JPS6388489A - Automatic snow depth meter with alarm - Google Patents
Automatic snow depth meter with alarmInfo
- Publication number
- JPS6388489A JPS6388489A JP23382986A JP23382986A JPS6388489A JP S6388489 A JPS6388489 A JP S6388489A JP 23382986 A JP23382986 A JP 23382986A JP 23382986 A JP23382986 A JP 23382986A JP S6388489 A JPS6388489 A JP S6388489A
- Authority
- JP
- Japan
- Prior art keywords
- snow
- alarm
- light receiving
- light
- snow depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 239000013307 optical fiber Substances 0.000 description 9
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000003321 amplification Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は積雪装置に係り、特に屋根上の積雪深を副室し
積雪が一定の積雪深になると警報を発する警報器付積雪
深計に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a snow-covering device, and more particularly to a snow-covering device with an alarm that measures the depth of snow on a roof and issues an alarm when the snow reaches a certain depth. .
昨今、地方の過疎化が進み、特に豪雪地帯における過疎
化は豪雪時の屋根上の雪下しの人手不足を生み屋根の保
護の面で深刻な問題となっている。In recent years, rural areas have become increasingly depopulated, especially in areas with heavy snowfall, resulting in a shortage of manpower to remove snow from roofs during heavy snowfall, and this has become a serious problem in terms of roof protection.
また、21世紀に向う日本人の年令構成は、若年層人口
の減少に伴い、高令化が進み、社会における高令者の占
める割合が多くなってくる。さらに近年の核家族化の現
象は、高令化老人夫婦のみの世帯が多くなる。Furthermore, as we head into the 21st century, the age structure of Japanese people will become older as the young population declines, and the proportion of older people in society will increase. Furthermore, the recent phenomenon of nuclear families has led to an increase in the number of households consisting only of elderly couples.
このような時代においては、降雪時の屋根の雪下しは困
難を極める家が多発する。そのた、め、屋根の構造は雪
下しを必要としない構造へと開発が進められてい<、シ
かしながら、完全に雪下し不要の構造は、散水消雷装置
を屋根に設備する等の大がかりな設計変更が余儀なくさ
れている。ところが、現在、このような設計変更は暴大
な費用を必要とし、全家庭が行うことはできない。In these times, many houses find it extremely difficult to remove snow from their roofs when it snows. For this reason, the development of roof structures that do not require snow removal is progressing. Major design changes such as these have been forced. However, at present, such design changes require enormous costs and cannot be made by all households.
一方、屋根には耐雪荷重に限度があり、この耐雪荷重の
限度以上の積雪に対しては、積雪を屋根から除去する必
要がある。しかしながら、従来、屋根の上に降りつもっ
た雪の量を検出するものが考えられていなかった。この
ため、従来は、平地の積雪量から屋根上の積M量を推量
し、適宜雪下しの作業を行っていた。On the other hand, a roof has a limit to its snow resistance, and if the amount of snow exceeds this snow resistance limit, it is necessary to remove the snow from the roof. However, until now, nothing has been considered to detect the amount of snow that has fallen on the roof. For this reason, in the past, the amount of snow accumulated on the roof was estimated from the amount of snow accumulated on the level ground, and the snow removal work was performed as appropriate.
このため、従来は、屋根の耐雪荷重とは無関係に雪下し
の判断をしていたため、家屋が倒壊する前に雪下しをす
る必要から早めに雪下しをし、不必要に雪下し回数が多
くなったり、雪下しのタイミングを間違え家屋が倒壊す
るといった問題を生じていた。For this reason, in the past, the decision to remove snow was made without regard to the snow load of the roof, so the snow was removed early because it was necessary to remove the snow before the house collapsed, and the snow was removed unnecessarily. This caused problems such as the number of times the snow was cleared and houses collapsed due to the timing of snow removal being made at the wrong time.
本発明の目的は、屋根の耐雪荷重に適した積雪を計測し
、適切な警報を発することのできる警報器付積雪深計を
提供することにある。An object of the present invention is to provide a snow depth meter with an alarm that can measure snowfall suitable for the snow load of a roof and issue an appropriate warning.
C問題点を解決するための手段〕
本発明は縦型に一定間隔で複数個配列された光検出部と
、該光検出部に対峙したレーザー発光部とを備え、前記
光検出部によって検出した光を電気パルス信号に変換す
る光電変換部と、該光電変換部において変換されたパル
ス数を計数して11t雪深に変換表示する変換手段と、
該計数したパルス数が所定値を超えたときに警報を発す
る警報手段とからなることを特徴とするものである。Means for Solving Problem C] The present invention includes a plurality of vertically arranged photodetecting sections at regular intervals, and a laser emitting section facing the photodetecting section. a photoelectric conversion section that converts light into an electric pulse signal; a conversion means that counts the number of pulses converted in the photoelectric conversion section and converts it to 11t snow depth for display;
The apparatus is characterized by comprising an alarm means for issuing an alarm when the counted number of pulses exceeds a predetermined value.
以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.
第1回には1本発明の一実施例が示されている。In the first part, one embodiment of the present invention is shown.
第1図(A)において、地面6には、発光棒3が略垂直
に立てられている。この発光棒3の上部先端には、発光
部1が設けられている。また、この発光!l$3と適当
な間隔をおいて、この発光棒3に平行に受光棒4が地面
6に略垂直に立てられている。この受光棒4には1等間
隔に複数個(n個)の光検出素子2 (2a、2b、・
・・・・・2n)が設けられており、この光検出素子2
は前記発光棒3の先端に取付けられている発光部1から
発せられる光を受光するものである。In FIG. 1(A), a light emitting rod 3 is erected approximately vertically on the ground 6. A light emitting section 1 is provided at the top end of the light emitting rod 3. Also, this luminescence! A light-receiving rod 4 is erected approximately perpendicularly to the ground 6 parallel to the light-emitting rod 3 at an appropriate distance of 1$3. This light receiving rod 4 has a plurality (n) of photodetecting elements 2 (2a, 2b, . . .
...2n) is provided, and this photodetecting element 2
is for receiving light emitted from the light emitting section 1 attached to the tip of the light emitting rod 3.
また、発光棒3には1発光部1に電源を供給するための
配線が施されており、この配線に変調器8を介して電源
装置7が接続されている。また。Further, the light emitting rod 3 is provided with wiring for supplying power to one light emitting section 1, and a power supply device 7 is connected to this wiring via a modulator 8. Also.
受光棒4に取り付けられている光検出素子2には。For the photodetecting element 2 attached to the light receiving rod 4.
直並列変換器25と、高周波電源装置26と、高周波検
出器27とが接続されている。この直並列変換器25に
接続される端子B′は、端子Bと接続されている。この
端子Bには受信側装置が接続される。受信側の端子Aに
は検出器9を介して増幅器10が接続されており、この
増幅器10には記録袋r113が接続されている。また
、検波器9と、増幅器1oと、記録装置i!13には電
源装置12から電源が供給されている。また、電源装置
12には警報器11が接続されている。この警報器11
には増幅器1oからの出力が所定値を超えたときに作動
するように構成されている。A serial/parallel converter 25, a high frequency power supply device 26, and a high frequency detector 27 are connected. Terminal B' connected to this serial-parallel converter 25 is connected to terminal B. A receiving device is connected to this terminal B. An amplifier 10 is connected to terminal A on the receiving side via a detector 9, and a recording bag r113 is connected to this amplifier 10. Also, a detector 9, an amplifier 1o, and a recording device i! 13 is supplied with power from the power supply device 12. Further, an alarm device 11 is connected to the power supply device 12 . This alarm 11
The amplifier 1o is configured to operate when the output from the amplifier 1o exceeds a predetermined value.
このように、受光棒4と発光棒3とは適当の間隔で平行
に対峙しである0発光源としてはパルス型に変調された
レーザー光が用いられている。受光棒4には軸に沿って
、一定間隔で配置されたn個の受光素子(光ファイバー
又は光検出素子等)が設けられている1発光棒3の尖端
の発光は第2図(A)に示される如く平面状に拡幅され
た光束とするため、円形断面のビーム20は透明な管1
8又は筒状棒180に到達すると、レーザー光の特性の
ため第2図(A)図示Aの如く平面状に変換される。こ
の面状ビームAを第2図(B)に示される回転鏡面(断
面、三角形又は多角形)17で受け、この鏡面17を回
転させると、その反射光は、受光棒4の表面を上から下
に向って周期的になぞる。また、受光棒4に配置された
各受光素子2に、光ファイバーを用いる時は受光の都度
に第3図に図示するように光電変換するための素子23
(l光レンズ)及び24(光検出素子)が光ファイバー
の端部に接続されている。なお、直接光検出素子を用い
る時は、第4図に例示するように、光検出の各素子が並
列接続しである。In this way, the light-receiving rod 4 and the light-emitting rod 3 face each other in parallel at an appropriate interval, and a pulsed modulated laser beam is used as the light emission source. The light receiving rod 4 is provided with n light receiving elements (optical fibers, photodetecting elements, etc.) arranged at regular intervals along the axis.1 The light emission from the tip of the light emitting rod 3 is shown in Fig. 2 (A). The beam 20 with a circular cross section is passed through a transparent tube 1 in order to form a light beam that is widened in a planar manner as shown.
8 or the cylindrical rod 180, due to the characteristics of the laser beam, it is converted into a planar shape as shown in A of FIG. 2(A). This planar beam A is received by a rotating mirror surface (cross-section, triangular or polygonal) 17 shown in FIG. Trace downwards periodically. In addition, when using an optical fiber for each light receiving element 2 arranged on the light receiving rod 4, each time light is received, an element 23 for photoelectric conversion is added as shown in FIG.
(light lens) and 24 (light detection element) are connected to the end of the optical fiber. In addition, when using a direct photodetection element, each photodetection element is connected in parallel, as illustrated in FIG.
いま、第1図(A)において、受光素子数n、受光素子
間隔をり、)受光棒の全長をHl、受光部の長さをH3
とすると、積雪深H2はH2=H□−H3・・・・・・
・・・・・・(1)さ表わされる。Now, in Fig. 1 (A), the number of light receiving elements is n, the distance between light receiving elements is calculated, the total length of the light receiving rod is Hl, and the length of the light receiving part is H3.
Then, the snow depth H2 is H2=H□-H3...
......(1) It is expressed.
ところが、受光部の長さHlは
H,=nh ・・・・・・・・・・・・(
2)であるから(1)式は
H2=Hニーnh ・・・川・・・・・・(3
)となる。However, the length Hl of the light receiving part is H,=nh ・・・・・・・・・・・・(
2), so the equation (1) is H2=H ni nh...River...(3
).
従って、パルス数nを計測することにより、積雪深H2
を計測することができる。その測定精度はhを小さくす
ると高くなる。第1図(A)に示すように、受光棒4か
らの出力は、端子A部B間を有線式又は無線式により接
続し、受信し記録する。有線式の場合A部間を第1図(
B)に示す如く有線で接続し、検波器9、増幅器10を
経て記録装置13でアナログ又はデジタル記録をする。Therefore, by measuring the number of pulses n, the snow depth H2
can be measured. The measurement accuracy increases as h decreases. As shown in FIG. 1A, the output from the light receiving rod 4 is received and recorded by connecting terminals A and B in a wired or wireless manner. In the case of a wired type, the distance between parts A is shown in Figure 1 (
As shown in B), a wired connection is made, and analog or digital recording is performed by a recording device 13 via a detector 9 and an amplifier 10.
無線式の場合には、第1図(C′)に示す如く、信号電
流を端子B′において増幅14変調15して発信機16
を経て端子Bより発信し、受信機側端子A部で検波9増
幅10して記録部13において、アナログ又はデジタル
記録を行う。In the case of a wireless type, as shown in FIG.
The signal is transmitted from terminal B through terminal B, is detected 9 and amplified 10 at terminal A on the receiver side, and is recorded in analog or digital form in recording section 13.
受光棒4の直径の大きさは測定値の誤差に影響する。こ
の誤差を少くするため、すなわち、大陽光による積雪表
面附近のへこみ領域を少なくするため、直径をlaw程
度以下とし、受光棒4は光の吸収の少ない状態とする。The diameter of the light receiving rod 4 affects the error in the measured value. In order to reduce this error, that is, to reduce the dented area near the snow surface due to sunlight, the diameter is set to about 100 lb. or less, and the light receiving rod 4 is placed in a state where it absorbs less light.
又受光部2は降雪又は吹雪中においても着雪1着氷のな
いようにするため表面部分が0℃以下とならないように
、受光棒4の内部に発熱体を入れておき、電力等により
気温が0℃以下になったら加熱し0℃になったら電源が
切れる素子を直列に接続しである。In order to prevent snow and ice from accumulating even during snowfall or blizzard, a heating element is placed inside the light receiving rod 4 so that the surface area does not drop below 0°C. This is done by connecting elements in series that heat up when the temperature drops below 0°C and turn off the power when the temperature drops to 0°C.
この積雪深計において、積雪深が所定の値以上になると
警報を発するように警報器11をセットしておくと、積
雪深が所定値以上になると音、光等により警報を発する
。又測定の精度を要求しない時は、受光棒4のみをLI
置し、太陽光又は白色光により生じる起電力により積雪
深の概略を得ることができる。この場合には、検出に光
検出器を用いる場合には各素子を直列接続に切りかえる
変換器25により直列接続をして測定する。In this snow depth gauge, if the alarm 11 is set to issue an alarm when the snow depth exceeds a predetermined value, the alarm will be issued by sound, light, etc. when the snow depth exceeds the predetermined value. Also, when measurement accuracy is not required, only the light receiving rod 4 can be used as LI.
It is possible to obtain an approximate snow depth using the electromotive force generated by sunlight or white light. In this case, when a photodetector is used for detection, each element is connected in series using a converter 25 that switches the elements to be connected in series for measurement.
第4図には1本発明の他の実施例が示されている。FIG. 4 shows another embodiment of the invention.
本実施例は、レーザー光の送受信に代えて、超音波送受
信素子を利用するものである。This embodiment uses an ultrasonic transceiver element instead of transmitting and receiving laser light.
図において、地面等に立てられた捧50には、超音波送
信素子26aと、超音波受信素子27aとを一組として
n組、等間隔に設けられている。In the figure, n sets of ultrasonic transmitting elements 26a and ultrasonic receiving elements 27a are provided at equal intervals on a support 50 that is erected on the ground or the like.
このようにして、超音波送信素子26a、26b、26
c・・・・・・26nから発信された超音波は、各受信
素子27b、27a・・・・・・27nにおいて積雪か
ら反射されてきた超音波のみを受信する。この操作を捧
50の上部から、逐次26,26.・・・・・・26n
の発信素子に高周波電圧を印加させるようにすると、積
雪面に到達した時に受信素子は反射音を検出し、出力電
圧としてとり出され、B′に伝わる。In this way, the ultrasonic transmitting elements 26a, 26b, 26
The ultrasonic waves emitted from c...26n receive only the ultrasonic waves reflected from the snowfall at each receiving element 27b, 27a...27n. This operation is performed sequentially from the top of the holder 50 to 26, 26, .・・・・・・26n
When a high-frequency voltage is applied to the transmitting element, the receiving element detects the reflected sound when it reaches the snowy surface, takes it out as an output voltage, and transmits it to B'.
この位置をパルスnとして検出すると、第1図図示実施
例における光検出の場合同様(3)式が成立し、積雪深
を測定することができる。この場合は第1図実施例にお
ける発光棒3に関係する部分は必要としない。When this position is detected as a pulse n, equation (3) holds true as in the case of optical detection in the embodiment shown in FIG. 1, and the snow depth can be measured. In this case, the parts related to the light emitting rod 3 in the embodiment of FIG. 1 are not required.
第5図には本発明のさらに別な実施例が示されている。FIG. 5 shows yet another embodiment of the invention.
本実施例はCODと光ファイバーを用いた警報器付自動
積雪深計である。光ファイバーは81り深棒の中に埋め
られてありその端部が一定間隔で2a。This embodiment is an automatic snow depth meter with an alarm using COD and optical fiber. The optical fibers are buried in 81-deep rods, and their ends are spaced apart at regular intervals.
2b・・・・・・2nまでn個配列されている。いま、
光ファイバーが、2a、2b、・・・・・・2hまで、
積雪上に出ている時は、その部分の光がレンズ28を介
して、CCD29の受光面に達する。この面に達した光
の点り個はコンピュータ31により認識され、コンピュ
ータディスク32に記録される。2b...N numbers up to 2n are arranged. now,
Optical fibers are 2a, 2b, ... up to 2h,
When the light is out on the snow, that part of the light reaches the light receiving surface of the CCD 29 via the lens 28. The number of light spots reaching this surface is recognized by the computer 31 and recorded on the computer disk 32.
この数は(3)式に入れて処理されると、積雪深として
記録される。When this number is entered into equation (3) and processed, it is recorded as the snow depth.
第5図(B)はCODと積雪尺を用いた警報器付自動積
雪深計である。積雪面上に出た積雪尺の部分はレンズ2
8を通して、線型CODに結像される。この部分は電気
信号(周波数)に変換されて、コンピュータ31に入る
と積雪深として認される。この情報はコンピュータディ
スク32に記録される。Figure 5 (B) shows an automatic snow depth meter with an alarm that uses a COD and a snow gauge. The part of the snow scale that appears on the snow surface is the lens 2.
8 and is imaged into a linear COD. This portion is converted into an electric signal (frequency) and entered into the computer 31, where it is recognized as the snow depth. This information is recorded on computer disk 32.
以上説明したように、本発明によれば、屋根上に積雪荷
重を適確に把握でき、家屋を積雪による荷重のために倒
壊する前に、早期除雪により安全に管理することができ
る。As explained above, according to the present invention, the snow load on the roof can be accurately grasped, and the snow can be safely managed by early snow removal before the house collapses due to the snow load.
また1本発明によれば、屋根上だけでなく、平地及び山
間地、道路側等における積雪を自動的に計測できるため
、道路管理、平地及び山間地における積雪深警報を出す
ことができると共に、山間地における水資源管理のため
の積雪量を計測することができる。Furthermore, according to the present invention, it is possible to automatically measure snowfall not only on roofs but also on flatlands, mountainous areas, roadsides, etc., so it is possible to issue snow depth warnings for road management and flatlands and mountainous areas, It is possible to measure the amount of snowfall for water resource management in mountainous areas.
また1本発明によれば、河川水、海水域に利用すること
によりその水位を自動的に計測することができ、警報を
出すことができる。Furthermore, according to the present invention, by using it for river water or seawater, the water level can be automatically measured and a warning can be issued.
さらに、本発明によれば、検出器において受ける光は降
雪強度(単位時間当り、単位面積当りの降雪量)に比例
して減衰するので、積雪測定中に降雪があると、降雪強
度が測定でき、道路交通に使用して降雪状況と視程、視
界の警報ができる。Furthermore, according to the present invention, the light received by the detector is attenuated in proportion to the snowfall intensity (the amount of snowfall per unit time, per unit area), so if snowfall occurs during snow measurement, the snowfall intensity cannot be measured. It can be used for road traffic to warn of snowfall conditions, visibility, and visibility.
第1図は本発明の実施例を示す図、第2図(A)は透明
管よりのレーザー光の平面分散の様子を示す図、第2図
(B)は発光部の拡大図、第3図は受光棒に光ファイバ
ーを用いた図、第4図は超音波送受信素子の配置図、第
5図(A)はCCDと光ファイバーを用いた実施例を示
す図、第5図(B)はCODと積雪量を用いた実施例を
示す図である。
1・・・発光部、2・・・光検出素子、3・・・発光棒
。
4・・・受光棒、5・・・積雪、6・・・地面、7・・
・電源装置、8・・・変調器、9・・・検波器、10・
・・増幅器、11・・・警報器、12・・・電源装置、
13・・・記録装置、14・・・増幅器、15・・・変
調器、16・・・発振器、17・・・回転鏡、18・・
・透明ガラス管、180・・・透明ガラス棒、19・・
・レーザー発信器(半導体又はガラス管理)。
20・・・レーザー光線(断面円型)、21・・・レー
ザー光線(断面薄板型)、22・・・光検出部(光ファ
イバー)、23・・・集光レンズ、24・・・光検出素
子(フォトダイオード又はフォトトランジスター)、2
5・・・増幅及び記録装置、
26 a 、 26 b 、 26 c ・・・超音波
発信素子。
27 a 、 27 b 、 27 c −超音波受信
素子、28・・・集光レンズ、29・・・CCD素子、
30・・・積雪量、31・・・コンピュータ、32・・
・コンピュータディスク、Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 (A) is a diagram showing the planar dispersion of laser light from a transparent tube, Fig. 2 (B) is an enlarged view of the light emitting part, and Fig. 3 The figure shows an example in which an optical fiber is used for the light receiving rod, Figure 4 is a layout diagram of an ultrasonic transmitting and receiving element, Figure 5 (A) is a diagram showing an example using a CCD and an optical fiber, and Figure 5 (B) is a COD It is a figure showing an example using the snow amount. 1... Light emitting part, 2... Photo detection element, 3... Light emitting stick. 4... Light receiving rod, 5... Snowfall, 6... Ground, 7...
・Power supply device, 8...Modulator, 9...Detector, 10.
...Amplifier, 11...Alarm, 12...Power supply device,
13... Recording device, 14... Amplifier, 15... Modulator, 16... Oscillator, 17... Rotating mirror, 18...
・Transparent glass tube, 180...Transparent glass rod, 19...
・Laser transmitter (semiconductor or glass management). 20... Laser beam (circular cross section), 21... Laser beam (thin plate type cross section), 22... Light detection unit (optical fiber), 23... Condensing lens, 24... Light detection element (photo) diode or phototransistor), 2
5...Amplification and recording device, 26a, 26b, 26c...Ultrasonic transmitting element. 27 a, 27 b, 27 c - ultrasonic receiving element, 28... condensing lens, 29... CCD element,
30... Snowfall amount, 31... Computer, 32...
・Computer disk,
Claims (1)
該光検出部に対峙したレーザー発光部とを備え、前記光
検出部によって検出した光を電気パルス信号に変換する
光電変換部と、該光電変換部において変換されたパルス
数を計数して積雪深に変換表示する変換手段と、該計数
したパルス数が所定値を超えたとき警報を発する警報手
段とからなることを特徴とする警報器付自動積雪探計。(1) A plurality of photodetectors arranged vertically at regular intervals;
A photoelectric conversion section that includes a laser emitting section facing the photodetection section and converts the light detected by the photodetection section into an electric pulse signal; and a photoelectric conversion section that counts the number of pulses converted in the photoelectric conversion section and calculates the snow depth. 1. An automatic snow detector with an alarm, comprising: a conversion means for converting and displaying the counted pulse number; and an alarm means for issuing an alarm when the counted number of pulses exceeds a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23382986A JPS6388489A (en) | 1986-10-01 | 1986-10-01 | Automatic snow depth meter with alarm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23382986A JPS6388489A (en) | 1986-10-01 | 1986-10-01 | Automatic snow depth meter with alarm |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6388489A true JPS6388489A (en) | 1988-04-19 |
Family
ID=16961214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23382986A Pending JPS6388489A (en) | 1986-10-01 | 1986-10-01 | Automatic snow depth meter with alarm |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6388489A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02242127A (en) * | 1989-03-15 | 1990-09-26 | Toa Harbor Works Co Ltd | Laser light detector |
JPH03242595A (en) * | 1990-02-20 | 1991-10-29 | Nakaasa Sokki Kk | Snow depth meter |
JPH03272492A (en) * | 1990-03-22 | 1991-12-04 | Yokokawa Uezatsuku Kk | Multisensor for snow information |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55129783A (en) * | 1978-10-20 | 1980-10-07 | Kosaburo Sato | Automatic snow fall depth meter using laser light |
JPS592756A (en) * | 1982-06-30 | 1984-01-09 | 株式会社東芝 | Laser treating apparatus |
-
1986
- 1986-10-01 JP JP23382986A patent/JPS6388489A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55129783A (en) * | 1978-10-20 | 1980-10-07 | Kosaburo Sato | Automatic snow fall depth meter using laser light |
JPS592756A (en) * | 1982-06-30 | 1984-01-09 | 株式会社東芝 | Laser treating apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02242127A (en) * | 1989-03-15 | 1990-09-26 | Toa Harbor Works Co Ltd | Laser light detector |
JPH03242595A (en) * | 1990-02-20 | 1991-10-29 | Nakaasa Sokki Kk | Snow depth meter |
JPH03272492A (en) * | 1990-03-22 | 1991-12-04 | Yokokawa Uezatsuku Kk | Multisensor for snow information |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207763660U (en) | It is a kind of to use laser measurement bridge deformation device | |
RU177419U1 (en) | Lidar for remote measurement of temperature and humidity with minimal dead zone sounding | |
CN109000822A (en) | Distributed fiber temperature measuring device | |
CN104614091B (en) | All -fiber long range high spatial resolution single photon temperature sensor | |
JPS6388489A (en) | Automatic snow depth meter with alarm | |
FR2392398A2 (en) | LASER TELEMETER USING THE PRINCIPLE OF TRIP TIME MEASUREMENT | |
CN201607803U (en) | Linear optical fiber heat fire detecting module and system thereof | |
JPS57148708A (en) | Zone detector | |
CN106257249A (en) | It is applicable to temperature-measuring system of distributed fibers and the temp measuring method of tunnel thermometric | |
CN210166520U (en) | High-precision infrared optical rainfall sensor | |
CN215811326U (en) | Distributed optical fiber sensing system for pipeline leakage monitoring | |
RU169314U1 (en) | Lidar for remote measurement of temperature and humidity | |
JP3045529B2 (en) | Snow depth measuring device | |
CN209323599U (en) | A kind of rain collector | |
CN106871865A (en) | Transformer station's sedimentation monitoring system based on fibre-optical grating sensor network | |
WO1998000736A1 (en) | Optical flow meter | |
RU192991U9 (en) | Lidar for remote round-the-clock determination of temperature and humidity of the atmosphere | |
CN213688666U (en) | Light sensing device capable of detecting tiny light spots and little influenced by incident light direction | |
JPH0448294A (en) | Snowfall depth measuring instrument | |
JPH0285744A (en) | Raining/snowing discriminating sensor | |
RU2702920C1 (en) | Distance-bearing laser snow rack | |
CN112326026A (en) | Light sensing device capable of detecting tiny light spots and little influenced by incident light direction | |
JPS55129783A (en) | Automatic snow fall depth meter using laser light | |
JPH03272492A (en) | Multisensor for snow information | |
CN114414838B (en) | Wind speed measurement system and method based on VCSEL wavelength demodulation and pulse light source heating |