JPS638875B2 - - Google Patents

Info

Publication number
JPS638875B2
JPS638875B2 JP15052579A JP15052579A JPS638875B2 JP S638875 B2 JPS638875 B2 JP S638875B2 JP 15052579 A JP15052579 A JP 15052579A JP 15052579 A JP15052579 A JP 15052579A JP S638875 B2 JPS638875 B2 JP S638875B2
Authority
JP
Japan
Prior art keywords
pipe material
electrode
groove
concave
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15052579A
Other languages
Japanese (ja)
Other versions
JPS5674324A (en
Inventor
Takashi Furuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP15052579A priority Critical patent/JPS5674324A/en
Publication of JPS5674324A publication Critical patent/JPS5674324A/en
Publication of JPS638875B2 publication Critical patent/JPS638875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気的な抵抗発熱を利用してパイプ材
の表面に溝あるいは窪みを成型加工する方法及び
その装置に関する。 例えば車両のストラツト型シヨツクアブソーバ
において、アウターシエルとナツクルとの連結部
分の回り止めと抜け止めをはかるため、アウター
シエルの外周の一部に機械的切削加工により溝を
形成し、ボルトやピンなどとの接触摩擦力を高め
ていた。 機械的切削によりパイプ材の強度が低下するの
を防ぐために、プレス成型により溝加工を施すこ
とがあり、例えば、特開昭52−14342号には、抵
抗溶接機を利用してパイプ材表面を加熱しながら
溝を成型加工するという技術も開発されている。 この方法によれば、加工部分の歪や残留応力を
少なくでき、また加工部分の肉厚を同一に保てる
ので強度的には満足ができる。 ところが、この方法では両電極を対向的に配置
し、パイプ材を外側から挾持するようになつてい
るため、薄肉のパイプ材では加工時に全体的に変
形するおそれがあり、またパイプ材外周表面に電
極との接触部分で放電による焼傷が生じやすく、
さらに加工溝が押圧された電極の形状とぴつたり
と一致せず、どうしても溝端などにダレが発生
し、シヤープな溝加工が困難となつていた。 本発明はかかる点から、パイプ材の外面に押圧
電極を、内面に受圧電極を配置してクランプし、
抵抗発熱を利用して溝の成型加工を瞬間的に行う
方法及び装置を提供し、もつて上記問題点を解消
することを目的とする。 以下、本発明を詳細に説明する。 まず、第1図、第2図において、抵抗溶接機1
は、上方の移動電極2と下方の固定電極3とを備
える。 上方の電極2はアーム部4に対してシリンダ5
を介して上下動し、下方の電極3は固定側の支持
アーム部6に取付けられ、加工時に所定の圧力で
パイプ材7をクランプする。 電極2と3の間には、図示しない高電流電源か
らの電流が印加され、これらの間に挾持されるパ
イプ材7を発熱させる。 そして、外方からの押圧電極2は、第3図に示
すように、パイプ材7に形成する凹溝形状に合せ
た凸状部9が先端に設けられ、内部には冷却水通
路10が形成してあり、電極の冷却を行う。 一方、パイプ材7の内部に挿入される受圧電極
3Aは、いわゆる中子電極として機能し、第4図
に示すように、パイプ材7の内面に合せた半円状
断面をもつ挿入部11に、上記と同じく凹溝形状
に対応させた凹状部12を有し、基端の軸部13
を介して支持アーム部6に取付けられる。 あるいは、第5図のように、電極3Bの円形断
面をもつ挿入部15の周面に複数の凹状部16
A,16Bを設け、かつ内部に冷却水通路17を
貫通させ、受圧電極2の受圧面を順次回転させる
ことにより、電極3Bの寿命を延ばすことが可能
となる。 ただし、第4図の電極3Aでは、パイプ材7か
らの抜き出しが容易のため、挿入部11の半円形
状の曲率をパイプ材7の内周面に可及的に近づけ
パイプ材7との接触面積を増して通電状態を安定
させられるが、第5図ではパイプ材7の内径の異
つたものに対する適用を考慮すると、その抜き出
しの関係などから、挿入部15の外径を予め小さ
くする必要があつて接触面積は少なくなる。 このように両電極2,3を形成した上で、パイ
プ材7との関係にもとづき電極位置を決める。 パイプ材7に受圧(中子)電極3を挿入し、押
圧電極2を所定の圧力で加圧しながら通電する
と、凸状部9と接触する部分を中心にパイプ材7
が加熱され、凹状部12(16A,16B)との
間で、これらの凹凸に嵌り合うようにパイプ材7
は変形し凹溝が形成される。 このとき、パイプ材7の裏面(内面)には受圧
電極3の挿入部11(15)が密着するので、成
型加工された凹溝部20(第6図参照)の形状
は、正確に型材である凸状部9と凹状部12に一
致し、ダレのないシヤープな溝が形成される。 とくに、上記したシヨツクアブソーバアウター
シエルの回り止めのような場合、凹溝部20の形
状に第6図に点線で示すようにシヤープさがなく
なると、回り止め機能が低下し、はなはだ好まし
くないのであるが、本発明ではこのような問題が
解消できる。 また、パイプ材7が相対的に薄肉部材で形成さ
れていても、全体的な変形が生ぜず、そのため、
従来に比べてかなりの薄肉パイプにもこのような
溝加工を精度よく実施できるという利点がある。 さらに、パイプ外面に溶接時のスパークによる
焼傷なども生じない。 次に本発明の実施例をあげて説明する。 実施例 1 第2図に示すような受圧電極(挿入部直径
38.5φ)を使用し、加工溝深さを1.6mmを目標とす
る。パイプ材は直径45φで厚さ2.6mmのものを用い
る。 加圧力(Kg)と電流(A)を以下の表に示すご
とく変化さたときの、所要の通電時間を求め、ま
たそのときの所要熱量を概算してある。 なお、表の最下欄に、従来装置で行つた実験結
果(1例)を併せて表記してある。
The present invention relates to a method and apparatus for forming grooves or depressions on the surface of a pipe material using electrical resistance heat generation. For example, in a strut-type shock absorber for a vehicle, in order to prevent the connecting part between the outer shell and the nutcle from rotating and coming off, a groove is formed by mechanical cutting on a part of the outer periphery of the outer shell, and a groove is formed by mechanical cutting to prevent bolts, pins, etc. The contact friction force was increased. In order to prevent the strength of pipe materials from decreasing due to mechanical cutting, grooves are sometimes formed by press forming. A technology has also been developed that molds grooves while heating. According to this method, distortion and residual stress in the machined part can be reduced, and the thickness of the machined part can be kept the same, so that the strength is satisfactory. However, in this method, both electrodes are placed opposite each other and the pipe material is clamped from the outside, so there is a risk that thin-walled pipe material may deform as a whole during processing, and the outer circumferential surface of the pipe material may be deformed. Burns are likely to occur due to electrical discharge at the contact area with the electrode.
Furthermore, the grooves do not exactly match the shape of the pressed electrode, and sagging inevitably occurs at the edges of the grooves, making it difficult to process sharp grooves. From this point of view, the present invention places a pressing electrode on the outer surface of the pipe material, a pressure receiving electrode on the inner surface, and clamps the pipe material.
It is an object of the present invention to provide a method and apparatus for instantaneously forming grooves using resistance heat generation, thereby solving the above-mentioned problems. The present invention will be explained in detail below. First, in Figures 1 and 2, resistance welding machine 1
comprises an upper moving electrode 2 and a lower fixed electrode 3. The upper electrode 2 is connected to the cylinder 5 with respect to the arm part 4.
The lower electrode 3 is attached to a fixed support arm 6 and clamps the pipe material 7 with a predetermined pressure during processing. A current from a high current power source (not shown) is applied between the electrodes 2 and 3, causing the pipe material 7 held between them to generate heat. As shown in FIG. 3, the externally pressed electrode 2 is provided with a convex portion 9 at its tip that matches the groove shape formed in the pipe material 7, and a cooling water passage 10 is formed inside. The electrodes are cooled. On the other hand, the pressure receiving electrode 3A inserted into the inside of the pipe material 7 functions as a so-called core electrode, and as shown in FIG. , has a concave portion 12 corresponding to the concave groove shape as described above, and has a shaft portion 13 at the base end.
It is attached to the support arm part 6 via. Alternatively, as shown in FIG.
A, 16B are provided, the cooling water passage 17 is penetrated therein, and the pressure receiving surface of the pressure receiving electrode 2 is sequentially rotated, thereby making it possible to extend the life of the electrode 3B. However, in the case of the electrode 3A shown in FIG. 4, since it is easy to extract it from the pipe material 7, the semicircular curvature of the insertion part 11 is brought as close as possible to the inner circumferential surface of the pipe material 7, so that contact with the pipe material 7 is avoided. Although the energization state can be stabilized by increasing the area, in Fig. 5, considering the application to pipe materials 7 with different inner diameters, it is necessary to reduce the outer diameter of the insertion portion 15 in advance for the sake of extraction. The contact area becomes smaller. After forming both electrodes 2 and 3 in this manner, the positions of the electrodes are determined based on the relationship with the pipe material 7. When the pressure-receiving (core) electrode 3 is inserted into the pipe material 7 and the pressure electrode 2 is applied with a predetermined pressure while being energized, the pipe material 7 centering around the part that contacts the convex part 9
is heated, and the pipe material 7 is heated so as to fit into these irregularities between the concave portions 12 (16A, 16B).
is deformed and a groove is formed. At this time, since the insertion portion 11 (15) of the pressure-receiving electrode 3 is in close contact with the back surface (inner surface) of the pipe material 7, the shape of the molded groove portion 20 (see Fig. 6) is exactly that of the molded material. A sharp groove with no sag is formed which coincides with the convex portion 9 and the concave portion 12. Particularly, in the case of preventing rotation of the shock absorber outer shell described above, if the shape of the recessed groove portion 20 loses its sharpness as shown by the dotted line in FIG. 6, the rotation prevention function deteriorates, which is extremely undesirable. In the present invention, such problems can be solved. Further, even if the pipe material 7 is formed of a relatively thin member, no overall deformation occurs, and therefore,
Compared to the conventional method, this method has the advantage of being able to perform groove processing with high accuracy even on pipes with considerably thinner walls. Furthermore, burns caused by sparks during welding do not occur on the outer surface of the pipe. Next, examples of the present invention will be described. Example 1 Pressure-receiving electrode (diameter of insertion part) as shown in Fig. 2
38.5φ) and aim for a groove depth of 1.6mm. The pipe material to be used is one with a diameter of 45φ and a thickness of 2.6mm. When the pressing force (Kg) and current (A) are changed as shown in the table below, the required energization time is determined, and the required amount of heat at that time is roughly estimated. In addition, the bottom column of the table also shows the experimental results (one example) conducted using the conventional device.

【表】【table】

【表】 以上のことから、加圧力を一定にして電流値を
増せば、加工時間の短縮化がはかれることが分か
る。その場合必要エネルギはそれほど上昇しない
という特徴がある。 同時に加圧力もアツプすれば、さらに加工時間
の短縮化がはかれるので、電極2,3の耐久性の
点で問題を生じない範囲で、加圧力を高めること
が好ましい。 なお、この他の条件で実験したときに、とくに
電流値を15000A以上にしたときには、電極2,
3との関係で分流が行いやすくなる傾向があつ
た。
[Table] From the above, it can be seen that machining time can be shortened by increasing the current value while keeping the pressing force constant. In that case, the characteristic is that the required energy does not increase much. If the pressing force is increased at the same time, the processing time can be further shortened, so it is preferable to increase the pressing force within a range that does not cause problems in terms of the durability of the electrodes 2 and 3. In addition, when experimenting under other conditions, especially when the current value was increased to 15000A or more, electrode 2,
There was a tendency for flow diversion to occur more easily in relation to 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の全体的な側面図、第2
図は要部拡大断面図、第3図A,Bは押圧電極の
正面図及び断面図、第4図、第5図はそれぞれ受
圧電極の実施例を示す側面図及び断面図、第6図
は溝加工されたパイプ材の一例を示す断面図であ
る。 1……抵抗溶接機、2……押圧電極、3,3
A,3B……受圧(中子)電極、4,6……アー
ム部、7……パイプ材、9……凸状部、10……
冷却水通路、11……挿入部、12……凹状部、
15……挿入部、16A,16B……凹状部。
FIG. 1 is an overall side view of the device of the present invention, FIG.
The figure is an enlarged sectional view of the main part, Figures 3A and B are a front view and a sectional view of the pressure electrode, Figures 4 and 5 are a side view and a sectional view showing an example of the pressure receiving electrode, respectively, and Figure 6 is a side view and a sectional view of the pressure receiving electrode. FIG. 3 is a cross-sectional view showing an example of a grooved pipe material. 1...Resistance welding machine, 2...Press electrode, 3,3
A, 3B...Pressure receiving (core) electrode, 4, 6... Arm portion, 7... Pipe material, 9... Convex portion, 10...
Cooling water passage, 11...insertion part, 12...recessed part,
15...insertion part, 16A, 16B...concave part.

Claims (1)

【特許請求の範囲】 1 パイプ材外面に加工する凹溝形状に合せた凸
状の外側電極と、この凹溝形状に合せた凹状の内
側電極との間で、パイプ材の板肉を挾持した状態
で電極間に通電して発熱させながら加圧し、パイ
プ材外面に凹溝を形成することを特徴とするパイ
プ材の成型加工方法。 2 抵抗溶接機の一方の押圧電極にパイプ材の外
面に加工する凹溝形状に合せた凸状部を設け、さ
らに他方の固定側の受圧電極にパイプ材の内径よ
りも小径の挿入部を設け、かつこの挿入部に前記
凹溝形状に合せた凹状部を形成したことを特徴と
するパイプ材の成型加工装置。 3 挿入部は半円形断面をもち、その円形部に単
一の凹状部が形成されている特許請求の範囲第2
項記載のパイプ材の成型加工装置。 4 挿入部は円形断面をもち、その周囲に複数の
凹状部が形成されている特許請求の範囲第2項記
載のパイプ材の成型加工装置。
[Scope of Claims] 1. A convex outer electrode that matches the shape of a groove formed on the outer surface of the pipe material, and a concave inner electrode that matches the shape of this groove, in which the wall of the pipe material is sandwiched. A method for molding a pipe material, which comprises applying pressure while generating heat by applying electricity between electrodes in the state of the pipe material, thereby forming grooves on the outer surface of the pipe material. 2. One pressure electrode of the resistance welding machine is provided with a convex part that matches the groove shape to be machined on the outer surface of the pipe material, and the other fixed side pressure receiving electrode is provided with an insertion part with a diameter smaller than the inner diameter of the pipe material. , and a concave portion matching the shape of the concave groove is formed in the insertion portion. 3. Claim 2, wherein the insertion portion has a semicircular cross section, and a single concave portion is formed in the circular portion.
A pipe material forming apparatus as described in Section 1. 4. The pipe material molding apparatus according to claim 2, wherein the insertion portion has a circular cross section and a plurality of concave portions are formed around the insertion portion.
JP15052579A 1979-11-20 1979-11-20 Molding method of pipe material and its device Granted JPS5674324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15052579A JPS5674324A (en) 1979-11-20 1979-11-20 Molding method of pipe material and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15052579A JPS5674324A (en) 1979-11-20 1979-11-20 Molding method of pipe material and its device

Publications (2)

Publication Number Publication Date
JPS5674324A JPS5674324A (en) 1981-06-19
JPS638875B2 true JPS638875B2 (en) 1988-02-24

Family

ID=15498763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15052579A Granted JPS5674324A (en) 1979-11-20 1979-11-20 Molding method of pipe material and its device

Country Status (1)

Country Link
JP (1) JPS5674324A (en)

Also Published As

Publication number Publication date
JPS5674324A (en) 1981-06-19

Similar Documents

Publication Publication Date Title
US3634167A (en) Method of fabricating welded branched pipe connections from weldable thermoplastic materials
US4437326A (en) Bulge forming method and apparatus
WO1998003296A1 (en) Method of welding electrically conductive metal profiles
US5290387A (en) Device for welding tubular components of plastics material
US3922768A (en) Method of manufacturing a heat exchanger
US4784312A (en) Method of producing a frame body for an electric motor
JPS638875B2 (en)
JPH0786365B2 (en) Manufacturing method of sleeve
JPS6353912B2 (en)
US3568303A (en) Method for working a yoke of a smallsized electric machine
JP2005161735A (en) Method and apparatus for bending resin tube
US4379961A (en) Method of making an apparatus containing a diaphragm
CN113399720B (en) Outer casing honeycomb ring arc block milling clamp and method
JPH06238352A (en) Method for bending metallic tube in small radius of curvature
JPS633693B2 (en)
US4484464A (en) Electrical upsetting method and device therefor
US1297129A (en) Method of producing machine elements.
US4112564A (en) Method of making a composite roller
JPH06323454A (en) Method and equipment for manufacturing molded workpiece and molded workpiece
US2499281A (en) Flash butt welding apparatus
JPH1133668A (en) Forging device of large diameter ring
CN117438174B (en) Superconducting magnet prestress application device and processing method thereof
CN209520643U (en) It is a kind of to process the novel clamp used applied to thin-wall sleeve parts
US2417075A (en) Welding apparatus
US3714389A (en) Method of butt welding a tubing to a base metal