JPS6388810A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPS6388810A
JPS6388810A JP61233192A JP23319286A JPS6388810A JP S6388810 A JPS6388810 A JP S6388810A JP 61233192 A JP61233192 A JP 61233192A JP 23319286 A JP23319286 A JP 23319286A JP S6388810 A JPS6388810 A JP S6388810A
Authority
JP
Japan
Prior art keywords
superconducting coil
ground
superconducting
coil
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61233192A
Other languages
Japanese (ja)
Inventor
Akihiro Harada
原田 昭弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61233192A priority Critical patent/JPS6388810A/en
Publication of JPS6388810A publication Critical patent/JPS6388810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To prevent the application of high voltage to ground to a superconducting coil while obviating the creeping of currents through ground at the time of excitation or the time of demagnetization by mounting an inverse- parallel connection diode between an arbitrary point on the superconducting coil and a crysogenic vessel. CONSTITUTION:Mutually inverse-parallel by connected diodes 9 connect an arbitrary point on a superconducting coil 1 and a cryogenic vessel 3. Consequently, potential difference generated between a diode connecting section in the superconducting coil 1 and the cryogenic vessel 3 is held at forward turn-ON voltage or less at the time of the cryogenic temperature of the inverse-parallel connection diodes 9 at all times, thus generating no currents creeping between both grounds 7, 4 between a power supply 6 and the superconducting coil 1 when exciting or demagnetizing the superconducting coil 1. Likewise, discharge to ground by potential floating is not generated even at the time of stationary operation in the case where the power supply 6 and the superconducting coil 1 are detached by a connector 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、NMR−CT (核磁気共鳴現象を利用し
たコンピュータ断層撮影装置)用超電導マグネット、特
に超電導コイルの対地絶縁破壊を防止すると共にアース
経由の電流の廻り込みを防止する超電導マグネットに関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a superconducting magnet for NMR-CT (computed tomography apparatus using nuclear magnetic resonance phenomenon), particularly for preventing ground dielectric breakdown of superconducting coils and for grounding. This relates to a superconducting magnet that prevents current from flowing through the magnet.

〔従来の技術〕[Conventional technology]

第2図及び第3図は従来の超電導マグネットの励磁、消
磁時の結線図である。図において、(1)は超電導コイ
ル、(,2)はこの超電導コイル(1)の両端間に接続
され、超電導コイル(1)を永久電流状態で運転するた
めの永久電流スイッチ、(3)はこれら超電導コイル(
1)と永久電流スイッチ(2)を収納する極低温容器、
(りはこの極低温容器(3)のアース、(5)は超電導
コイル(1)をアースするためKその一端(第3図では
下端)を極低温容器(3)K接続した導線、(6)は超
電導コイル(1)を励磁または消磁するための電源、(
り)はこの電源(6)のアース、モして(g)は超電導
コイル(1)と電源(6)とを接続し、或は切り離すた
めのコネクターである。
FIGS. 2 and 3 are wiring diagrams for excitation and demagnetization of conventional superconducting magnets. In the figure, (1) is a superconducting coil, (,2) is a persistent current switch connected between both ends of this superconducting coil (1) to operate the superconducting coil (1) in a persistent current state, and (3) is a persistent current switch. These superconducting coils (
1) and a cryogenic container containing the persistent current switch (2);
(This is the ground of the cryogenic container (3), (5) is the conductor wire whose one end (lower end in Fig. 3) is connected to the cryogenic container (3) K in order to ground the superconducting coil (1), (6) ) is a power source for exciting or demagnetizing the superconducting coil (1), (
(g) is a connector for connecting or disconnecting the superconducting coil (1) and the power source (6).

従来の超電導マグネットは上記のように構成され、超電
導コイル(1)と電源(X)とがコネクター(#)Kよ
って接続されている状態において、第一図の場合には、
超電導コイル(1)は、その消磁中又は励磁中(この時
には永久電流スイッチ(,2)はOFFされている)、
コネクター(t)を通じてtS(6)側でアースされて
電位固定されている。
A conventional superconducting magnet is constructed as described above, and in the case of Fig. 1, when the superconducting coil (1) and the power source (X) are connected by the connector (#) K,
The superconducting coil (1) is demagnetized or excited (at this time, the persistent current switch (2) is turned off),
The potential is fixed by grounding on the tS (6) side through the connector (t).

しかしながら、超電導コイル(1)を永久電流運転する
ため忙〔この時、永久電流スイッチ(コ〕はONされる
〕超電導コイル(1)と電源(6)との接続をコネクタ
ー(1)で切り離した状態では、超電導コイル(1)側
の電位がアースに対して完全に浮動した状態となる。
However, the connection between the superconducting coil (1) and the power source (6) was disconnected using the connector (1) while the superconducting coil (1) was being operated with persistent current (at this time, the persistent current switch was turned on). In this state, the potential on the superconducting coil (1) side is completely floating with respect to ground.

このような電位浮動状態を防止するために、第3図の超
電導マグネットが考えられた。しか[7ながら、超電導
コイル(1)の励磁中又は消磁中、電源(6)側のアー
ス(り)と超電導コイル(1) 91のアース(りとの
間KIIE位差が発生し、この電位差を両アース(り)
 、 (+)間に存在する抵抗とにより定まる電流が電
源側アース(り)とコイル側アース(りとの間に流れて
しまう。
In order to prevent such a potential floating state, the superconducting magnet shown in FIG. 3 was devised. However, during excitation or demagnetization of the superconducting coil (1), a KIIE potential difference occurs between the ground (RI) on the power supply (6) side and the ground (RI) of the superconducting coil (1) 91, and this potential difference Both earths
, (+), and a current determined by the resistance that exists between the terminals (+) flows between the power supply side ground (RI) and the coil side ground (RI).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の超電導マグネットでは、第2図の場
合には、超電導コイル(1)と電源(6)とをコネクタ
ー(1)で切り離した際wm*導コ導層イル)の電位が
不安定となシ、超電導コイル(1)はヒ 超電導破壊等によって超電導コイル(1)■極低温容器
(、y)の間に発生される異常電位で対地絶縁破壊して
しまうという問題点があった。又、第3図の場合には、
超電導コイル(1)と電源(6)とをコネク尺g )で
接続した上で励磁または消磁する際に、コイル側アース
(<=)とttiit側アース(り)の間に廻り込み電
流が発生してしまうという問題もがあった。
In the conventional superconducting magnet as described above, in the case of Fig. 2, when the superconducting coil (1) and power source (6) are separated by the connector (1), the potential of wm However, when it comes to stability, the superconducting coil (1) has a problem in that the abnormal potential generated between the superconducting coil (1) and the cryogenic container (,y) causes dielectric breakdown to the ground due to superconductor breakdown. . Also, in the case of Figure 3,
When the superconducting coil (1) and the power source (6) are connected with a connector g) and then energized or demagnetized, a current flows around between the coil side ground (<=) and the ttiit side ground (ri). There was also the problem of doing so.

この発明は、このような問題点を解決するためKなされ
たもので、超電導コイルと電源を切り離した状態におい
て、超電導コイルとアース間に発生される異常電圧で超
電導コイルに高い対地間圧が加わることを防止すると共
和、超電導コイルの励磁時又は消磁時における両アース
経由の電流のmp込みを防止する超電導マグネットを得
ることを目的とする。
This invention was made to solve these problems, and when the superconducting coil and the power supply are disconnected, high ground pressure is applied to the superconducting coil due to the abnormal voltage generated between the superconducting coil and the ground. It is an object of the present invention to provide a superconducting magnet that prevents current from flowing through both earths during excitation or demagnetization of a superconducting coil.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る超電導マグネットは、超電導コイル上の
任意の一点と極低温容器の間に逆並列接続ダイオードを
設けたものである。
The superconducting magnet according to the present invention has an anti-parallel connected diode between an arbitrary point on a superconducting coil and a cryogenic container.

〔作用〕[Effect]

この発明においては、通常、極低温時のダイオードの順
方向抵抗(ダイオードのターンオン電圧以下の時大抵抗
となシ、又ターンオン後は#1ぼ定電流特性を有する)
特性を利用して超電導コイルを抵抗接地している。
In this invention, the forward resistance of the diode at extremely low temperatures (the resistance is large when the diode turn-on voltage is lower than that, and after turn-on, the diode has approximately #1 constant current characteristics)
This property is used to ground the superconducting coil with resistance.

〔実施例〕〔Example〕

第1図はこの発明の一奥施例を示す結線図であり1図に
鉛いて(1)〜(41) 、 (A)〜(r)は従来例
と同一のものである。(9)は互いに逆並列接続された
ダイオード(極低温でターンオン特性を示す)・ 4’
+ であり、これは超電導コイル(1)上の任意の一点例え
ば第1図では上端と低温容器(3)とを接続している。
FIG. 1 is a wiring diagram showing a further embodiment of the present invention, and as shown in FIG. 1, (1) to (41) and (A) to (r) are the same as the conventional example. (9) are diodes connected in antiparallel to each other (showing turn-on characteristics at extremely low temperatures) 4'
+, which connects an arbitrary point on the superconducting coil (1), for example, the upper end in FIG. 1, and the cryogenic vessel (3).

上記のように構成された超電導マグネツ)においては、
互いに逆並列接続されたダイオード(9)が超電導コイ
ル(1)の−点と極低温容器(3)を接続しているので
、超電導コイル(1)のダイオード接続箇所と極低温容
器(3)との間に発生される電位差は常時逆並列接続ダ
イオード(q)の極低温時の順方向ターンオン電圧(こ
のターンオン電圧はlθ〔v〕程度以下であシ、ターン
オン後の電圧降下は数CV)程度になる)以下に保持さ
れる。通常、超電導コイル(1)を励磁又は消磁する(
永久電流スイッチ(コ)はOFFされる)際のt源(5
)側電圧を、逆並列接続ダイオード(9)が接続される
超電導コイル(1)の接続箇所と極低温容器(3)との
電位差がダイオードのターンオン電圧以下になるような
値で操作する範囲内においては、電源(6)と超電導コ
イル(1)との間で両アース(り) 、 (41)間に
廻シ込む電流は発生しない。
In the superconducting magnet configured as above,
Diodes (9) connected in antiparallel to each other connect the - point of the superconducting coil (1) and the cryogenic vessel (3), so that the diode connection point of the superconducting coil (1) and the cryogenic vessel (3) are connected. The potential difference generated between them is always about the forward turn-on voltage of the anti-parallel connected diode (q) at extremely low temperatures (this turn-on voltage is about lθ [v] or less, and the voltage drop after turn-on is several CV). (becomes) or less. Usually, the superconducting coil (1) is excited or demagnetized (
When the persistent current switch (k) is turned off, the t source (5
) side voltage is operated at a value such that the potential difference between the connection point of the superconducting coil (1) to which the anti-parallel connected diode (9) is connected and the cryogenic container (3) is equal to or less than the turn-on voltage of the diode. In this case, no current flows between the power supply (6) and the superconducting coil (1) and between the two earths (41).

又、電源(6)と超電導コイル(1)とがコネクタ9C
g)によって切#)離される場合の定常運転時(永久電
流スイッチ(コ)はONされる)においては、超電導コ
イル(1)内の電位がダイオードのターンオン電圧以下
に固定されるため、電位浮動による対地放電などは発生
しない。ところで、超電導コイル(1)の超電導破壊な
どKよる異常電圧発生時においても、アース(lI) 
K対して超電導コイル(1)の一端の電位が固定されて
いるので、超電導コイル(1)内の各部とアース(lI
)に対する発生電位差が想定できる。そこでこの電位差
に対応する対地絶縁を施こせば、異常電圧に対拠するこ
とができる。
In addition, the power supply (6) and the superconducting coil (1) are connected to the connector 9C.
During steady operation (the persistent current switch (k) is turned on) when the superconducting coil (1) is turned off by g) and released, the potential within the superconducting coil (1) is fixed below the turn-on voltage of the diode, so the potential floats. No ground discharge will occur. By the way, even when an abnormal voltage occurs due to K, such as superconducting breakdown of the superconducting coil (1), the earth (lI)
Since the potential at one end of the superconducting coil (1) is fixed with respect to K, each part in the superconducting coil (1) is connected to the ground (lI
) can be assumed to occur. Therefore, by providing ground insulation that can handle this potential difference, it is possible to protect against abnormal voltages.

なお、この実施例では超電導コイル(1)の上端と極低
温容器(3)とを逆並列接続ダイオードで接続したが、
超電導コイル(1)内の任意の箇所、分割/直列接続超
電導コイルの任意の分割箇所、並列接続超電導コイルの
任意の箇所に逆並列接続ダイオード(9)を接続しても
同様の効果を有する。
In addition, in this example, the upper end of the superconducting coil (1) and the cryogenic container (3) were connected with antiparallel connected diodes.
Similar effects can be obtained by connecting an anti-parallel connected diode (9) to any arbitrary location within the superconducting coil (1), any dividing location of the split/series connected superconducting coil, or any arbitrary location of the parallel connected superconducting coil.

〔発明の効果〕〔Effect of the invention〕

接続したことにより、超電導コイルの対地電位差がダイ
オードのターンオン電圧以下に保たれるので、超電導コ
イルに異常に高い対地電圧が加わるのを防止できるとい
う効果と共にコイル側アースと電源側アースとの間に廻
シ込み電流が発生しないという効果を有する。
By connecting, the ground potential difference of the superconducting coil is kept below the turn-on voltage of the diode, which has the effect of preventing an abnormally high ground voltage from being applied to the superconducting coil, and also increases the distance between the coil side ground and the power supply side ground. This has the effect that no inflow current is generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す結線図、第2図及び
第3図は従来の超電導マグネットを示す結線図である。 図において、(1)は超電導コイル、(コ)は永久電流
スイッチ、(3)は極低温容器、(lI)はコイル側ア
ース、(A)は電源、(り)は電源側アース、+ff)
はコネク’;7 (q)は逆並列接続ダイオードである
。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a wiring diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are wiring diagrams showing a conventional superconducting magnet. In the figure, (1) is the superconducting coil, (c) is the persistent current switch, (3) is the cryogenic container, (lI) is the ground on the coil side, (A) is the power supply, (ri) is the ground on the power supply side, +ff)
is a connector'; 7 (q) is an anti-parallel connected diode. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)超電導コイル、 この超電導コイルを格納しかつアースされている極低温
容器、 前記超電導コイルを励磁又は消磁しかつアースされてい
る電源、 前記超電導コイルと前記電源とを接続し又は切り離すた
めのコネクタ、及び 前記超電導コイル上の任意の一点と前記極低温容器とを
接続する逆並列接続ダイオード、 を備えたことを特徴とする超電導マグネット。
(1) A superconducting coil, a cryogenic container that stores the superconducting coil and is grounded, a power source that excites or demagnetizes the superconducting coil and is grounded, and a device for connecting or disconnecting the superconducting coil and the power source. A superconducting magnet comprising: a connector; and an anti-parallel connection diode connecting an arbitrary point on the superconducting coil to the cryogenic container.
(2)極低温容器は、超電導コイルの両端間に接続され
た永久電流スイッチを含むことを特徴とする特許請求の
範囲第1項記載の超電導マグネット。
(2) The superconducting magnet according to claim 1, wherein the cryogenic container includes a persistent current switch connected between both ends of the superconducting coil.
(3)逆並列接続ダイオードの各々は、極低温領域でタ
ーンオン特性を有することを特徴とする特許請求の範囲
第1項または第2項記載の超電導マグネット。
(3) The superconducting magnet according to claim 1 or 2, wherein each of the anti-parallel connected diodes has turn-on characteristics in an extremely low temperature region.
JP61233192A 1986-10-02 1986-10-02 Superconducting magnet Pending JPS6388810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233192A JPS6388810A (en) 1986-10-02 1986-10-02 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233192A JPS6388810A (en) 1986-10-02 1986-10-02 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPS6388810A true JPS6388810A (en) 1988-04-19

Family

ID=16951186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233192A Pending JPS6388810A (en) 1986-10-02 1986-10-02 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS6388810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295280A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Light emitting diode and manufacture thereof, led array with light emitting diode, and led printer with led array
WO2004037081A1 (en) * 2002-10-24 2004-05-06 Hitachi Medical Corporation Superconducting magnet device and magnetic resonance imaging system employing it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295280A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Light emitting diode and manufacture thereof, led array with light emitting diode, and led printer with led array
WO2004037081A1 (en) * 2002-10-24 2004-05-06 Hitachi Medical Corporation Superconducting magnet device and magnetic resonance imaging system employing it
US7304478B2 (en) 2002-10-24 2007-12-04 Hitachi Medical Corporation Magnetic resonance imaging apparatus provided with means for preventing closed loop circuit formation across and between inside and outside of cryostat
CN100413465C (en) * 2002-10-24 2008-08-27 株式会社日立医药 Superconducting magnet device and magnetic resonance imaging system employing it

Similar Documents

Publication Publication Date Title
US5642249A (en) Method and apparatus for limiting high current electrical faults in distribution networks by use of superconducting excitation in transverse flux magnetic circuit
US5650903A (en) Superconducting-magnet electrical circuit having voltage and quench protection
EP0464679B1 (en) Superconducting AC current limiter equipped with quick-recoverable trigger coils
US8154830B2 (en) Apparatus for quench protection and stabilizing decay in a quasi-persistent superconducting magnet
US3466504A (en) Continuous shunt protection means for superconducting solenoids
KR920006153B1 (en) Resonant degaussing without residual magnetism
US9715958B2 (en) Method for energizing a superconducting magnet arrangement
Keilin et al. Model of HTS three-phase saturated core fault current limiter
Mukhopadhyay et al. A novel compact magnetic current limiter for three phase applications
JPS6388810A (en) Superconducting magnet
US5333087A (en) Superconducting magnet apparatus with a magnetic shield
JP2005183971A (en) Superconducting magnet system with continuously operating flux-pump and associated method for operation thereof
JP3209727B2 (en) Fault-tolerant power supply circuit
JPS62279608A (en) Split superconducting magnet
US3579280A (en) Electrical ground fault detector with transformer coupling, a battery supply source and battery charging means
KR101806293B1 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
JPH08316534A (en) Current limiter
JP2504083B2 (en) Highly uniform magnetic field generator
JP2679020B2 (en) Superconducting device and thermal permanent current switch
JP2562553B2 (en) Excitation / Demagnetization Method for Superconducting Coil that Achieves Predetermined Magnetic Field Attenuation Quickly
WO1985001829A1 (en) Apparatus for protecting superconductive device
JPH0590022A (en) Superconducting magnet system
JPH0738333B2 (en) Magnetic field generator
JPH05327043A (en) Superconducting magnet device
JP2533119B2 (en) Superconducting device for short circuit suppression