JPS6389906A - Artificial satellite - Google Patents
Artificial satelliteInfo
- Publication number
- JPS6389906A JPS6389906A JP61235686A JP23568686A JPS6389906A JP S6389906 A JPS6389906 A JP S6389906A JP 61235686 A JP61235686 A JP 61235686A JP 23568686 A JP23568686 A JP 23568686A JP S6389906 A JPS6389906 A JP S6389906A
- Authority
- JP
- Japan
- Prior art keywords
- manipulator
- angular velocity
- auxiliary arm
- joint
- satellite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010586 diagram Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は宇宙空間下での組立作業や故障した人工衛星
の回収作業などに使用するマニピュレータを装備した人
工衛星に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an artificial satellite equipped with a manipulator used for assembly work in outer space, recovery work of a failed artificial satellite, and the like.
第3図は昭和61年度計測自動制御学会学術講演会にお
いて提案された従来のこの棟人工衛星におけるマニビュ
ν一夕の動作を制御する方式を示すブロック図であり、
図において(1)は人工衛星本体、+21ハマニピユレ
ータ、(3)はマニピュレータ(2)の動作を制御する
マニピュレータ制御系である。Figure 3 is a block diagram showing a conventional method for controlling the operation of the manibu ν in this artificial satellite, which was proposed at the 19861 Academic Conference of the Society of Instrument and Control Engineers.
In the figure, (1) is the satellite body, the +21 manipulator, and (3) is the manipulator control system that controls the operation of the manipulator (2).
マニピュレータ(2)のハンドの速度、角速度の指令値
が与えられると、マニピュレータ制御系(3)は与えら
れた指′・令値とマニピュレータ(2)の関節角からマ
ニピュレータ(2)のハンドを指令された速度、角速度
で動かすためのマニピュレータ(2)の各関節゛角速度
の目標値を求め、求めた値をマニピュレータ(2)に人
力する。マニピュレータ(2)の各関節は指示された目
標値の角速度で動き、指令されたハンドの速度、角速度
を実現する。When command values for the speed and angular velocity of the hand of the manipulator (2) are given, the manipulator control system (3) commands the hand of the manipulator (2) from the given command values and joint angles of the manipulator (2). The target value of the angular velocity of each joint of the manipulator (2) to be moved at the specified velocity and angular velocity is determined, and the determined value is manually applied to the manipulator (2). Each joint of the manipulator (2) moves at the specified target value of angular velocity to achieve the specified hand speed and angular velocity.
このとき、マニピュレータ(2)の動きによって人工衛
星本体(1)も動くので、マニピュレータ制御系(3)
は、人工衛星本体(1)の動きも考慮して目標値の計算
を行う゛ようにあらかじめ設定されている。At this time, the satellite body (1) also moves due to the movement of the manipulator (2), so the manipulator control system (3)
is set in advance so that the target value is calculated taking into consideration the movement of the satellite body (1).
この計算には運動量、角運動量の保存則が利用される。This calculation uses the law of conservation of momentum and angular momentum.
[発明か解決しようとする問題点〕
従来のマニピュレータを装備した人工衛星におけるマニ
ピュレータの動作の制御は以上のように行われ、マニピ
ュレータの操作中は、マニピュレータ制御系で人工衛星
本体の動きもあらかじめ考慮して目標値を発、生してい
るものの、人工衛星本体もある程度の角速度を持つこと
になり人工衛星の姿勢が乱れ、該衛星の管制が困難にな
るという問題点があった。[Problem to be solved by the invention] The operation of the manipulator in a conventional artificial satellite equipped with a manipulator is controlled as described above, and during the operation of the manipulator, the movement of the satellite itself is taken into consideration in advance by the manipulator control system. However, the problem is that the satellite itself also has a certain angular velocity, which disrupts the attitude of the satellite and makes it difficult to control the satellite.
この発明は上記のような問題点を解消するためになされ
たもので、マニピュレータの操作中も本体の姿勢を安定
に保つ人工衛星を得ることを目的とする。This invention was made to solve the above-mentioned problems, and aims to provide an artificial satellite whose main body maintains a stable attitude even during operation of a manipulator.
この発明に係る人工衛星は、マニピュレータと、マニピ
ュレータのハンドの指令された速度、角速度の運動を実
現する制御を行うマニピュレータ側割系の他に、補助ア
ームと、上記マニピュレータの運動と相殺して人工衛星
本体の姿勢を安定に保つ補助アームの運動を実現する制
御を行う補助アームルlll系を備えたものである。The artificial satellite according to the present invention includes, in addition to a manipulator and a manipulator side split system that performs control to realize the motion of the manipulator hand at a commanded velocity and angular velocity, an auxiliary arm and an artificial satellite that offsets the motion of the manipulator. It is equipped with an auxiliary arm system that controls the movement of the auxiliary arm to maintain a stable attitude of the satellite body.
この発明に係る人工衛星における補助アーム制御系はマ
ニピュレータの各関節角角速度の目標値と該マニピュレ
ータの関節角と補助アームの関節角から人工衛星本体の
角速度な零あるいは任意の値に保つための補助アームの
各関節角速度の目標値を求め、補助アームの各関節を求
めた角度で動かす制御を行う。The auxiliary arm control system for an artificial satellite according to the present invention uses the target value of the angular velocity of each joint of the manipulator, the joint angle of the manipulator, and the joint angle of the auxiliary arm to maintain the angular velocity of the satellite main body at zero or an arbitrary value. A target value of the angular velocity of each joint of the arm is determined, and each joint of the auxiliary arm is controlled to move at the determined angle.
第1図はこの発明の一実施例を示すブロック図、第2図
はこの発明の一実施例におけるマニピュレータと補助ア
ームの装備の状況を示す説明図であり、図においてil
l 、 +21 、 +31は第3図の同一符号と同一
または相当する部分を示し、(4)は補助アーム、(5
)は補助アーム制御系、16)は人工衛星本体(1)の
姿勢角を制御する姿勢制御系、(7)はマニピュレータ
(2)のハンドである。FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the state of equipment of a manipulator and an auxiliary arm in an embodiment of the invention.
l, +21, +31 indicate parts that are the same as or correspond to the same reference numerals in FIG. 3, (4) is an auxiliary arm, (5
) is an auxiliary arm control system, 16) is an attitude control system that controls the attitude angle of the satellite body (1), and (7) is a hand of the manipulator (2).
補助アーム(4)は物体のハンドリングを行うためのハ
ンドをもたないが、関節構造はマニピュレータ(2)と
同じである。Although the auxiliary arm (4) does not have a hand for handling objects, its joint structure is the same as that of the manipulator (2).
マニピュレータ(2)のハンドの速度、角速度の指令値
が与えられると、マニピュレータ制御系(31は与えら
れた指令値とマニピュレータ(2)の関節角と補助アー
ム(4)の関節角からマニピュレータ12)のハンドを
指令された速度、角速度で動かすためのマニピュレータ
(2)の各関節角速度の目標値を求め、求めた値をマニ
ピュレータ(2)に入力する。目標値の計算には運動量
、角運動量の保存則か用いられ、人工衛星本体(1)の
動きと補助アーム14)の動きが考慮される。マニピュ
レータ(2)は、各関節が指示された目標値の角速度で
動き、指令されたハンドの速度、角速度を実現する。When the command values of the hand speed and angular velocity of the manipulator (2) are given, the manipulator control system (31 is the manipulator 12 from the given command values, the joint angles of the manipulator (2), and the joint angles of the auxiliary arm (4)) The target value of each joint angular velocity of the manipulator (2) for moving the hand at the commanded speed and angular velocity is determined, and the determined value is input into the manipulator (2). The law of conservation of momentum and angular momentum is used to calculate the target value, and the movement of the satellite body (1) and the movement of the auxiliary arm 14) are taken into consideration. The manipulator (2) moves each joint at an angular velocity of an instructed target value, and realizes the instructed speed and angular velocity of the hand.
一方、補助アーム制御系(5)は、マニピュレータ制御
系(3)からのマニピュレータ(2)の各関節角速度の
目標値とマニピュレータ(2)の関節角と補助アームの
関節角から人工衛星本体(1)の角速度を零に保つため
の補助アーム(4)の各関節角速度の目標値を求め、求
めた値を補助アーム(4)に入力する。目標値の計算に
は運動量、角運動量の保存則が用いられる。補助アーム
(4)は、各関節が指示された目標値の角速度で動き、
マニピュレータ(2)の運動と相殺して人工衛星本体(
1)の角速度をほぼ零に保つ。On the other hand, the auxiliary arm control system (5) uses the target value of each joint angular velocity of the manipulator (2) from the manipulator control system (3), the joint angle of the manipulator (2), and the joint angle of the auxiliary arm. ) to maintain the angular velocity of each joint of the auxiliary arm (4) at zero, and the determined values are input to the auxiliary arm (4). The law of conservation of momentum and angular momentum is used to calculate the target value. The auxiliary arm (4) moves each joint at the specified target value of angular velocity,
The movement of the manipulator (2) is offset by the movement of the satellite body (
1) Keep the angular velocity almost zero.
人工衛星本体(1)は、さらに姿勢制御系(6)によっ
て細かな姿勢制御を行う。このときホイールなどの内力
アクチュエータを用いて、各時刻での人工衛星本体(1
)の角運動量が求められるようにすることが望ましい。The satellite body (1) further performs detailed attitude control by an attitude control system (6). At this time, using an internal force actuator such as a wheel, the satellite body (1
) is desirable.
これはマニピュレータ制御系(3)や補助アーム制御系
(5)において角運動量保存則を用いるためである。This is because the law of conservation of angular momentum is used in the manipulator control system (3) and the auxiliary arm control system (5).
なお、上記実施例は、補助アーム(3)を装備した場合
を示したが、2本のマニピューレータをもつ人工衛星の
一方のマニピューレータを補助アームとする構成でもよ
い。また、上記では、人工衛星本体+1)の角速度を零
に保つ場合を示したが、必要に応じて任意の値に保つよ
うに制御させることもできる。In addition, although the above-mentioned Example showed the case where the auxiliary arm (3) was equipped, the structure which uses one manipulator of the artificial satellite which has two manipulators as an auxiliary arm may be sufficient. Moreover, although the case where the angular velocity of the artificial satellite main body +1) is kept at zero is shown above, it can also be controlled to be kept at any value as necessary.
以上のように、この発明によれば、マニピュレータを装
備した人工衛星において、マニピュレータの動きによる
人工衛星本体の姿勢変化が補助アームの動きによって抑
えられ、マニピュレータが広範囲に動いても人工衛星本
体の姿勢変化が少なく、人工衛星の管制が容易になると
いう効果がある。As described above, according to the present invention, in an artificial satellite equipped with a manipulator, changes in the attitude of the satellite main body caused by the movement of the manipulator are suppressed by the movement of the auxiliary arm, and even if the manipulator moves over a wide range, the attitude of the satellite main body can be suppressed. This has the effect of making it easier to control satellites because there are fewer changes.
第1図はこの発明の一実施例を示すブロック図、第2図
はこの発明の一実施例におけるマニピュレータと補助ア
ームの装備の状況を示す説明図、第3図は従来のこの種
の人工衛星におけるマニピュレータの動作を制御する方
式を示すブロック図である。
図においてil+は人工衛星本体、(2)はマニピュレ
ータ、(3)はマニピュレータ制御系、14)は補助ア
ーム、(5)は補助アーム制御系、16】は姿勢制御系
、(7)はハンドである。
なお、各図中、同一符号は同一、又は相当部分を示す。Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the equipment of a manipulator and auxiliary arm in an embodiment of the invention, and Fig. 3 is a conventional artificial satellite of this type. FIG. 2 is a block diagram illustrating a method for controlling the operation of a manipulator in FIG. In the figure, il+ is the satellite main body, (2) is the manipulator, (3) is the manipulator control system, 14) is the auxiliary arm, (5) is the auxiliary arm control system, 16] is the attitude control system, and (7) is the hand. be. In each figure, the same reference numerals indicate the same or equivalent parts.
Claims (1)
のハンドの速度、角速度の指令値と該マニピュレータの
関節角と上記補助アームの関節角から該マニピュレータ
のハンドを指令された速度、角速度で動かすための該マ
ニピュレータの各関節角速度の目標値を求め該マニピュ
レータの各関節を求めた角速度で動かす制御を行うマニ
ピュレータ制御系と、上記マニピュレータの各関節角速
度の目標値と該マニピュレータの関節角と上記補助アー
ムの関節角から人工衛星本体の角速度を零あるいは任意
の値に保つための上記補助アームの各関節角速度の目標
値を求め該補助アームの各関節を求めた角速度で動かす
制御を行う補助アーム制御系を備えた人工衛星。A manipulator, an auxiliary arm, a command value of the speed and angular velocity of the hand of the manipulator, a joint angle of the manipulator, and a joint angle of the auxiliary arm, for moving the hand of the manipulator at a commanded speed and angular velocity. A manipulator control system that determines the target value of each joint angular velocity and controls each joint of the manipulator to move at the determined angular velocity, and a manipulator control system that determines the target value of each joint angular velocity of the manipulator, the target value of each joint angular velocity of the manipulator, the joint angle of the manipulator, and the joint angle of the auxiliary arm. An artificial artificial body equipped with an auxiliary arm control system that determines a target value of the angular velocity of each joint of the auxiliary arm and controls each joint of the auxiliary arm to move at the determined angular velocity in order to maintain the angular velocity of the satellite body at zero or an arbitrary value. satellite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61235686A JPS6389906A (en) | 1986-10-03 | 1986-10-03 | Artificial satellite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61235686A JPS6389906A (en) | 1986-10-03 | 1986-10-03 | Artificial satellite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6389906A true JPS6389906A (en) | 1988-04-20 |
Family
ID=16989709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61235686A Pending JPS6389906A (en) | 1986-10-03 | 1986-10-03 | Artificial satellite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6389906A (en) |
-
1986
- 1986-10-03 JP JP61235686A patent/JPS6389906A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van Nieuwstadt et al. | Real‐time trajectory generation for differentially flat systems | |
JP3645038B2 (en) | Aircraft flight control equipment | |
EP0367527A3 (en) | A method for controlling movements of a mobile robot in a multiple node factory | |
JPH0144476B2 (en) | ||
JPS6389906A (en) | Artificial satellite | |
Morton et al. | Search and retrieve with a fully autonomous aerial manipulator | |
Matsumoto et al. | Teleoperation control of ETS-7 robot arm for on-orbit truss construction | |
JPS5810197B2 (en) | Enkatsu Souji Yuusouchi | |
Superczyńska et al. | SDRE-Based Suboptimal Controller for Manipulator Control | |
JP2583272B2 (en) | Robot control device | |
JP2546299Y2 (en) | Optical camera gimbal controller | |
CN113987914B (en) | Space robot tracking control method for cold air propulsion | |
JPS60205610A (en) | Robot controller | |
JPS6029288A (en) | Robot device | |
JP2712653B2 (en) | Manipulator control method | |
JPS6138076B2 (en) | ||
JP2509581B2 (en) | Manipulator control method | |
JPH0437838Y2 (en) | ||
JPH03111184A (en) | Control unit for robot | |
Kosari et al. | Position Based Impedance Control on Space Docking | |
Egeland et al. | Cartesian control of a spray-painting robot with redundant degrees of freedom | |
JPH07134606A (en) | Manipulator controller | |
JPS6218398A (en) | Controller for artificial satellite | |
JPS646225Y2 (en) | ||
JPS62192807A (en) | Robot control system |