JPS6389587A - Method for measuring flow rate of coke oven fuel gas - Google Patents

Method for measuring flow rate of coke oven fuel gas

Info

Publication number
JPS6389587A
JPS6389587A JP23413486A JP23413486A JPS6389587A JP S6389587 A JPS6389587 A JP S6389587A JP 23413486 A JP23413486 A JP 23413486A JP 23413486 A JP23413486 A JP 23413486A JP S6389587 A JPS6389587 A JP S6389587A
Authority
JP
Japan
Prior art keywords
air
combustion
fuel gas
amt
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23413486A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakagawa
二彦 中川
Masatoshi Ichinomiya
一宮 正俊
Haruki Kasaoka
笠岡 玄樹
Kunitoshi Hashimoto
橋本 邦俊
Hiroyuki Ishikawa
石川 丕行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23413486A priority Critical patent/JPS6389587A/en
Publication of JPS6389587A publication Critical patent/JPS6389587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To effectively conduct combustion control through lowering in the variation in the carbonization between carbonization chambers and an improvement in the combustion efficiency within the carbonization chamber, by measuring the amt. influent combustion air and the composition an influent fuel gas for each combustion chamber. CONSTITUTION:A measuring box 12 accommodating an anemometer 9, a thermometer 10, and a hygrometer 11 is abutted against an inlet of combustion air, and an air flap is opened to close a damper 14 for a flue 6. Air is passed from an influent side B through the box 12, a discharge side A, and an opening 15 of the flap 3 to detect the flow rate and determine the amt. of the inflow air, while the theoretical amt. of combustion air and that of combustion waste gas are calculated from the composition of the combustion gas. Separately, the amt. of excess air is computed from the concn. of the O2 CO contained in the combustion waste gas to determine the amt. of combustion air per unit fuel gas. The amt. of the fuel gas is detected based on the amt. of combustion air and the amt. of inflow air.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は、コークス炉燃料ガス流場の測定方法に係り、
詳しくは、燃焼用空気の導入を自然通風式としたコーク
ス炉の燃料ガス流出の測定方法に係る。
[Detailed description of the invention] <Object of the invention> Industrial field of application The present invention relates to a method for measuring a coke oven fuel gas flow field.
Specifically, the present invention relates to a method for measuring fuel gas outflow in a coke oven in which combustion air is introduced by natural ventilation.

従  来  の  技  術 コークス炉は周知の如く炉体の下部に蓄熱室を有し、そ
の上部に炭化室と、この炭化下をはさんで加熱するため
の燃v?、室とが交互に配列される構造を採り、燃焼用
空気及び燃料ガス(貧ガスを用いる場合)は、蓄熱室で
予熱され、燃焼後VA接する蓄熱室で熱回収されたのち
煙道を軽で排出されている。
As is well known, a conventional coke oven has a heat storage chamber in the lower part of the furnace body, a carbonization chamber in the upper part, and a combustion chamber for heating the carbonization chamber. The combustion air and fuel gas (if poor gas is used) are preheated in the heat storage chamber, and after combustion, the heat is recovered in the heat storage chamber in contact with the VA, and then the flue is lightened. is being discharged.

このコークス炉の操業は、炭化室をはさんで1j口熱す
るための燃焼室へ供給される燃料ガス、燃焼用空気及び
燃焼1変に排出される排ガスの各流出を、目標乾留温度
と実績乾留温度とが一致するように調整して、前記炭化
下に装入された石炭を燃焼室と炭化下を仕切る耐火物を
介して間接的に加熱乾留させ、装入復石炭がコークスに
なるまでの火落時間及び火落ちからコークス押出までの
置時間が各炭化重量で略々回じ時間となるように行なっ
ている。
The operation of this coke oven is based on the target carbonization temperature and the actual output of the fuel gas supplied to the combustion chamber across the carbonization chamber to heat the combustion chamber, the combustion air, and the exhaust gas discharged during the first combustion stage. The carbonization temperature is adjusted to match the carbonization temperature, and the coal charged in the carbonization chamber is heated and carbonized indirectly through a refractory that partitions the combustion chamber and the carbonization chamber, until the charged coal becomes coke. The fire-off time and the standing time from fire-off to coke extrusion are approximately equal to the turning time for each carbonization weight.

このような燃焼における風はのflll tlflは、
吸引ドラフト圧を調節する単純な制御方式が行なわれて
いる。
The wind in such a combustion is flll tlfl,
A simple control scheme is implemented to adjust the suction draft pressure.

しかしながら、コークス炉の構造は複雑で、乾留;2度
の制御は極めて困難であり、過去多数の試みが成されて
いるが、回れも試行til誤的に行なわれているにすぎ
ない。
However, the structure of a coke oven is complicated, and it is extremely difficult to control carbonization, and although many attempts have been made in the past, they have only been carried out by trial and error.

この原因として、燃焼室間の燃料ガス及び導入される空
気の流量差、導入される燃料ガスおよび空気流量を知る
ことができないことがあげられる。
This is due to the fact that the difference in the flow rates of fuel gas and introduced air between the combustion chambers and the inability to know the introduced fuel gas and air flow rates.

この流fl差を解消するものとして、特開昭51−19
8783号および特開昭58−38784号公報に述べ
られている技術手段があり、前者は各燃焼室に達する支
管にノズルチップを装着し、各燃焼室への適正ガス吊の
供給を可能にすること、lit者は導入されるガスの流
れ過程を改善し、供給されるガスおよび空気の流m比を
安定させるごとがそれぞれl?u案されている。
In order to eliminate this difference in flow rate, JP-A-51-19
There are technical means described in No. 8783 and Japanese Unexamined Patent Publication No. 58-38784, and the former installs a nozzle tip on a branch pipe reaching each combustion chamber, making it possible to supply an appropriate amount of gas to each combustion chamber. In other words, it is possible to improve the flow process of the introduced gas and stabilize the flow ratio of the supplied gas and air, respectively. U has been proposed.

しかし、経時変化、操業変化等から、Cれらは変動を生
じ、また、多数の燃焼室を有するコークス炉においては
、これら燃焼室間の燃焼状況を一定に長期に渡って保つ
ことは極めて困難であり、結局、燃焼室内の温度測定手
段による平均化および火落ち判定手段による炭化空間の
火落ち時間のバラツキの低減化をもって、コークス炉操
業を継続するのを常とし、これら各種手段を利用して試
行!iI誤的に調整を繰返して適正化を図り、適正な燃
焼状態を得んとしているのが実情である。
However, due to changes over time, operational changes, etc., these values fluctuate, and in coke ovens that have many combustion chambers, it is extremely difficult to maintain a constant combustion condition between these combustion chambers over a long period of time. In the end, it is customary to continue operating the coke oven by averaging the temperature within the combustion chamber by measuring the temperature, and by reducing the variation in the fire-off time in the coking space by using the fire-off determining means, and by using these various methods. Try it! The reality is that people are trying to achieve proper combustion conditions by repeatedly making adjustments incorrectly.

従って、上記問題から燃焼室に導入される燃料ガスおよ
び空気の流mを定m的に知ることができれば、この問題
解決に大きく前進することになるが、従来、試みられた
オリフィス、超音波流阻計等の流伍計測手段では、下記
の問題があり、実現できなかった。
Therefore, if the flow m of fuel gas and air introduced into the combustion chamber could be determined from the above problem, it would be a great step forward in solving this problem. Methods of measuring failure, such as a stop meter, had the following problems and could not be achieved.

(1)炉の構造、設置スペース等の設備上の問題から、
燃料ガス及び空気流量計を設置する場所がない。
(1) Due to equipment issues such as furnace structure and installation space,
There is no place to install fuel gas and air flow meters.

(2)仮に、流a計を設置したとしても、1fll計に
よる測定精度の確保に必要な流m針設d箇所の上流側に
充分な直管長さを取ることは不可能なうえ、経年変化が
起りやすく、充分な測定精度、信頼性が得られない。
(2) Even if a flow meter was installed, it would be impossible to provide a sufficient straight pipe length upstream of the flow m needle installation point d, which is necessary to ensure measurement accuracy with a 1fl meter, and aging This tends to occur, making it impossible to obtain sufficient measurement accuracy and reliability.

(3)さらに、燃焼室毎に燃料ガス流量計を設置するた
めには、lX1iI!iなFQ吊計を多数設置する必要
があり(例えば、1炉団あたり88の燃焼室を待つコー
クス炉では、炉団あたり、C3,MS合計で88X2=
176個の流a計を設置する必要がある)、設備費が非
常に大ぎい。
(3) Furthermore, in order to install a fuel gas flow meter in each combustion chamber, lX1iI! It is necessary to install a large number of i FQ hanging meters (for example, in a coke oven with 88 combustion chambers per furnace group, the total of C3 and MS per furnace group is 88X2 =
176 flow meters must be installed), and the equipment cost is extremely high.

以上の理由から、必要性は非常に高いにもがかわらず、
有効な測定方法はなかった。
For the above reasons, although the need is very high,
There was no effective measurement method.

コークス炉の燃焼管理を有効に行なうためには、炭化室
毎に流入する燃料ガス及び空気流量を知り、Cれを制御
0する必要がある。しかし、現実には、ごれら流量を知
る方法がなく、(1)エアー廃気弁毎の燃焼用空気流量
を測定する方法および装置 (2)燃焼用空気流量と、燃料ガス組成を測定する事に
より、燃焼室毎の燃料ガス流入Wを口出し、定量化する
方法 が発明の目的を達成するための必要不可欠の要件である
In order to effectively manage combustion in a coke oven, it is necessary to know the flow rate of fuel gas and air flowing into each coking chamber and to control the C loss. However, in reality, there is no way to know the flow rate; (1) a method and device for measuring the combustion air flow rate for each air exhaust valve; (2) measurement of the combustion air flow rate and fuel gas composition. Therefore, a method of determining and quantifying the fuel gas inflow W for each combustion chamber is an essential requirement for achieving the purpose of the invention.

発明が解決しようとする問題点 本発明はこれらの問題点の解決を目的とし、具体的には
、燃焼室毎に流入する燃焼用空気流量および燃料ガス組
成を測定することによるコークス炉燃料ガス流壱の測定
方法を提供することを目的とする。
Problems to be Solved by the Invention The present invention aims to solve these problems. Specifically, the present invention aims to solve the problems described above. The purpose is to provide a method for measuring 1.

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 本発明は、燃焼用空気の導入部に風速計、温度計及び湿
度計を内在する測定ボックスを当接し、導入空気流速を
検出して流入空気量を求めると共に、燃料ガスの組成か
ら理論燃焼空気量と理論燃焼廃ガス量を算出する。一方
、燃焼部ガス中の02およびGO濃度より過剰空気量を
河口し、単位燃料ガス当りの燃焼空気■を求め、該空気
量と前記流入空気量にもとづき、燃料ガス量を検知する
ことを特徴とする特 以下、図面によって本発明の手段たる構成ならびに作用
を説明すると、次の通りである。
<Structure of the Invention> Means for Solving the Problems and Their Effects The present invention detects the flow velocity of the introduced air by abutting a measuring box containing an anemometer, a thermometer, and a hygrometer against the inlet of combustion air. In addition to determining the inflow air amount, the theoretical combustion air amount and theoretical combustion waste gas amount are calculated from the composition of the fuel gas. On the other hand, the excess air amount is estimated from the 02 and GO concentration in the combustion part gas, the combustion air per unit fuel gas is determined, and the fuel gas amount is detected based on the air amount and the inflow air amount. Hereinafter, the structure and operation of the means of the present invention will be explained with reference to the drawings.

第1図は本発明に係る測定方法を説明する側面図であり
、第2図(a)および(b)は導入空気流速の測定ボッ
クスの横断面図および縦断面図であり、第3図(a)お
よび(b)はそれぞれ実施例における燃焼用空気流量の
経時変化を示すグラフである。
FIG. 1 is a side view illustrating the measuring method according to the present invention, FIGS. 2(a) and (b) are a cross-sectional view and a longitudinal sectional view of a measuring box for introducing air flow velocity, and FIG. (a) and (b) are graphs showing changes over time in the combustion air flow rate in Examples, respectively.

まず、本発明にかかる測定方法は自然通風式を採るコー
クス炉、すなわち、カールスチール式、コツパース式、
オツト−式その他の各コークス炉に適用できる。
First, the measurement method according to the present invention applies to natural draft coke ovens, such as Karl Steel type, Copperce type,
Applicable to Otto type and other coke ovens.

本発明では、この自然通風式で吸気される燃焼用空気の
導入部に導入空気流速を測定することのできる風速計を
設置して、まず、流入空気流量を求める。
In the present invention, an anemometer capable of measuring the flow velocity of the introduced air is installed in the introduction section of the combustion air taken in by this natural ventilation method, and the flow rate of the incoming air is first determined.

第2図は導入空気流速の測定装置を示すもので、測定装
置は測定ボックス12と、このボックス12内に設けら
れた風速計9と湿分計11、温度計10とから成り、測
定ボックス12はコークス炉の空気導入部に接する排出
側Aと、空気の流入側Bを有し、排出側Aはコークス炉
のエアーフラップ3の開放による開口面15(第1図参
照)に密着する形状とされており、その内部に風速計9
が設けられている。
FIG. 2 shows a measuring device for the flow rate of introduced air. has a discharge side A in contact with the air introduction part of the coke oven and an air inflow side B, and the discharge side A has a shape that is in close contact with the opening surface 15 (see Fig. 1) when the air flap 3 of the coke oven is opened. It has an anemometer 9 inside.
is provided.

この風速計9は好ましくは超音波式風向風速計が使用さ
れ、導入される空気流速の測定を行なう。測定ボックス
12は天板、底板及び側板から成る枠体から構成され、
炉型式に適応するように側板は流路幅調整機能を持たせ
ても良い。
The anemometer 9 is preferably an ultrasonic anemometer to measure the flow velocity of the introduced air. The measurement box 12 is composed of a frame consisting of a top plate, a bottom plate, and a side plate,
The side plate may have a channel width adjustment function to adapt to the furnace type.

この枠体内を流れる空気流速を上記風速計9で測定する
ことにより、枠体の断面積をもとにして流入空気伍を求
めることができる。10および11は温度計および湿分
計を示し、これにより標準状態に換算した乾燥状態基準
の流入空気はを口出する。
By measuring the flow velocity of the air flowing inside the frame using the anemometer 9, the inflowing air can be determined based on the cross-sectional area of the frame. Reference numerals 10 and 11 indicate a thermometer and a hygrometer, through which the incoming air on a dry basis converted to a standard condition is discharged.

超音波式風向風速計が好ましい点は以下の如くである。The advantages of the ultrasonic anemometer are as follows.

(1)風向の測定精度が高い。(任息の方向の風速成分
を求めることができる。) 流量は流路断面方向の流速によって算出しなければなら
ないことから、風向の測定精度は、口出する流出精度に
きいてくる。
(1) High accuracy in measuring wind direction. (The wind velocity component in any direction can be determined.) Since the flow rate must be calculated based on the flow velocity in the cross-sectional direction of the channel, the accuracy of measuring the wind direction depends on the accuracy of the outflow.

(2)流速の測定精度が高い。(2) High accuracy in measuring flow velocity.

センサーの検出できる流速分解能力は、0.01m/s
であり、プロペラ式や熱線式の10倍以上の速度検出能
力h(ある。
The sensor's detectable flow rate resolution ability is 0.01 m/s
It has a speed detection capability h (10 times or more than propeller type or hot wire type).

第1図は第2図に示す測定装置1を用いて導入空気流速
を測定している状態を示すもので、燃焼用空気導入のた
め、エアーフラップ3を間とし、開口面に測定装置1を
接触させて測定する。
Fig. 1 shows a situation in which the flow rate of introduced air is measured using the measuring device 1 shown in Fig. 2. In order to introduce combustion air, the measuring device 1 is placed on the opening surface with an air flap 3 in between. Measure by touching.

この時、当然のことながら、煙道6へのダンパー14は
閉とされている。測定装置1は移動式リフター4に搭載
されているので隣接する多数のエアー廃気弁2毎にこの
測定を行なってゆくことによって、各炭化室単位に導入
されている空気ωを求めることができる。7および8は
風向風速計用変換器および記録計を示す。さらに、上記
測定時、燃焼排ガスのO7、CO;開度を測定しておく
At this time, naturally, the damper 14 to the flue 6 is closed. Since the measuring device 1 is mounted on the mobile lifter 4, by performing this measurement for each of the many adjacent air exhaust valves 2, it is possible to determine the air ω introduced into each carbonization chamber unit. . 7 and 8 indicate anemometer transducers and recorders. Furthermore, during the above measurement, the opening degree of O7 and CO of the combustion exhaust gas is measured.

以下、燃料ガス流出の測定手順を説明する。The procedure for measuring fuel gas outflow will be explained below.

(1)第2図の装置により、コークス炉エアー廃気弁入
気口部の燃焼用空気の平均流速11若しくは中心部流速
U2を測定する(測定方法を第1図に示す。)。
(1) The average flow velocity 11 or center flow velocity U2 of combustion air at the inlet of the coke oven air exhaust valve is measured using the apparatus shown in FIG. 2 (the measuring method is shown in FIG. 1).

(21(11で測定した空気流速U1(またはO2)と
あらかじめ測定済の測定装置間口部の断面fI!lSが
ら(1)式(または(1)′ 式)によって流入空気量
v^を口出する。
(21) Calculate the amount of incoming air v^ using equation (1) (or equation (1)') using the air flow velocity U1 (or O2) measured in (11) and the cross section fI!lS of the frontage of the measuring device that has been measured in advance. do.

VA =α、・U、・S ・・・・・・(1)(VA 
=cx2− L+2・Sl  −−−−−−m’ただし
、α1、α2:流速分子li補正係数(−)vA:燃焼
室毎の流入空気量(m11′5IIJ、(U21:空気
流速(m/s) S:開口部断面積(m2) (3)一方、燃料ガスの組成から理論燃焼空気性A、及
び理論燃焼廃ガス吊)IGnを燃焼計口により口出する
。この燃焼計口は公知方2人で行なえばよい。
VA = α, ・U, ・S ・・・・・・(1) (VA
= cx2- L+2・Sl -------m' However, α1, α2: Flow rate molecule li correction coefficient (-) vA: Inflow air amount for each combustion chamber (m11'5IIJ, (U21: Air flow rate (m/ s) S: Opening cross-sectional area (m2) (3) On the other hand, based on the composition of the fuel gas, the theoretical combustion aerodynamics A and the theoretical combustion exhaust gas flow rate IGn are outputted through a combustion meter port. This combustion meter port is known in the art. It can be done by two people.

(4)さらに、廃ガス中の02およびCO濃度と11G
Oから過剰空気量A、を口出し、A1 とAOから単位
燃料ガスあたりの燃焼空気流量^=^、十Anを算出す
る。
(4) Furthermore, 02 and CO concentration in waste gas and 11G
Determine the excess air amount A from O, and calculate the combustion air flow rate per unit fuel gas ^=^, 1 An from A1 and AO.

この過剰空気量A、は(2)式によって空気比mを知る
ことにより求めることができる。
This excess air amount A can be determined by knowing the air ratio m using equation (2).

燃焼ガスの分析1iflと燃料組成を用いて。Analysis of combustion gases using 1ifl and fuel composition.

0.21へ。To 0.21.

更に、mを用いれば、前述A−A、+へ。はmAo−A
とすることができる。
Furthermore, if m is used, it goes to A-A, + mentioned above. is mAo-A
It can be done.

(5)燃焼室毎の燃料ガス流山VaとvAとの関係は、 V、 =VA i′A −−−−−−(3)であること
から(3)式を用いてVAと八から燃料ガス’a m 
V oを算出する。
(5) The relationship between the fuel gas flow rate Va and vA for each combustion chamber is V, = VA i'A --------- (3), so using equation (3), calculate the fuel gas flow from VA and 8. Gas'am
Calculate Vo.

以上説明したように、本発明は、燃焼用空気の導入を自
然通風式としたコークス炉の燃焼室毎の燃料ガス及び空
気流出を定量化する方法の実用化を目的として開発した
ものであり、前記の技術的な問題貞をすべて解決した。
As explained above, the present invention was developed for the purpose of practical use of a method for quantifying fuel gas and air outflow from each combustion chamber of a coke oven in which combustion air is introduced by natural draft. All the technical problems mentioned above have been resolved.

すなわち、 (1)測定方法が簡単であり、しかも、?il測定装置
が軽量かつコンパクトであるため、設備スペース等を特
別に考慮する必要がない。
In other words, (1) The measurement method is simple, and? Since the il measuring device is lightweight and compact, there is no need to take special consideration of equipment space and the like.

(2)廃気弁毎の流入空気流量を1つの測定装置で測定
することから、測定装首間の器差を考慮する必要がなく
、また、投首費用、メンテナンス費用が安価である。
(2) Since the inflow air flow rate for each exhaust valve is measured with one measuring device, there is no need to take into account instrumental differences between measurement devices, and the cost of setting the device and maintenance costs are low.

(3)測定精度は、従来試みられたような、単に廃気弁
毎の空気流出の相対値を知る程度のものでなく、絶対値
を測定することl)cでき、流速分布補正係数を適切に
設定することにより、高い測定精度を有する。
(3) Measurement accuracy is not limited to simply knowing the relative value of the air outflow for each exhaust valve, as was attempted in the past, but it is also possible to measure the absolute value and adjust the flow velocity distribution correction coefficient appropriately. By setting it to , high measurement accuracy can be achieved.

などの特徴を待っている。Waiting for features such as.

実施例 以下、実施例により更に説明する。Example This will be further explained below using examples.

本島&、5コークス炉において、本流澄測定装置により
、燃焼用空気流出を測定した結果を第3図に示す。
Figure 3 shows the results of measuring the combustion air outflow using a main flow clarification measuring device in the Honjima & 5 coke oven.

第3図は稼vJ率120%、廃ガス中0□瀧度2.69
6の時の翫4燃焼至のデータであり、この時の流入空気
及び燃料ガス流山は第1表の通りであった。
Figure 3 shows the operating vJ rate of 120% and the waste gas 0□waterfall degree of 2.69.
This is the data for the 4th combustion cycle at time 6, and the inflow air and fuel gas flow rate at this time were as shown in Table 1.

第   1   表 なお、第3図の中で流出が変動しているのは、煙道ドラ
フト制御の影響を受けているためである。
Table 1 Note that the outflow fluctuates in Figure 3 because it is affected by flue draft control.

〈発明の効果ン 以上説明したように、本発明は、燃焼用空気の導入部に
風速計、:品度計及び湿度計を内在する測定ボックスを
当接し、導入空気流速を検出して流入空気量を求めると
共に、燃料ガスの組成から理論燃焼空気量と1’ll!
論燃焼廃ガス畠を算出する。一方、燃焼廃ガス中の02
およびC0=a澗度より過剰空気品を演口し、川1ひ燃
料ガス当りの燃焼空気量を求め、該空気量と前記流入空
気酊にもとづき、燃料ガス岳を検知することを特徴とす
るコークス炉燃籾ガス流出の測定方法であって、本発明
方法によってコークス炉燃焼室毎の燃料ガス、空気流量
を定量的に把握することは従来から問題となっていた炭
化室間の乾留のバラツキ低減及び炭化室内の燃焼効率の
改善ばかりでなく、将来的には、プログラムヒーティン
グ等を実施する際に不可欠なものであり、コークス炉の
燃焼管理を有効に行なうための目として非常に大きな効
果が期待できる。
<Effects of the Invention> As explained above, the present invention brings a measuring box containing an anemometer, a quality meter, and a hygrometer into contact with the combustion air inlet, detects the flow velocity of the incoming air, and detects the incoming air. In addition to determining the amount, the theoretical combustion air amount and 1'll! are determined from the composition of the fuel gas.
Calculate the theoretical combustion waste gas field. On the other hand, 02 in the combustion waste gas
The method is characterized in that the excess air product is determined from the degree of C0=a, the amount of combustion air per unit of fuel gas is determined, and the amount of fuel gas is detected based on the amount of air and the inflow air intoxication. This is a method for measuring coke oven combustion gas outflow, and it is difficult to quantitatively grasp the flow rate of fuel gas and air in each coke oven combustion chamber by the method of the present invention, which has traditionally been a problem due to variations in carbonization between carbonization chambers. In addition to reducing combustion efficiency and improving the combustion efficiency in the coking chamber, it will be essential in the future when implementing program heating, etc., and will have a very large effect as a point of view for effective combustion management in coke ovens. can be expected.

なお、本発明は、Mガス、Cガス燃焼時何れにおいても
同一の装置で炉ねガス流量を定量化することができ、汎
用性も高い。
Note that the present invention is highly versatile, as it is possible to quantify the furnace gas flow rate with the same device during both M gas and C gas combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る測定を実施する設備の側面図、第
2図(a)およびtb)は導入空気流速の測定ボックス
の横断面図および縦断面図、第3図! a i +tj
よび(旧はそれぞ秩実施例における燃焼用?気流量の経
時変化を示すグラフである。 符@1・・・・・・燃焼用空気流量測定装置2・・・・
・・エアー売気弁 3・・・・・・エアーフラップ 4・・・・・・移動式リフター 5・・・・・・コークス炉蓄熱室 6・・・・・・コークス炉煙道 1・・・・・・風向風速計用変換器 8・・・・・・記録計 9・・・・・・風向風速計 10・・・・・・温度計    11・・・・・・;ω
分計12・・・・・・測定ボックス
Fig. 1 is a side view of the equipment for carrying out the measurements according to the present invention, Figs. 2(a) and tb) are cross-sectional views and vertical sectional views of the measuring box for the inlet air flow rate, and Fig. 3! a i +tj
and (old) are graphs showing changes over time in the combustion air flow rate in the Chichi example.
... Air supply valve 3 ... Air flap 4 ... Mobile lifter 5 ... Coke oven heat storage chamber 6 ... Coke oven flue 1 ... ... Wind direction and speed meter converter 8 ... Recorder 9 ... Wind direction and speed meter 10 ... Thermometer 11 ...; ω
Minute meter 12...Measurement box

Claims (1)

【特許請求の範囲】[Claims] 燃焼用空気の導入部に風速計、温度計及び湿度計を内在
する測定ボックスを当接し、導入空気流速を検出して流
入空気量を求めると共に、燃料ガスの組成から理論燃焼
空気量と理論燃焼廃ガス量を算出する。一方、燃焼廃ガ
ス中のO_2およびCO濃度より過剰空気量を演算し、
単位燃料ガス当りの燃焼空気量を求め、該空気量と前記
流入空気量にもとづき、燃料ガス量を検知することを特
徴とするコークス炉燃料ガス流量の測定方法。
A measurement box containing an anemometer, a thermometer, and a hygrometer is placed in contact with the combustion air introduction section to detect the flow velocity of the introduced air to determine the amount of incoming air, and also to determine the theoretical combustion air amount and theoretical combustion based on the composition of the fuel gas. Calculate the amount of waste gas. On the other hand, the excess air amount is calculated from the O_2 and CO concentration in the combustion waste gas,
A method for measuring a coke oven fuel gas flow rate, characterized in that the amount of combustion air per unit fuel gas is determined, and the amount of fuel gas is detected based on the amount of air and the amount of incoming air.
JP23413486A 1986-09-30 1986-09-30 Method for measuring flow rate of coke oven fuel gas Pending JPS6389587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23413486A JPS6389587A (en) 1986-09-30 1986-09-30 Method for measuring flow rate of coke oven fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23413486A JPS6389587A (en) 1986-09-30 1986-09-30 Method for measuring flow rate of coke oven fuel gas

Publications (1)

Publication Number Publication Date
JPS6389587A true JPS6389587A (en) 1988-04-20

Family

ID=16966166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23413486A Pending JPS6389587A (en) 1986-09-30 1986-09-30 Method for measuring flow rate of coke oven fuel gas

Country Status (1)

Country Link
JP (1) JPS6389587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502236B1 (en) * 2000-09-09 2005-07-20 주식회사 포스코 Device for controling amount of oxigen of coke oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502236B1 (en) * 2000-09-09 2005-07-20 주식회사 포스코 Device for controling amount of oxigen of coke oven

Similar Documents

Publication Publication Date Title
JP2009525361A5 (en)
CN110003923B (en) Device and method for measuring coke burning loss in dry quenching furnace
JPS6389587A (en) Method for measuring flow rate of coke oven fuel gas
CN108826989B (en) Radiant tube combustion performance thermal simulation test furnace and method
CN113755661B (en) Control method of blast furnace hot blast stove flue gas air intake system for coke drying
CN206177648U (en) Tree -like multiple spot of monitoring SCR entry NOx concentration mixes sample measurement system
CN204556552U (en) A kind of multi-channel parallel heat release rate testing system
JP3042806B2 (en) Pressure control operation method of coke oven carbonization chamber.
CN109613059B (en) Metallurgical gas calorific value online measuring and calculating method based on combustion system operation parameters
KR20070059305A (en) Control device of inlet air flow rate for coke oven and control method thereof
CN109724104A (en) A kind of anti-blocking grey air volume control method of air preheater and device for monitoring running
CN216427204U (en) Pressure detection device for OPR of single carbonization chamber pressure regulation system of coke oven
CN112285158A (en) Device and method for testing combustion characteristics of metallurgical gas
JP5465742B2 (en) Combustion management method in boiler equipment
CN112857700A (en) Detection system and method for air leakage rate of flue gas heat exchanger of desulfurization device of thermal power plant
CN102243117A (en) Method for testing dynamic thermal balance of steel rolling industrial furnace
JP5268561B2 (en) Daily combustion management method in oil fired boiler facilities
CN218710166U (en) Pressure regulating system for coking chamber of coke oven
CN113203296B (en) Online monitoring method for flue air leakage of steel rolling heating furnace
CN118085904A (en) Coke oven carbonization chamber pressure adjusting method and device based on raw coke oven temperature change
JP4358314B2 (en) Method for removing carbon adhering to coke oven riser
JP5822069B2 (en) Coke oven length direction fuel gas flow distribution measurement method
CN109655487B (en) Gas calorific value soft measurement method based on air and gas double preheating
JPH05222372A (en) Control of combustion in coke oven
JPH0762352A (en) Control of pressure in oven of coke oven equipment