multiple stages N in this way, the configuration of the E/○ converter in the external communication section TI at the inspection transmitting station is as follows.
If the number of stages N is only two, a configuration like the E10 converter 61 shown in FIG. 7 may be used, and to switch to a larger number of stages, a configuration like the E10 converter 62 shown in FIG. 8 may be used. Now, on the other hand, the receiving terminal station 21+1 receives the received data F21,
Test data T1 to TN in F22...F2N
The success or failure of the communication is determined each time, and the light intensity level Ll, Ll - the number of successes or failures of another m
1. m2 -... is calculated and stored. Sequence (3): The main station 1 sends an inspection mode end command C2 as a command for instructing the end of inspection.) A transmission message F3 including the address AI of the transmitting terminal station 21 and the address Aj of the receiving terminal station 2i+1. Sequence (4): In this way, the receiving terminal station 2i+
When l receives the inspection mode end command C2 and an address Aj that matches its own address, l receives its own address A.
j1 light level L, 1. Sends a message F4 including the number of failures ml and m2-mN for each L2--LN. Therefore, the main station 1 receives this transmission message F4 and transmits the corresponding optical transmission line 3.
It is possible to know the presence or absence of deterioration of the optical transmission characteristics of a portion and its degree. In Fig. 1, one of the adjacent terminal stations 2 is a transmitting station and the other is a receiving station, and the optical transmission line 3 between these two terminal stations 2 is inspected. It is also necessary to carry out the optical transmission line 3 between the terminal station 2 and the terminal station 2 adjacent thereto, and in this case, the terminal station 2 t in FIG.
Either one of 2 i+1 is replaced with the main station 1, and the other terminal station becomes the terminal station 2) adjacent to the main station 1, that is, 21 or 2n in FIG. Here, if the terminal station 21 in Fig. 1 is replaced with the main station 1 and the terminal station 21+1 becomes 21, the main station 1 becomes the inspection transmitting station and the terminal station 21+1 becomes the inspection receiving station, and optical transmission is performed. Road 30 will be inspected. Also, the terminal station 21+1 in FIG. 1 is replaced with the main station 1, and the terminal station 21 is also replaced with 2n.
In this case, the terminal station 2n becomes an inspection transmitting station and the main station 1 acts as an inspection receiving station to inspect the optical transmission line 3n. In the former case, the address Ai in the transmitted messages Fl and F3 in FIG. , and address Aj is each address of the main station 1. FIGS. 3, 4, and 5 are flowcharts illustrating the operations of the inspection transmitting station 9, the inspection receiving station, and the main station in the optical transfer path inspection mode, respectively. In FIG. 3, the station before being designated as an inspection transmitting station determines in step 101 whether or not it has received the transmission F1 containing the inspection start command CI from the main station 1, and if no
If so, proceed to step 104; if YES, proceed to step 102. In step 102, the sender address At sent in the transmission message F1 is compared with the own address, and if they do not match (No), the process proceeds to step 104, but in this case they match (YES), so step Proceeding to 103-1, operation in inspection mode is started. In step 103-1, test data T1 is sent to the inspection receiving station.
The transmission text F21 including the above is transmitted multiple times with the transmission light amount level L1. Similarly, step 103-2. ~. 103-N
The test data T2. ~. TN to transmit light level L2. ~. Transmit multiple times as LN,
Proceed to step 104. In step 104, it is determined whether or not the transmission message F3 containing the inspection end command C2 has been received from the main station 1. If No, the process directly proceeds to a process not shown, but if YES, the process proceeds to step 105. The station in question finishes operating in inspection mode,
Return to normal communication mode. However, if the station matches the main station 1, in steps 101 and 104, it is determined whether the own station (main station 1) has transmitted the transmission messages F1 and F3, respectively. Further, in step 102, it is determined whether the transmitter address At in the transmission F1 transmitted by the own station matches the address of the own station. In FIG. 4, the station before being designated as an inspection receiving station determines in step 201 whether or not it has received the transmission F1 containing the inspection start command C1 from the main station 1. If NO, step The process proceeds to step 204, and if YES, the process proceeds to step 202. In step 202, the receiver address Aj sent in the transmission message F1 is compared with the address of the local station. If they do not match (No), the process proceeds to step 204, but in this case they match (YES). , the process proceeds to step 203-1 to start operation in the inspection mode. In step 203-1, the transmission message F21 sent from the inspection transmission station is received, and in the same manner, in step 203-2
.. ~. In step 203-H, each of the transmission messages F22 to F2N is received. Next step 203-M
, the transmitted messages F21 to F2N received in this way
Compare each of the test data T1 to TN in the test data with its own known test data, and if they match, it is determined that the communication is successful,
If there is a mismatch, it is determined that the communication has failed, and each test data (
Therefore, after counting and storing the number of reception failures for each of the light intensity levels 1 to LN), the process proceeds to the next step 204. In step 204, similar to step 104 in FIG.
Sentence F that includes the inspection end command C2 from the main station
It is determined whether or not 3 has been received, and if NO, the process directly proceeds to a process not shown, but if YE or S, the process proceeds to 205-1. In step 205-1, the station transmits to the main station 1 the number of communication failures (or successes) for each light intensity level Ll-LNO created in step 203-M using a transmission message F4, and then in step 205-2 Proceed to , complete inspection mode operation, and return to normal communication mode. However, if the station loses to the main station 1, in steps 201 and 204, it is determined whether the own station (main station 1) has transmitted the transmission messages F1 and F3, respectively. In step 202, the transmission text F1 sent by the local station is
It is determined whether or not the receiving side address Aj in the middle is defeated by the address of the own station. Further, the step 205-
1 is omitted. In FIG. 5, the main station 1 transmits a transmission message F1 including an inspection start command CI in step 301. This step 301 corresponds to steps 101 and 201 described above. Next, after a certain period of time, the main station transmits a transmission message F3 including an inspection end command C2 in step 304. This step 304 corresponds to step 104.204 above. Next, in step 305, the transmission message F4 transmitted from the inspection receiving station (that is, the station having the receiving side address Aj) is received. Next, in step 306, the main station 1 checks the number of reception failures m1 to mN for each of the light quantity levels 1 to LN included in this transmission message F4. When the light loss in the optical transmission line 3 between adjacent stations is normal, the light reception level at the inspection receiving station is above the lower limit value Lmin, and when the light loss is abnormal, the light reception level is less than the lower limit Lmin, and communication fails. Therefore, for example, if communication is successful at the output light level L1 (normal level) of the inspection transmitting station, and communication fails at the same level L2 or lower, it is determined that there is an abnormality. In step 307, based on the determination result in step 306, if the above-mentioned abnormality exists, the process proceeds to step 309, and an abnormality display is performed. In this abnormality display, for example, the respective addresses At and Aj of the inspection transmitting station and the inspection receiving station may be displayed. If it is determined in step 307 that there is no abnormality, step 3
Proceed to 08 and display normally. However, in FIG. 5, if the main station 1 matches the inspection receiving station, step 305 stores the stored data of the number of reception failures for each light intensity level within the own station (main station 1), which corresponds to the data in the transmission message F4. Replace it with a read operation.

【発明の効果】【Effect of the invention】

交信を制御する主局1と複数の端末局2 (21〜2n
)とを順次、光伝送路3 (30〜3n)を介して結合
したループ式データ伝送システムにおいて、主局は前記
光伝送路の異常点検を開始すべき旨を指令する点検開始
コマンドC1と、自局を含む各局のうち互いに隣接する
2局を指定するアドレスであって、この2局のうちの一
方の局を点検送信局、他方の局を点検受信局に指定する
アドレス、つまり送信側アドレスAi、受信側アドレス
Ajと、を少くとも含む送信文F1を前記の各端末局に
送信し、 この送信に基づいて、前記点検送信局は所定の複数の光
量レベルL1〜LNの信号光のうち、高い強度レベルL
1のものから順次、低い強度レベルの信号光を選択しつ
つ、この選択ごとに当該強度レベルに対応する所定のテ
ストデータT1〜TNを、送信文F21〜F2Nとして
所定回数づつ、当該強度レベルの信号光を用いて、前記
受信局へ送信し、 前記点検受信局は、前記の各強度レベルごとに送信され
る前記の各テストデータを受信すると共に、この各信号
の成否を示す失敗回数ml、m2−・を記録し、 次に主局は前記異常点検を終了すべき旨を指令する点検
終了コマンドC2を少(とも含む送信文F3を各端末局
に送信し、 この送信に基づいて主局であるものを除く前記点検受信
局は前記失敗回数ml、m2− のデータを送信文F4
として主局に送信し、 主局は前記受信局から送信された前記失敗回数m1.m
2  ・−・のデータ、または自局が前記受信局となっ
て記録した前記失敗回数ml、m2−・のデータに基づ
いて前記光伝送路内の異常を判別するようにして、異常
表示を行うこととしたので、次のような効果を得ること
ができる。 ■光伝送路に光ファイバを用いた時、各局間ごとの光フ
ァイバの光量損失の増大やコネクタ部の汚れ増加などの
異常発生を検出することが可能となり、伝送システムの
保守点検が容易となり、さらに光量が低下し、交信不可
能などの重大なトラブルを発生する以前に、異常個所の
交換や修理などの処置をとることができる。 ■光信号レベルを変化させるための回路の増加によるコ
ストの上昇などは少なく、また、点検モードの交信も従
来のソフトウェアの大部分を流用して作成できるので、
伝送システムを安価に構成することができる。 ■伝送システムの設置工事または信号ケーブルのレイア
ウト変更時の工事後の点検において、不適切な取扱いの
ため破損した光フアイバケーブルの有無などの点検も容
易となる。 ■光パワーメータなどの測定機器を用いた点検に比し、
短時間で点検を終了することができる。
A main station 1 that controls communication and a plurality of terminal stations 2 (21 to 2n
) are sequentially coupled via optical transmission lines 3 (30 to 3n), the main station issues an inspection start command C1 instructing to start an abnormality inspection of the optical transmission line; An address that specifies two adjacent stations among each station, including the own station, and specifies one of these two stations as the inspection transmitting station and the other station as the inspection receiving station, that is, the sending side address. Ai, the receiving side address Aj, and transmits a transmission message F1 including at least Aj to each terminal station, and based on this transmission, the inspection transmitting station selects one of the signal lights of a plurality of predetermined light intensity levels L1 to LN. , high intensity level L
While sequentially selecting signal lights with low intensity levels starting from signal light 1, for each selection, predetermined test data T1 to TN corresponding to the intensity level are transmitted a predetermined number of times as transmission texts F21 to F2N. transmitting it to the receiving station using signal light, and the inspection receiving station receives the test data transmitted for each intensity level, as well as the number of failures ml indicating the success or failure of each signal; m2-. Next, the main station sends a transmission message F3 including a check completion command C2 instructing the abnormality check to end to each terminal station, and based on this transmission, the main station The inspection receiving stations other than those in which the number of failures ml, m2-
and the main station receives the number of failures m1. transmitted from the receiving station. m
2. An abnormality is displayed by determining an abnormality in the optical transmission path based on the data of .-- or the number of failures ml, m2-. As a result, the following effects can be obtained. ■When using optical fibers as optical transmission lines, it becomes possible to detect abnormalities such as an increase in light loss in the optical fiber between each station or an increase in dirt on the connector, making maintenance and inspection of the transmission system easier. Moreover, it is possible to take measures such as replacing or repairing abnormal parts before the light intensity decreases and serious problems such as communication being impossible occur. ■There is little cost increase due to the increase in circuits for changing the optical signal level, and communication in inspection mode can be created by reusing most of the conventional software.
The transmission system can be constructed at low cost. ■During post-construction inspections when installing a transmission system or changing the layout of signal cables, it becomes easier to check for optical fiber cables that have been damaged due to improper handling. ■Compared to inspections using measurement equipment such as optical power meters,
Inspections can be completed in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての主局と点検送信局お
よび点検受信局間の要部交信のシーケンスの説明図、第
2図は同じく点検送信局の送信光量レベルの説明図、第
3図、第4図、第5図は同じく、それぞれ点検送信局1
点検受信局、主局の要部動作を説明するためのフローチ
ャート、第6図は同じく隣接局間の光伝送路における信
号光の光量レベル損失特性の説明図、第7図、第8図は
本発明のそれぞれ異なる実施例としての各局内のE10
変換器の要部構成を示す回路図、第9図は前記第7図、
第8図に対応する従来のE10変換器の要部構成を示す
回路図、第10図は本発明および従来のループ式データ
伝送システムの基本構成を示すブロック図、第11図は
第10図中の各局内の外部交信部TIの要部構成を示す
ブロック図である。 1:主局、2 (21〜2n):端末局、3 (30〜
3n):光伝送路、T■:外部交信部、4(4R。 4S):デジタルリン’)、5 : O/E変換器、6
1゜62:E10変換器、7:伝送制御部、LEDI:
発光ダイオード、R1,R2:負荷抵抗、Nl。 N2:NOT素子、DACl : D/Aコンバータ、
OPl:オペアンプ、Fl、F2i〜・F2N、F3゜
F4:送信文、C1:点検開始コマンド、C1点検終了
コマンド、Ai:送信側アドレス、Aj:受信側アドレ
ス、T1〜TN:テストデータ、Ll〜LN:光量レベ
ル、Lmin  :受光レベル下限値、m1〜mN=失
敗回数。 漸;写トQ架曙2−64 第5図 N1 62ニジも変峡器 ■c−
FIG. 1 is an explanatory diagram of the main communication sequence between the main station, the inspection transmitting station, and the inspection receiving station as an embodiment of the present invention, and FIG. Similarly, Figures 3, 4, and 5 are for the inspection transmitting station 1.
A flowchart to explain the operation of the main parts of the inspection receiving station and the main station. Figure 6 is also an explanatory diagram of the light intensity level loss characteristics of the signal light in the optical transmission line between adjacent stations. Figures 7 and 8 are from this book. E10 in each station as different embodiments of the invention
A circuit diagram showing the main part configuration of the converter, FIG. 9 is similar to the above-mentioned FIG. 7,
FIG. 8 is a circuit diagram showing the main configuration of a conventional E10 converter, FIG. 10 is a block diagram showing the basic configuration of the present invention and a conventional loop data transmission system, and FIG. FIG. 2 is a block diagram showing the main part configuration of an external communication unit TI in each station. 1: Main station, 2 (21~2n): Terminal station, 3 (30~
3n): Optical transmission line, T■: External communication section, 4 (4R. 4S): Digital link'), 5: O/E converter, 6
1゜62: E10 converter, 7: Transmission control section, LEDI:
Light emitting diode, R1, R2: Load resistance, Nl. N2: NOT element, DACl: D/A converter,
OPl: Operational amplifier, Fl, F2i~・F2N, F3°F4: Transmission text, C1: Inspection start command, C1 inspection end command, Ai: Sending side address, Aj: Receiving side address, T1~TN: Test data, Ll~ LN: light intensity level, Lmin: lower limit of light reception level, m1 to mN = number of failures. Gradually; photo Q Kakekebono 2-64 Figure 5 N1 62 Niji mo Henkyōki ■c-

Claims (1)

【特許請求の範囲】 1)交信を制御する主局と複数の端末局とを順次、光伝
送路を介して結合したループ式データ伝送システムにお
いて、 主局は前記光伝送路の異常点検を開始すべき旨を指令す
るコマンドと、自局を含む各局のうち互いに隣接する2
局を指定するデータであって、この2局のうちの一方の
局を送信局、他方の局を受信局に指定するデータと、を
少くとも含む点検開始信号を前記の各端末局に送信し、 この送信に基づいて、前記送信局は所定の複数の強度レ
ベルの信号光のうち、高い強度レベルのものから順次、
低い強度レベルの信号光を選択しつつ、この選択ごとに
当該強度レベルに対応する所定の点検用データを、所定
回数づつ、当該強度レベルの信号光を用いて、前記受信
局へ送信し、前記受信局は、前記の各強度レベルごとに
送信される前記の各点検用データを受信すると共に、こ
の各信号の成否を示す点検結果データを記録し、次に主
局は前記異常点検を終了すべき旨を指令するコマンドを
少くとも含む点検終了信号を各端末局に送信し、 この送信に基づいて主局であるものを除く前記受信局は
前記点検結果データを主局に送信し、主局は前記受信局
から送信された前記点検結果データ、または自局が前記
受信局となって記録した前記点検結果データに基づいて
前記光伝送路内の異常を判別するようにしたことを特徴
とするループ式光伝送路の異常点検方法。 2)特許請求の範囲第1項に記載の方法において、前記
送信局は、前記光伝送路に前記信号光を送出する発光ダ
イオードの通電々流を変化させることにより前記信号光
の強度レベルを可変するものであることを特徴とするル
ープ式光伝送路の異常点検方法。
[Claims] 1) In a loop data transmission system in which a main station that controls communication and a plurality of terminal stations are sequentially coupled via an optical transmission line, the main station starts checking for abnormalities in the optical transmission line. A command to instruct that the
An inspection start signal containing at least data specifying a station and specifying one of the two stations as a transmitting station and the other station as a receiving station is transmitted to each of the terminal stations. , Based on this transmission, the transmitting station sequentially transmits signal lights of a plurality of predetermined intensity levels, starting from the highest intensity level.
While selecting a signal light of a low intensity level, for each selection, predetermined inspection data corresponding to the intensity level is transmitted to the receiving station a predetermined number of times using the signal light of the intensity level, and The receiving station receives each of the inspection data transmitted for each intensity level and records inspection result data indicating the success or failure of each signal, and then the main station finishes the abnormality inspection. An inspection completion signal containing at least a command to indicate that the The apparatus is characterized in that an abnormality in the optical transmission path is determined based on the inspection result data transmitted from the receiving station or the inspection result data recorded by the own station serving as the receiving station. How to check for abnormalities in loop optical transmission lines. 2) In the method according to claim 1, the transmitting station varies the intensity level of the signal light by changing the energization current of a light emitting diode that sends the signal light to the optical transmission path. 1. An abnormality inspection method for a loop optical transmission line, characterized in that:
JP61235548A 1986-10-03 1986-10-03 Abnormality checking method for loop optical transmission line Pending JPS6390231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235548A JPS6390231A (en) 1986-10-03 1986-10-03 Abnormality checking method for loop optical transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235548A JPS6390231A (en) 1986-10-03 1986-10-03 Abnormality checking method for loop optical transmission line

Publications (1)

Publication Number Publication Date
JPS6390231A true JPS6390231A (en) 1988-04-21

Family

ID=16987611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235548A Pending JPS6390231A (en) 1986-10-03 1986-10-03 Abnormality checking method for loop optical transmission line

Country Status (1)

Country Link
JP (1) JPS6390231A (en)

Similar Documents

Publication Publication Date Title
US7362936B2 (en) Optical harness assembly and method
EP0850514B1 (en) System, method and device for monitoring a fiber optic cable
CN101282586B (en) Method, system and apparatus for detecting optical fiber fault in passive optical network
CN109639348B (en) Method for rapidly detecting on-off and positioning of optical cable
US5038364A (en) Transmission line monitoring system
EP0385649B1 (en) Fibre optic transmission system
CA2125692C (en) Optical line switching system
JPS6390231A (en) Abnormality checking method for loop optical transmission line
JP4852308B2 (en) Optical cross-connect device
JPH03217141A (en) Data processing and transmission network
KR920007476B1 (en) Fault examining apparatus for loop-shaped data transmission system using optical fiber
JPH07312576A (en) Detecting system for fault of optical transmission line
CN100444694C (en) Device for transmitting and/or receiving data and method used to control said device
CN201274477Y (en) Detection apparatus for optical fiber longitudinal differential protection
US20070223369A1 (en) Cable misconnection detection system and method
CN212967036U (en) LED display system and control device thereof
CN101650454B (en) Optical divider equipment and method for acquiring optical fiber connection state
KR100943076B1 (en) Apparatus, method and sytem for providing line status information of transmitter
CN214893971U (en) Photoelectric transmission module capable of preventing optical fiber from being damaged
KR102638906B1 (en) Redundancy module for optical cable redundancy and OTDR combination
JPS60144030A (en) Signal transmitting device of cargo handling equipment
CN113945866B (en) Testing device and testing method for multiple types of transmission lines
JPH08304230A (en) Method for diagnosing optical transmission line
KR970006948B1 (en) Full electronic switching system
KR950010791B1 (en) Fault correcting methof and device for elevator information transmiting device