JPS638811B2 - - Google Patents

Info

Publication number
JPS638811B2
JPS638811B2 JP57175402A JP17540282A JPS638811B2 JP S638811 B2 JPS638811 B2 JP S638811B2 JP 57175402 A JP57175402 A JP 57175402A JP 17540282 A JP17540282 A JP 17540282A JP S638811 B2 JPS638811 B2 JP S638811B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
iron
reaction
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57175402A
Other languages
Japanese (ja)
Other versions
JPS5966348A (en
Inventor
Teruo Suzuka
Satoshi Fukase
Kunyoshi Morinaga
Kyomi Ishii
Hiromi Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP57175402A priority Critical patent/JPS5966348A/en
Publication of JPS5966348A publication Critical patent/JPS5966348A/en
Publication of JPS638811B2 publication Critical patent/JPS638811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、重質炭化水素の分解軽質化とスチー
ムアイアン反応を利用して水素を製造するための
触媒に関する。 本発明者は、先に常圧蒸留残渣油、減圧蒸留残
渣油などの重質炭化水素を分解軽質化するととも
に、分解の際、触媒表面上に付着するコークによ
り触媒中の酸化鉄を還元し、この還元された鉄を
スチームと反応させて水素を発生する方法を提案
した(特開昭55−104920、同56−49790、特願昭
56−20708)。 また、このために使用し得る触媒組成物につい
ても提案した(特開昭55−124542)。 本発明者らは、上記方法のプロセス及びこのプ
ロセスに用いる触媒について、さらに研究を進め
た結果、SiO2を多く含んだ触媒は、スチーム
アイアン反応(H2O+3FeO→H2+Fe3O4又は
H2O+Fe→FeO+H2)活性の低下が起り易いこ
と、Cr2O3を一定量含んだ触媒は、重質炭化水
素の分解活性及びスチームアイアン反応活性の低
下が起り難いこと、触媒構成一次粒子の平均粒
径が、スチームアイアン反応の活性低下に影響を
与えること等を見い出した。 本発明は、かかる知見に基いてなされたもの
で、重質炭化水素の分解及びスチームアイアン反
応の活性低下が起り難い、即ち、触媒寿命の長
い、改良された重質炭化水素の分解軽質化と水素
を製造するための触媒を提供することを目的とす
るものである。 即ち、本発明は、酸化状態で鉄がFeとして30
〜60重量%,Cr2O3が0.1〜8重量%,SiO2が3重
量%以下を含む組成で、かつ、触媒構成一次粒子
の平均粒径が1μ以下であることより成る重質炭
化水素の分解軽質化と水素を製造するための触媒
組成物である。 以下に本発明について説明する。 本発明の触媒組成物が適用される重質炭化水素
の分解軽質化と水素を製造する方法とは、重質炭
化水素を接触分解して軽質化し、また同時的にス
チームアイアン反応により水素を発生させるもの
であるが、この場合、触媒中の酸化鉄の還元に、
分解の際触媒表面上に付着するコークを利用する
ものである。より具体的な一例を第1図に基いて
述べる。 第1工程1においては後述する第2工程2で還
元された鉄(平均的にはウスタイト)を含む触媒
が450〜600℃の温度、0〜15Kg/cm2・G圧力下
に、流動床を形成し、重質炭化水素3例えば常圧
蒸留残渣油、減圧蒸留残渣油、脱れき残渣油、石
炭液化油、シエールオイル等及びスチーム4が同
時的に供給される。触媒中の還元された鉄とスチ
ームとはスチームアイアン反応を起し、水素が発
生するとともに鉄が酸化される。一方重質炭化水
素は触媒により接触もしくは熱分解され軽質化さ
れる。この重質炭化水素の軽質化に際して触媒表
面上にコークが付着する。発生した水素及び軽質
化された分解ガス及び分解油は未分解油或いは未
反応のスチームとともに生成物5として第1工程
1から排出され、分離精製される。 コークの付着した触媒は、移送管6により第2
工程2に移送される。ここにおいて700〜900℃の
温度、0〜15Kg/cm2・Gの圧力の下に流動床が形
成され、当該コークが完全に燃焼するには不足の
酸素量を含有する酸素含有ガス7が供給され脱コ
ークされる。触媒中の酸化鉄(平均的にはマグネ
タイト)は、付着しているコーク及び発生する一
酸化炭素ガスにより還元される。還元された鉄を
含む触媒は返送管8により、前述した第1工程1
に返送され、分解反応及びスチームアイアン反応
に供され、排ガス9が第2工程2より排出され
る。 尚、前述の第1工程1における重質炭化水素の
分解とスチームアイアン反応とは別の工程として
分けたプロセス、即ち、第2工程2で還元された
触媒を先ずスチームと反応させてスチームアイア
ン反応を起し、次いで酸化された触媒と重質炭化
水素とを接触させて分解軽質化させるプロセスに
も、本発明の触媒を適用することができることは
いうまでもない。 また、前記プロセスにおいては、触媒中の鉄が
重質炭化水素のイオウ分と反応し硫化鉄を形成す
るが、これを除くために、さらに硫化鉄を焙焼す
るための工程を設置したものでも本発明の触媒は
適用できる。 次に本発明の触媒について述べる。本発明にお
ける触媒の組成は、触媒が酸化された状態でのも
のである。後述するように本発明の触媒は、大部
分焙焼工程を経て調製されるため、未使用の触媒
は完全な酸化状態にある。従つて本発明での組成
は触媒調整後のこの新触媒、或いは反応に供され
ているものでコークを除去し酸化した状態での割
合を指すものである。 触媒の組成において、鉄がFeとして30〜60重
量%と限定した理由は、Feが30重量%未満では
単位触媒量あたりのスチームアイアン反応によつ
て発生する水素の量が少ないため工業的に不利で
あり、また60重量%を超えるとボギング(触媒粒
子の融着または凝集現象)が起り易くなるととも
に触媒の骨格形成元素が少なくなるため、かさ密
度が高くなり、流動床形成に悪影響を与え、また
比表面積が減少し、重質炭化水素の分解及びスチ
ームアイアン反応の活性を低下させるためであ
る。 Cr2O3を0.1〜8重量%と限定した理由は、
Cr2O3が0.1重量%未満では重質炭化水素の分解及
びスチームアイアン反応と、触媒中の酸化鉄の
COガス及びコークによる還元反応の繰り返しの
過程で、鉄粒子が成長し、また触媒の粒子表面で
鉄のシンタリングが起り、重質炭化水素の分解及
びスチームアイアン反応又さらには、COガス及
びコークによる還元反応の活性の低下を生じると
いう問題を防止するためである。一方Cr2O3が8
重量%を越えるとCr2O3と鉄との固溶体の生成量
が増大し、その結果、スチームアイアン反応に関
与する活性中心が減少し、水素の発生量が低下す
る。 SiO2は、FeOと複合酸化物を形成し、この酸
化物が触媒中の酸化鉄粒子の表面を覆い、スチー
ムアイアン反応及び酸化鉄の還元反応を著るしく
阻害する。このSiO2は3重量%を越えると、触
媒の長期に亘る繰り返し使用においてこの現象が
顕著に現われる。即ち、触媒の寿命を短かくす
る。 以上の組成に加えて、触媒構成一次粒子の平均
粒径が1μ以下であることを要する。本発明の触
媒は、流動床プロセスで使用されることが好まし
いため触媒は平均粒径40〜600μに調整すること
が望ましい。ところでこのような触媒粒子はさら
に小さい微粒子が多数焼結されて構成されてい
る。この微粒子を触媒構成一次粒子という。例え
ば第2図及び第3図として示したものが触媒粒子
の電子顕微鏡による二次電子像写真である。この
第2図は、倍率が40倍であり、触媒1個1個の大
きさが分かる。第2図の下部の白線の長さが
500μを表わす。第3図は1500倍で特定の触媒粒
子を見たものであり、この個々の粒子が触媒構成
一次粒子である。写真下部の白線の長さが5μを
示す。この触媒構成一次粒子の平均粒径が1μを
越えるとCr2O3その他の骨格形成成分が粒子間に
偏在し、骨格形成の役割を十分に果さなくなる。
このため重質炭化水素の分解、スチームアイアン
反応及び触媒中の酸化鉄の還元反応の繰り返しに
より鉄の粒子が成長し、表面積の減少を引き起す
ため好ましくない。また、一次粒子の粒径が大き
くなることは一次粒子の数が少なくなることを意
味し、SiO2が鉄粒子の表面を覆つて不活性化す
ることからして、この悪影響が顕著に現われるこ
とにもなる。このような理由で実施例に示すよう
に触媒を長期間使用しているとスチームアイアン
反応による水素の発生量が低下する。 尚、この触媒構成一次粒子の平均粒径は、前述
したような顕微鏡写真の粒径を無作為に100ケ程
度選んで測定することにより求められる。 次に本発明の触媒を調製法について述べる。 鉄の硫酸塩、硝酸塩、塩化物等を水にまたはそ
の他の鉄化合物を酸に溶解し、クロム酸塩または
重クロム酸塩を、触媒調製後に0.1〜8重量%に
なるように添加し、また、所望によりアルミニウ
ム塩、カルシウム塩、マグネシウム塩等を、触媒
調製後に鉄がFeとして30〜60重量%となるよう
に添加溶解する。これをアルカリ溶液例えば水酸
化ナトリウム、水酸化カリウム、アンモニア等で
水酸化鉄として沈殿させ、沈殿物を造粒乾燥し、
1000〜1500℃の温度で焼成することにより調製で
きる。尚、前述のクロム酸塩、重クロム酸塩、ア
ルミニウム、カルシウム、マグネシウム塩等は、
アルカリ溶液に溶解して用いてもよい。 また、他の方法としては、天然の鉄鉱石、例え
ばラテライト、褐鉄鉱、赤鉄鉱、菱鉄鉱等、或い
はその他の鉄含有化合物で前記組成を満足するも
の或いはこれらに触媒調製後Cr2O3が0.1〜8重量
%になるようクロム化合物を加えたものを平均粒
径が1μ以下になるように粉砕する。この場合、
通常のミル等による粉砕では1μ以下とすること
は困難であるが、高圧空気式ジエツト粉砕機を用
いると比較的簡単に1μ以下に微粉砕することが
可能である。この1μ以下に微粉砕することによ
り触媒構成一次粒子の平均粒径を1μ以下とする
ことができる。このようにして粉砕された原料を
混練、造粒、乾燥し、1000〜1500℃の温度で焼成
することにより調製できる。 以上のような本発明の触媒は、長期間にわたつ
て安定して重質炭化水素の分解軽質化及びスチー
ムアイアン反応による水素の製造を行なうことが
できる等の格別の効果を奏するものであり、産業
上有用なものである。 以下に、本発明の実施例、比較例を示し、本発
明の効果を具体的に述べる。 実施例 1 硫酸化第一鉄(FeSO4・7H2O)450gを800ml
の蒸留水に溶解した。次に、重クロム酸ナトリウ
ム(Na2Cr2O7・2H2O)35gと水酸化ナトリウム
(NaOH)80gを1000mlの蒸留水に溶解し、40℃
に加熱、これに窒素を通じながら、前記硫酸第一
鉄溶液を滴下した。生成沈殿物をロ過、洗浄し、
100℃の温度で乾燥後、32メツシユ以下の粒径に
粉砕した。これを1050℃の温度で3時間焼成した
後、150メツシユ〜32メツシユに整粒し、これを
触媒とした。 この触媒は、鉄がFeとして56.1重量%,Cr2O3
が5.85重量%,SiO2は0.03重量%であつた。ま
た、比表面積は1.2m2/g、嵩比重は1.60であつ
た。また触媒構成一次粒子の平均粒径は0.8μであ
つた。 次にこの触媒を用いて、重質炭化水素の分解及
びスチームアイアン法による水素の発生等の繰り
返し実験を行なつた。 実験装置は、内径52mm高さ1000mmのステンレス
製流動層反応器を用いた。この反応器は、下部よ
り触媒を供給し、触媒層高40cmの位置より、供給
された量と同じ触媒が抜き出される。 先ず、前記反応器に触媒を2.5Kg/hrで導入し、
該触媒床の温度を540℃、圧力を0Kg/cm2・Gに
保ち、クウエート減圧蒸留残渣油(比重;1.020、
残炭;21.1重量%、硫黄分;5.3重量%)を400
g/hr、スチームを260g/hrで供給した。次に
反応器の触媒抜出口より抜出された触媒を再度反
応系に導入した。この操作を3回繰り返し、コー
ク付着触媒を15Kg以上得た。 次に同様の反応器を用い、このコークの付着し
た触媒を2.5Kg/hrで導入し、該触媒床の温度を
830℃、圧力を0Kg/cm2・Gに保ち、酸素濃度
10vol%の酸素含有ガスを600NI/hrで導入し、
触媒中の酸化鉄を還元させる。約0.5時間経過す
ると、反応装置から触媒が抜出される。また次に
この触媒を用いて、前記条件で、触媒の循環を繰
返すことなく、1スルーで残渣油の分解を行なう
が、この2回目以降は、触媒中の酸化鉄が還元さ
れているため、スチームアイアン反応も同時に起
り、水素が発生する。以上のような、残渣油の分
解・軽質化及びスチームアイアン反応と、触媒中
の酸化鉄の還元反応を繰り返し行なつた。この結
果を第1表に示した。 実施例 2 Fe48.5重量%,Cr2O3 3.91重量%,SiO2 1.88
重量%のラテライト鉱石を高圧空気式ジエツト粉
砕分級機で1μ以下の微粒子に粉砕した。これを
混練、造粒、乾燥し、1050℃で3時間焼成した。
これを32メツシユ〜150メツシユに整粒し、触媒
とした。この触媒は、鉄がFeとして57.1重量%,
Cr2O3が4.46重量%,SiO2が1.93重量%、また、
比表面積は5.2m2/g、嵩比重1.53であつた。ま
た、この触媒の構成一次粒子の平均粒径は0.9μで
あつた。 この触媒を用いて、実施例1と同様の方法で分
解軽質化及びスチームアイアン反応と酸化鉄の還
元反応を繰り返し行なつた。この結果を第1表に
示す。 実施例 3 市販のCOガスシフト反応用触媒(日産ガード
ラー製G−3A)を32メツシユ以下に粉砕し、
1050℃で3時間焼成し、32メツシユ〜150メツシ
ユに整粒した。この触媒中の鉄はFeとして54.7重
量%,Cr2O3は7.09重量%,SiO2は0.10重量%で
あり、比表面積は1.2m2/g、嵩比重1.59であつ
た。さらに、触媒構成一次粒子の粒径は0.6μであ
つた。 この触媒を用いて、実施例1に示したのと同じ
反応を繰返し行なつた。この結果を第1表に示
す。 比較例 1 水酸化ナトリウム70gを1000mlの蒸留水に溶解
し、40℃に加熱後、窒素を通じながら850mlの蒸
留水に450gの硫酸第一鉄(FeSO4・7H2O)を溶
解した水溶液を滴下した。生成した沈殿物をロ過
洗浄し、100℃で乾燥、32メツシユ以下に粉砕し、
1050℃の温度で焼成した。これを32メツシユ〜
150メツシユに整粒し触媒とした。この組成は鉄
がFeとして58.0重量%,Cr2O3は0.04重量%,
SiO2は0.04重量%であつた。また、比表面積は
1.2m2/g、嵩比重は1.74であり、触媒構成一次
粒子の平均粒径は1.5μであつた。 この触媒を用いて、実施例1と同様の反応を行
なつた。この結果を第2表に示す。 比較例 2 実施例1における重クロム酸ナトリウムの量を
75gとした以外は、全く同じ方法で触媒を調整し
た。 触媒の組成は鉄がFeとして50.7重量%,Cr2O3
12.3重量%,SiO2が0.05重量%で、比表面積1.9
m2/g、嵩比重1.50であつた。また、触媒構成一
次粒子の平均粒径は1.1μであつた。 この触媒を用い、実施例1と同様の反応を行な
つた。この結果を第2表に示す。 比較例 3 実施例1と同じ方法で作成した沈殿物に、市販
の酸性シリカゾル(濃度20%)を25g添加し、1
時間混練した。これを100℃で乾燥し、32メツシ
ユ以下に粉砕し、1050℃で3時間焼成した後150
メツシユ〜32メツシユに整粒し触媒とした。 この触媒の組成はFeとして55.7重量%,Cr2O3
4.72重量%,SiO24.18重量%で、比表面積が2.5
m2/g、嵩比重1.48であつた。また、この触媒構
成一次粒子の平均粒径は0.9μであつた。 この触媒を用いて、実施例1と同様の反応実験
を行なつた。この結果を第2表に示す。 比較例 4 Fe 48.5重量%,Cr2O3 3.91重量%,SiO21.88
重量%のラテライト鉱石をボールミルで10μ以下
に粉砕し、混練造粒、乾燥後、1050℃の温度で3
時間焼成し32メツシユ〜150メツシユに整粒して
触媒とした。 この組成はFeとして55.7重量%,Cr2O34.72重
量%,SiO21.93重量%であり、又、比表面積は
6.7m2/g、嵩密度は1.69であつた。 また、この触媒構成一次粒子の平均粒径は9μ
であつた。 この触媒を用いて実施例1と同様の反応実験を
行なつた。この結果を第2表に示す。
TECHNICAL FIELD The present invention relates to a catalyst for producing hydrogen by decomposing and lightening heavy hydrocarbons and using a steam iron reaction. The present inventor first decomposed heavy hydrocarbons such as atmospheric distillation residue oil and vacuum distillation residue oil to make them lighter, and at the same time reduced the iron oxide in the catalyst by the coke that adhered to the catalyst surface during decomposition. proposed a method of generating hydrogen by reacting this reduced iron with steam (Japanese Patent Publications No. 55-104920, No. 56-49790, Japanese Patent Application No.
56−20708). He also proposed a catalyst composition that can be used for this purpose (Japanese Patent Application Laid-Open No. 124542/1983). As a result of further research into the process of the above method and the catalyst used in this process, the present inventors found that a catalyst containing a large amount of SiO 2 is capable of reacting in a steam iron reaction (H 2 O + 3FeO → H 2 + Fe 3 O 4 or
H 2 O + Fe → FeO + H 2 ) activity is likely to decrease, catalysts containing a certain amount of Cr 2 O 3 are less likely to decrease heavy hydrocarbon decomposition activity and steam iron reaction activity, and catalyst composition primary particles It has been found that the average particle size of iron has an effect on the reduction in steam iron reaction activity. The present invention has been made based on this knowledge, and is an improved decomposition and lightening method for decomposing heavy hydrocarbons that is less likely to cause deterioration in the activity of the steam iron reaction, that is, has a long catalyst life. The purpose is to provide a catalyst for producing hydrogen. That is, in the present invention, iron in the oxidized state is 30
~60% by weight, 0.1 to 8% by weight of Cr2O3 , 3% by weight or less of SiO2 , and a heavy hydrocarbon consisting of a catalyst with an average particle size of primary particles of 1μ or less This is a catalyst composition for decomposing and lightening hydrogen and producing hydrogen. The present invention will be explained below. The method for decomposing and lightening heavy hydrocarbons and producing hydrogen to which the catalyst composition of the present invention is applied is to catalytically crack heavy hydrocarbons to lighten them, and at the same time generate hydrogen through a steam iron reaction. However, in this case, the reduction of iron oxide in the catalyst
It utilizes the coke that adheres to the catalyst surface during cracking. A more specific example will be described based on FIG. In the first step 1, a catalyst containing iron (on average, wustite), which has been reduced in the second step 2 described later, is heated in a fluidized bed at a temperature of 450 to 600°C and a pressure of 0 to 15 kg/cm 2 G. Heavy hydrocarbons 3 such as atmospheric distillation residue oil, vacuum distillation residue oil, deasphalting residue oil, coal liquefied oil, shale oil, etc., and steam 4 are simultaneously supplied. The reduced iron in the catalyst and steam cause a steam iron reaction, producing hydrogen and oxidizing the iron. On the other hand, heavy hydrocarbons are brought into contact or thermally decomposed by a catalyst to become lighter. When this heavy hydrocarbon is lightened, coke is deposited on the catalyst surface. The generated hydrogen, lightened cracked gas, and cracked oil are discharged from the first step 1 as a product 5 together with unresolved oil or unreacted steam, and are separated and purified. The catalyst with coke attached is transferred to the second
Transferred to process 2. Here, a fluidized bed is formed at a temperature of 700 to 900°C and a pressure of 0 to 15 kg/cm 2 G, and an oxygen-containing gas 7 containing an insufficient amount of oxygen to completely burn the coke is supplied. and decoked. The iron oxide (on average, magnetite) in the catalyst is reduced by the attached coke and the generated carbon monoxide gas. The catalyst containing reduced iron is passed through the return pipe 8 to the first step 1 described above.
The waste gas 9 is returned to the second step 2 and subjected to a decomposition reaction and a steam iron reaction, and the exhaust gas 9 is discharged from the second step 2. It should be noted that the decomposition of heavy hydrocarbons and the steam iron reaction in the first step 1 described above are separate processes, that is, the catalyst reduced in the second step 2 is first reacted with steam to perform the steam iron reaction. It goes without saying that the catalyst of the present invention can also be applied to a process in which the oxidized catalyst is brought into contact with heavy hydrocarbons to decompose and lighten them. In addition, in the above process, the iron in the catalyst reacts with the sulfur content of heavy hydrocarbons to form iron sulfide, but in order to remove this, a process for roasting the iron sulfide is also installed. The catalyst of the present invention is applicable. Next, the catalyst of the present invention will be described. The composition of the catalyst in the present invention is in an oxidized state. As described below, the catalyst of the present invention is mostly prepared through a roasting process, so that the unused catalyst is in a completely oxidized state. Therefore, the composition in the present invention refers to the ratio of the new catalyst after catalyst adjustment, or the ratio of the catalyst that has been subjected to the reaction and has been oxidized with coke removed. The reason why the content of iron in the catalyst composition is limited to 30 to 60% by weight as Fe is that if Fe is less than 30% by weight, the amount of hydrogen generated by the steam iron reaction per unit amount of catalyst is small, which is industrially disadvantageous. Moreover, if it exceeds 60% by weight, bogging (fusion or agglomeration phenomenon of catalyst particles) tends to occur, and the number of elements forming the catalyst skeleton decreases, resulting in a high bulk density, which has a negative impact on fluidized bed formation. This is also because the specific surface area decreases, which reduces the decomposition of heavy hydrocarbons and the activity of the steam iron reaction. The reason for limiting Cr 2 O 3 to 0.1 to 8% by weight is as follows:
If Cr 2 O 3 is less than 0.1% by weight, decomposition of heavy hydrocarbons and steam iron reaction will occur, and iron oxide in the catalyst will be inhibited.
In the process of repeated reduction reactions with CO gas and coke, iron particles grow, and iron sintering occurs on the surface of catalyst particles, resulting in decomposition of heavy hydrocarbons and steam iron reactions, and furthermore, CO gas and coke. This is to prevent the problem of a decrease in the activity of the reduction reaction due to On the other hand, Cr 2 O 3 is 8
When the amount exceeds % by weight, the amount of solid solution of Cr 2 O 3 and iron increases, and as a result, the number of active centers involved in the steam iron reaction decreases, and the amount of hydrogen generated decreases. SiO 2 forms a composite oxide with FeO, and this oxide covers the surface of iron oxide particles in the catalyst, significantly inhibiting the steam iron reaction and the reduction reaction of iron oxide. When the SiO 2 content exceeds 3% by weight, this phenomenon becomes noticeable when the catalyst is repeatedly used over a long period of time. That is, the life of the catalyst is shortened. In addition to the above composition, the average particle diameter of the primary particles constituting the catalyst is required to be 1 μm or less. Since the catalyst of the present invention is preferably used in a fluidized bed process, it is desirable to adjust the average particle size of the catalyst to 40 to 600μ. Incidentally, such catalyst particles are constructed by sintering a large number of even smaller particles. These fine particles are called catalyst-constituting primary particles. For example, what is shown in FIGS. 2 and 3 are secondary electron images of catalyst particles taken using an electron microscope. This figure 2 has a magnification of 40 times, so you can see the size of each catalyst. The length of the white line at the bottom of Figure 2 is
Represents 500μ. Figure 3 shows specific catalyst particles viewed at 1500 times magnification, and these individual particles are the primary particles constituting the catalyst. The length of the white line at the bottom of the photo indicates 5μ. If the average particle diameter of the primary particles constituting the catalyst exceeds 1 μ, Cr 2 O 3 and other skeleton-forming components will be unevenly distributed among the particles and will not play a sufficient role in forming the skeleton.
For this reason, repetition of the decomposition of heavy hydrocarbons, the steam iron reaction, and the reduction reaction of iron oxide in the catalyst causes iron particles to grow, causing a decrease in surface area, which is undesirable. In addition, an increase in the particle size of the primary particles means a decrease in the number of primary particles, and since SiO 2 covers the surface of the iron particles and inactivates them, this negative effect is noticeable. It also becomes. For this reason, as shown in Examples, when a catalyst is used for a long period of time, the amount of hydrogen generated by the steam iron reaction decreases. The average particle size of the primary particles constituting the catalyst can be determined by randomly selecting about 100 particle sizes from the micrographs as described above and measuring them. Next, a method for preparing the catalyst of the present invention will be described. Dissolve iron sulfates, nitrates, chlorides, etc. in water or other iron compounds in acid, add chromate or dichromate to a concentration of 0.1 to 8% by weight after catalyst preparation, or If desired, aluminum salts, calcium salts, magnesium salts, etc. are added and dissolved so that the iron content becomes 30 to 60% by weight as Fe after catalyst preparation. This is precipitated as iron hydroxide with an alkaline solution such as sodium hydroxide, potassium hydroxide, ammonia, etc., and the precipitate is granulated and dried.
It can be prepared by firing at a temperature of 1000-1500°C. In addition, the aforementioned chromate, dichromate, aluminum, calcium, magnesium salts, etc.
It may be used after being dissolved in an alkaline solution. Another method is to use natural iron ores such as laterite, limonite, hematite, siderite, etc., or other iron-containing compounds that satisfy the above composition, or to add Cr 2 O 3 of 0.1 to these after preparing the catalyst. A chromium compound is added to the mixture to a concentration of ~8% by weight, and the mixture is ground to an average particle size of 1 μm or less. in this case,
It is difficult to reduce the particle size to 1 μm or less by pulverization using a normal mill, etc., but it is relatively easy to pulverize the particle size to 1 μm or less using a high-pressure air jet pulverizer. By pulverizing the particles to 1 μm or less, the average particle size of the primary particles constituting the catalyst can be reduced to 1 μm or less. It can be prepared by kneading, granulating, drying, and firing the raw materials pulverized in this way at a temperature of 1000 to 1500°C. The catalyst of the present invention as described above has exceptional effects such as being able to stably decompose and lighten heavy hydrocarbons and produce hydrogen through a steam iron reaction over a long period of time. It is industrially useful. Examples and comparative examples of the present invention will be shown below, and the effects of the present invention will be specifically described. Example 1 450g of ferrous sulfate ( FeSO4.7H2O ) to 800ml
of distilled water. Next, 35 g of sodium dichromate (Na 2 Cr 2 O 7 2H 2 O) and 80 g of sodium hydroxide (NaOH) were dissolved in 1000 ml of distilled water and heated at 40°C.
The above ferrous sulfate solution was added dropwise to the solution while heating and passing nitrogen through the solution. Filter and wash the generated precipitate,
After drying at a temperature of 100°C, it was ground to a particle size of 32 mesh or less. After firing this at a temperature of 1050° C. for 3 hours, the particles were sized to 150 to 32 meshes and used as a catalyst. This catalyst contains 56.1% by weight of iron as Fe, Cr 2 O 3
was 5.85% by weight, and SiO 2 was 0.03% by weight. Further, the specific surface area was 1.2 m 2 /g, and the bulk specific gravity was 1.60. Further, the average particle size of the primary particles constituting the catalyst was 0.8μ. Next, using this catalyst, repeated experiments such as decomposition of heavy hydrocarbons and generation of hydrogen by the steam iron method were conducted. The experimental equipment used was a stainless steel fluidized bed reactor with an inner diameter of 52 mm and a height of 1000 mm. Catalyst is supplied from the bottom of this reactor, and the same amount of catalyst as supplied is extracted from a position at a catalyst layer height of 40 cm. First, a catalyst was introduced into the reactor at a rate of 2.5Kg/hr,
The temperature of the catalyst bed was kept at 540°C and the pressure was kept at 0 Kg/cm 2 ·G, and Kuwait vacuum distillation residue oil (specific gravity: 1.020,
Remaining coal: 21.1% by weight, sulfur content: 5.3% by weight) 400%
g/hr, steam was supplied at 260 g/hr. Next, the catalyst extracted from the catalyst outlet of the reactor was reintroduced into the reaction system. This operation was repeated three times to obtain more than 15 kg of coke-adhered catalyst. Next, using the same reactor, this coke-covered catalyst was introduced at a rate of 2.5 Kg/hr, and the temperature of the catalyst bed was increased.
830℃, pressure maintained at 0Kg/ cm2・G, oxygen concentration
Introducing 10vol% oxygen-containing gas at 600NI/hr,
Reduces iron oxide in the catalyst. After approximately 0.5 hours, the catalyst is removed from the reactor. Next, using this catalyst, the residual oil is decomposed in one pass without repeating the circulation of the catalyst under the above conditions, but from the second time onwards, since the iron oxide in the catalyst has been reduced, A steam iron reaction also occurs at the same time, producing hydrogen. As described above, the decomposition and lightening of the residual oil, the steam iron reaction, and the reduction reaction of iron oxide in the catalyst were repeated. The results are shown in Table 1. Example 2 Fe48.5% by weight, Cr 2 O 3 3.91% by weight, SiO 2 1.88
% by weight of laterite ore was crushed into fine particles of 1 μm or less using a high-pressure air jet crushing classifier. This was kneaded, granulated, dried, and fired at 1050°C for 3 hours.
This was sized to 32 mesh to 150 mesh and used as a catalyst. This catalyst contains 57.1% by weight of iron as Fe,
Cr 2 O 3 is 4.46% by weight, SiO 2 is 1.93% by weight, and
The specific surface area was 5.2 m 2 /g, and the bulk specific gravity was 1.53. Further, the average particle size of the primary particles constituting this catalyst was 0.9μ. Using this catalyst, decomposition and lightening, steam iron reaction, and iron oxide reduction reaction were repeated in the same manner as in Example 1. The results are shown in Table 1. Example 3 A commercially available catalyst for CO gas shift reaction (G-3A manufactured by Nissan Girdler) was pulverized to 32 meshes or less,
It was fired at 1050°C for 3 hours and sized to 32 to 150 meshes. This catalyst contained 54.7% by weight of iron as Fe, 7.09% by weight of Cr 2 O 3 , and 0.10% by weight of SiO 2 , had a specific surface area of 1.2 m 2 /g, and a bulk specific gravity of 1.59. Furthermore, the particle size of the primary particles constituting the catalyst was 0.6μ. Using this catalyst, the same reaction as shown in Example 1 was repeated. The results are shown in Table 1. Comparative Example 1 70 g of sodium hydroxide was dissolved in 1000 ml of distilled water, heated to 40°C, and then an aqueous solution of 450 g of ferrous sulfate (FeSO 4 7H 2 O) dissolved in 850 ml of distilled water was added dropwise while passing nitrogen through the solution. did. The generated precipitate is washed by filtration, dried at 100℃, and ground to 32 mesh or less.
Fired at a temperature of 1050℃. 32 meals of this~
It was sized to 150 mesh and used as a catalyst. The composition is 58.0% by weight of iron as Fe, 0.04% by weight of Cr 2 O 3 ,
SiO2 was 0.04% by weight. Also, the specific surface area is
The particle size was 1.2 m 2 /g, the bulk specific gravity was 1.74, and the average particle size of the primary particles constituting the catalyst was 1.5 μ. Using this catalyst, the same reaction as in Example 1 was carried out. The results are shown in Table 2. Comparative Example 2 The amount of sodium dichromate in Example 1 was
The catalyst was prepared in exactly the same manner except that the amount was 75 g. The composition of the catalyst is 50.7% by weight of iron as Fe, Cr 2 O 3
12.3% by weight, SiO 2 0.05% by weight, specific surface area 1.9
m 2 /g and bulk specific gravity of 1.50. Further, the average particle size of the primary particles constituting the catalyst was 1.1 μm. Using this catalyst, the same reaction as in Example 1 was carried out. The results are shown in Table 2. Comparative Example 3 25g of commercially available acidic silica sol (concentration 20%) was added to the precipitate prepared in the same manner as in Example 1.
Kneaded for hours. This was dried at 100℃, crushed to 32 meshes or less, baked at 1050℃ for 3 hours, and then
The particles were sized to a mesh size of 32 to 32 meshes and used as a catalyst. The composition of this catalyst is 55.7% by weight as Fe, Cr 2 O 3
4.72 wt%, SiO 2 4.18 wt%, specific surface area 2.5
m 2 /g, and bulk specific gravity was 1.48. Further, the average particle size of the primary particles constituting the catalyst was 0.9μ. A reaction experiment similar to that in Example 1 was conducted using this catalyst. The results are shown in Table 2. Comparative example 4 Fe 48.5% by weight, Cr 2 O 3 3.91% by weight, SiO 2 1.88
% by weight of laterite ore was ground to 10μ or less using a ball mill, kneaded and granulated, dried, and then heated at a temperature of 1050°C for 30 minutes.
The catalyst was calcined for an hour and sized to 32 to 150 mesh. The composition is 55.7% by weight as Fe, 4.72% by weight as Cr 2 O 3 and 1.93% by weight as SiO 2 , and the specific surface area is
The area was 6.7 m 2 /g, and the bulk density was 1.69. In addition, the average particle size of the primary particles constituting this catalyst is 9μ
It was hot. A reaction experiment similar to that in Example 1 was conducted using this catalyst. The results are shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】 以上の結果から明らかなようにCr2O3が0.1重量
%以下の比較例1の触媒は、重質炭化水素の分解
活性が劣り、さらに水素の発生量も繰り返し使用
により減少する。又、Cr2O3が8重量%を越える
比較例2の触媒は、繰返し使用により水素の発生
量が低下する。これは、Cr2O3と鉄との固溶体生
成のためと思われる。 さらにSiO2が3重量%を越える比較例3の触
媒は繰り返し使用により、水素の発生が著しく減
少する。これはFeOとSiO2との複合酸化物形成
によるものと思われる。 触媒構成一次粒子が1μを越える比較例4の触
媒は、繰り返し使用により水素発生量が低下す
る。Cr2O3等骨格形成物質の分散が低下し、骨格
形成効果が減少するためと考えられる。
[Table] As is clear from the above results, the catalyst of Comparative Example 1 containing 0.1% by weight or less of Cr 2 O 3 has poor decomposition activity for heavy hydrocarbons, and furthermore, the amount of hydrogen generated decreases with repeated use. In addition, the catalyst of Comparative Example 2 in which Cr 2 O 3 exceeds 8% by weight decreases the amount of hydrogen generated by repeated use. This seems to be due to the formation of a solid solution between Cr 2 O 3 and iron. Furthermore, when the catalyst of Comparative Example 3 containing more than 3% by weight of SiO 2 is repeatedly used, hydrogen generation is significantly reduced. This seems to be due to the formation of a composite oxide of FeO and SiO 2 . The catalyst of Comparative Example 4, in which the primary particles constituting the catalyst exceed 1μ, exhibits a decrease in the amount of hydrogen generated by repeated use. This is thought to be because the dispersion of skeleton-forming substances such as Cr 2 O 3 decreases, and the skeleton-forming effect decreases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の触媒を適用することができ
る一例示プロセスの概念図である。第2図及び第
3図は、図示代用の写真であり、触媒粒子の電子
顕微鏡の二次電子像である。第2図は40倍、第3
図は1500倍である。
FIG. 1 is a conceptual diagram of one exemplary process to which the catalyst of the present invention can be applied. FIGS. 2 and 3 are photographs used as illustrations, and are secondary electron images of catalyst particles taken using an electron microscope. Figure 2 is 40x, Figure 3
The figure is 1500x magnified.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化状態で鉄がFeとして30〜60重量%,
Cr2O3が0.1〜8重量%,SiO2が3重量%以下を含
む組成で、かつ触媒構成一次粒子の平均粒径が
1μ以下であることを特徴とする重質炭化水素の
分解軽質化と水素の製造用触媒。
1 Iron in oxidized state is 30-60% by weight as Fe,
The composition contains 0.1 to 8% by weight of Cr 2 O 3 and 3% by weight or less of SiO 2 , and the average particle size of the primary particles constituting the catalyst is
A catalyst for decomposition and lightening of heavy hydrocarbons and production of hydrogen, characterized by a particle size of 1μ or less.
JP57175402A 1982-10-07 1982-10-07 Catalyst for cracking heavy hydrocarbon into light hydrocarbon and preparing hydrogen Granted JPS5966348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175402A JPS5966348A (en) 1982-10-07 1982-10-07 Catalyst for cracking heavy hydrocarbon into light hydrocarbon and preparing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175402A JPS5966348A (en) 1982-10-07 1982-10-07 Catalyst for cracking heavy hydrocarbon into light hydrocarbon and preparing hydrogen

Publications (2)

Publication Number Publication Date
JPS5966348A JPS5966348A (en) 1984-04-14
JPS638811B2 true JPS638811B2 (en) 1988-02-24

Family

ID=15995460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175402A Granted JPS5966348A (en) 1982-10-07 1982-10-07 Catalyst for cracking heavy hydrocarbon into light hydrocarbon and preparing hydrogen

Country Status (1)

Country Link
JP (1) JPS5966348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175617U (en) * 1988-05-23 1989-12-14

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507355B (en) * 2010-08-18 2015-11-11 Shiono Chemical Co Ltd Hydrogenation or rehydration of organic compounds, and dehalogenation of halogenated organic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175617U (en) * 1988-05-23 1989-12-14

Also Published As

Publication number Publication date
JPS5966348A (en) 1984-04-14

Similar Documents

Publication Publication Date Title
US4224140A (en) Process for producing cracked distillate and hydrogen from heavy oil
US2481217A (en) Process for a two-stage gaseous reduction of iron ore
US2752234A (en) Process for continuous gaseous reduction of iron ore in a fluidized bed system
JPS5836034B2 (en) Method for producing reduced iron through pyrolysis of heavy oil
CA2121942C (en) Process for the reactivation of nickel-alumina catalysts
JPS63170201A (en) Manufacture of mixed gas containing hydrogen and carbon monoxide by partial oxidation of supplied raw material
US2438584A (en) Preparation of nonsintered iron catalyst
US4308173A (en) Catalyst for cracking heavy hydrocarbons
JPS5827837B2 (en) Processing method for sulfur-containing heavy oil
JPH0454601B2 (en)
US2376191A (en) Chemical process
CA1142116A (en) Process for cracking heavy hydrocarbons into light oils and producing hydrogen
CN101821001B (en) Method for the preparation of hydrocarbon synthesis catalyst and the use thereof in hydrocarbon synthesis process
US3421884A (en) Method for carrying out gassolids reactions
JPS638811B2 (en)
CN102464299B (en) Method for producing hydrogen through fluidized-bed methane steam reforming
RU2258092C2 (en) Method of reducing laterite particles in reactor with bubbled fluidized bed to produce in situ reducing gas
US3364011A (en) Process for the production of iron by the direct reduction of iron oxide ore
US4147615A (en) Hot sand-coal-cracking to hydrodistillate fuels
JPS6339521B2 (en)
JPS6337042B2 (en)
JPS5832689A (en) Process for making reduced iron as well as pyrolysis of heavy oil
JP4340387B2 (en) Process for producing a mixture of iron carbide and granular directly reduced iron
NL2030295B1 (en) A method for producing iron fuel.
JPS5821952B2 (en) Method for producing light oil and hydrogen from heavy oil