JPS6388013A - Method and apparatus for separating particle in gas - Google Patents

Method and apparatus for separating particle in gas

Info

Publication number
JPS6388013A
JPS6388013A JP23400486A JP23400486A JPS6388013A JP S6388013 A JPS6388013 A JP S6388013A JP 23400486 A JP23400486 A JP 23400486A JP 23400486 A JP23400486 A JP 23400486A JP S6388013 A JPS6388013 A JP S6388013A
Authority
JP
Japan
Prior art keywords
gas
liquid
particles
porous body
suspended particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23400486A
Other languages
Japanese (ja)
Inventor
Takashi Kajitani
梶谷 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23400486A priority Critical patent/JPS6388013A/en
Publication of JPS6388013A publication Critical patent/JPS6388013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Particles Using Liquids (AREA)

Abstract

PURPOSE:To collect particles suspended in gas into a liquid, by allowing the gas containing suspended particles to pass through the gas permeable porous body immersed in the liquid to perform gas-liquid contact. CONSTITUTION:A pipe 1 has not only an exhaust port 2 and a liquid injection port 3 at the upper end thereof but also a gas introducing port 4 and a liquid discharge port 5 at the lower end thereof. The pipe 1 is packed with a gas permeable porous body M. A liquid L is injected in the pipe 1 from the liquid injection port 3 and the porous body M is sufficiently immersed in the liquid M. Gas A containing suspended particles is introduced in the pipe 1 by opening the gas introducing port 4 in such a state that the liquid injection port 3 and the liquid discharge port 5 are closed and the exhaust port 2 is opened. The gas A passes through the part packed with the porous body M and reaches the upper part of the pipe 1 to be discharged from the exhaust port 2. During this time, the suspended particles in the gas A transfer to the liquid L and the gas containing no suspended particles is obtained from the exhaust port 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体中に浮遊する粒子をその気体から分離す
る方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for separating particles suspended in a gas from the gas.

〔従来の技術〕[Conventional technology]

気体中に浮遊している粒子を気体から分離するために捕
集する技術は、一般に、濾過法、サイクロン法、慣性集
塵法、および電気集塵法に大別することができる。濾過
法は、含塵気体を、濾過体を通過させることにより、濾
過体上に粒子を付着させる方法である。サイクロン法は
含塵気体に遠心力を与えることにより、気体と粒子とを
遠心分離する方法である。慣性集塵法は、含塵気体を高
速度で壁面あるいは液面に衝突させ、粒子をその壁面に
付着させ、あるいは液体内に捕集する方法である。また
電気集塵法は、浮遊粒子を帯電させて、電極に吸引する
方法である。これらの従来−般に使用されてきた方法の
他、含じん気体を微細な気泡として分散させ、すべての
浮遊粒子がブララン運動によって気泡の表面に衝突して
液体の中に捕捉されるようにした方法がある。
Techniques for collecting particles suspended in a gas to separate them from the gas can generally be broadly classified into a filtration method, a cyclone method, an inertial precipitator method, and an electrostatic precipitator method. The filtration method is a method in which particles are deposited on a filter by passing a dust-containing gas through the filter. The cyclone method is a method of centrifugally separating gas and particles by applying centrifugal force to dust-containing gas. The inertial dust collection method is a method in which dust-containing gas collides with a wall or liquid surface at high velocity, and particles are attached to the wall or collected in the liquid. Further, the electrostatic precipitation method is a method in which suspended particles are charged and attracted to an electrode. In addition to these conventionally used methods, the dust-containing gas is dispersed as fine bubbles, and all suspended particles are trapped in the liquid by impacting the surface of the bubbles with a bran motion. There is a way.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の各方法のうち、濾過法、サイクロン法、慣性集塵
法の王者は1粒径が大きい場合には集塵効果は大きいが
、粒径が小さくなるほど集塵が困難になり、これらの三
方法のいずれによっても、0.1μm以下の粒径の粒子
はほとんど捕集不可能となる。また、電気集塵法では帯
電しにくい粒子には適用できないという欠点がある。
Among the above-mentioned methods, the filtration method, cyclone method, and inertial dust collection method are the kings.If the particle size is large, the dust collection effect is large, but as the particle size becomes smaller, the dust collection becomes more difficult. Regardless of the method, particles with a particle size of 0.1 μm or less are almost impossible to collect. Furthermore, the electrostatic precipitator method has the disadvantage that it cannot be applied to particles that are difficult to charge.

上記の欠点を克服するものとして、浮遊粒子を含有する
気体を、液体中に導入するとともに、激しく攪拌して細
かい気泡として分散させ、浮遊粒子がそのブラウン運動
によって、短時間の内に全部が液体と気体との界面へ衝
突できるようにし、粒子の種類を問わず、また粒径が数
nm以下の超微粒子まで十分捕集できる方法が最近発明
された。
In order to overcome the above drawbacks, a gas containing suspended particles is introduced into a liquid, and the suspended particles are dispersed as fine bubbles by vigorous stirring. Recently, a method has been invented which allows particles to collide with the interface between particles and gas, and which can sufficiently collect particles of any type, even ultrafine particles with a particle size of several nanometers or less.

しかしこの方法は、捕集すべき粒子を含む気体を、液体
中に細かい気泡として分散させることが必要で、そのた
め高速回転の攪拌機などが使用され、そのエネルギーの
相当部分が熱となり、その結果この液体は温度が上昇し
で、気化し易くなり、−たん捕集した微粒子の一部を気
体中に放出するようになる。またこの方法は機構的に大
型化が困難である。本発明は上記に鑑みて、数71 m
がら数nm以下の広範囲の間の粒径の微粒子を気体から
分離することができ、また、−たん捕集した粒子の再放
出がなく、エネルギーの消費も少なく、また大型化の可
能な、新規な方法と装置を提供するのを目的とする。
However, this method requires that the gas containing the particles to be collected be dispersed in the liquid as fine bubbles, so a high-speed rotating stirrer is used for this purpose, and a considerable portion of the energy is converted into heat, resulting in this As the temperature of the liquid increases, it becomes easier to vaporize, and some of the collected particles are released into the gas. In addition, this method is mechanically difficult to scale up. In view of the above, the present invention has been developed by
It is a new technology that can separate fine particles with a wide range of particle sizes from a few nanometers or less from gases, does not re-emit the collected particles, consumes less energy, and can be made larger. The purpose is to provide a method and apparatus for

〔問題点を解決するための手段〕[Means for solving problems]

第1の発明の、気体中の浮遊粒子の分離の方法は、実施
例図面である第1図に示す如く、管1の中に充填され液
体りに浸漬された通気性多孔体Mに、管1の下端にある
気体導入口4から浮遊粒子を含有する気体Aを導入して
、通気性多孔体Mの充填されている部分を通過させるこ
とにより、浮 ゛遊粒子を液体り中に捕集分離し、上端
の排気口2より浮遊粒子の除去された気体を得る。
As shown in FIG. 1 which is an embodiment drawing, the method of separating suspended particles in a gas according to the first invention is as follows. Gas A containing suspended particles is introduced from the gas inlet 4 at the lower end of 1, and is passed through the filled part of the breathable porous body M, thereby collecting the suspended particles in the liquid. The gas from which suspended particles have been removed is obtained from the exhaust port 2 at the upper end.

第2の発明の気体中の浮遊粒子の分離装置を。A device for separating suspended particles in a gas according to a second invention.

第1図を参照しつつ説明する。This will be explained with reference to FIG.

管1は、上端に排気口2および注液口3を、下端に気体
導入口4および排液口5を有し、これら4個の各日はい
ずれも活栓を有している。管lの下端から少し上った部
位から管の上部にいたる部分には通気性多孔体Mが充填
されている。注液口3から多孔体Mをよく濡らす液体り
を注入し、多孔体Mを十分浸漬しかつその上に若干の液
層が存在するようにする。注液口3および排液口5は閉
じておき、排気口2を開いておいて、浮遊粒子を含む気
体Aを気体導入口4を開いて導入する。気体Aは多孔体
Mの充填されている部分を通過し、管1の上部に達して
排気口2へ排出されるが、この間に気体A中の浮遊粒子
は液体り中に移行し、排気口2からは浮遊粒子を含まな
い気体が得られる。
The tube 1 has an exhaust port 2 and a liquid inlet 3 at its upper end, and a gas inlet 4 and a drain port 5 at its lower end, each of which has a stopcock. An air-permeable porous material M is filled in a portion from a portion slightly above the lower end of the tube 1 to the upper portion of the tube. A liquid that thoroughly wets the porous body M is injected from the liquid injection port 3 so that the porous body M is sufficiently immersed and a slight liquid layer is present on it. The liquid injection port 3 and the liquid drain port 5 are closed, the exhaust port 2 is left open, and the gas A containing suspended particles is introduced by opening the gas introduction port 4. Gas A passes through the filled part of the porous body M, reaches the upper part of the pipe 1, and is discharged to the exhaust port 2. During this time, suspended particles in the gas A move into the liquid, and are discharged from the exhaust port. 2 yields a gas free of suspended particles.

〔作用〕[Effect]

気体導入口4から導入された気体Aは、液体りによって
浸漬された多孔体き、4を通過するが、多孔体Mは第2
図の模式的縦断面に示すように、多くの毛細管が立体的
に張りめぐらされた構造をしていて、導入された気体は
その毛細管の中を細かい多数の気泡Bとなって上方へ通
過する。多孔体Mは液体りによく濡れるので、液体りに
浸漬されている多孔体Mの孔の内面は液体りでおおわれ
でおり、多孔体Mの中に入った気泡Bはすべて周囲を液
体りによって、とり囲まれていることになる。
Gas A introduced from the gas inlet 4 passes through the porous body 4, which is immersed in the liquid, but the porous body M passes through the second porous body M.
As shown in the schematic vertical cross section of the figure, many capillaries are arranged in a three-dimensional structure, and the introduced gas forms a large number of fine bubbles B and passes upward through the capillaries. . Since the porous body M is easily wetted by liquid, the inner surface of the pores of the porous body M that is immersed in the liquid is covered with the liquid, and all the air bubbles B that have entered the porous body M are surrounded by the liquid. , will be surrounded.

気体A内に浮遊しでいる粒子がこの気泡B内から液体り
の中に移行して捕集されるためには、粒子が気泡Bをと
り囲む液体りに接触(衝突)する必要がある。浮遊粒子
は一般にブラウン運動を行なうが、その運動は粒径が小
さいほど活発である。
In order for the particles suspended in the gas A to move from the bubble B into the liquid and be collected, the particles need to come into contact with (collide with) the liquid surrounding the bubble B. Floating particles generally perform Brownian motion, and the smaller the particle size, the more active this motion is.

従って気泡に閉じこめられた粒径の小さい粒子は、大き
い粒子より液体りと接触する機会が多い。
Therefore, smaller particles trapped in air bubbles have more opportunities to come into contact with liquid than larger particles.

しかし気泡Bを細かくすると、粒径の大きい粒子も液体
りとの接触の機会も多くなり、粒径の大きい、ブラウン
運動の活発でない粒子の液体りとの接触の機会も増大す
る。
However, when the bubbles B are made smaller, particles with a large particle size also have more opportunities to come into contact with the liquid, and particles with a large particle size and inactive Brownian motion also have an increased chance of contact with the liquid.

〔実施例〕〔Example〕

次に本発明実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明実施例の縦断面である。FIG. 1 is a longitudinal section of an embodiment of the present invention.

管1は上部と下部に蓋を有しており、上部の着には排気
口2と注液口3が、下部の蓋には気体導入口4と排液口
5が設けられている。これら4個の口はいずれも活栓を
有しでいて、これらの活栓をすべて閉じると、管1は密
閉される。管1の下端から少し上った位置6と、管1の
上端から若干下った位置7には、粗い目の網Nを水平に
保持できるように構成されている。6に位置に固定され
た網の上に通気性多孔体Mt7の位置まで充填し上を網
で押え、この網を7の位置に保持する。
The tube 1 has an upper and a lower lid, and the upper lid is provided with an exhaust port 2 and a liquid inlet 3, and the lower lid is provided with a gas inlet 4 and a liquid drain 5. Each of these four ports has a stopcock, and when all these stopcocks are closed, the tube 1 is sealed. A position 6 slightly above the lower end of the tube 1 and a position 7 slightly below the upper end of the tube 1 are configured so that a coarse mesh N can be held horizontally. The net fixed at position 6 is filled up to the position of the breathable porous body Mt7, and the top is pressed down with the net to hold this net at position 7.

以上の本発明実施例において、排気口2および注液口3
のみを開いておき、注液口3から、多孔体Mをよく濡ら
す液体を注入し、多孔体Mを浸漬した上、7の位置の網
の上にさらに若干の液層が存在するようにする。注液口
3を閉じ、気体導入1コ4を開き、気体Aを加圧するか
、もしくは排気口2から吸引することによって、気体A
を管1の下部に入れ、更に通気性多孔体Mが充填されて
いる部分に導入する。気体Aは多孔体Mによって微細な
気泡に分割されるが、液体りは多孔体Mをよく濡らす液
体を選んであるので、多孔体Mの孔の壁面はすべて液体
りによって覆われており、気泡は直接多孔体Mの壁面に
接することなく、液体りにとり囲まれていることになる
。気体の中に浮遊しでいる粒子が、液体に接触するとこ
の粒子は液体中に取り込まれ、いわゆる洗浄集塵作用を
呈するが、気泡内の浮遊粒子はブラウン運動によって液
体してできている壁面に接触する磯会を持つことになる
。気泡内の浮遊粒子が全部液体り中に移行するのには、
気泡の大きさく長細い気泡の場合は太さ)が十分少さい
ことと、液体り中での滞留時間が十分なことが必要であ
るが、気泡の径を1mm程度にすると、数μm程度の比
較的大きい浮遊粒子でも、多孔体Mt通過する間に、は
とんど全部液体りに移行させることができる。多孔体M
を通過する気泡の大きさと、多孔体中での滞留時間  
 ”は、多孔体の孔の径の大きさと、気体Aが単位時間
に導入される量によって決定されるが、多孔体Mの孔の
径も、気体Aの単位時間当りの導入量も制御できる量で
あり、したがってこれらの量を制御することによって、
気泡B内の浮遊粒子をほとんど全部液体りに移行せしめ
、はぼ完全に分離し捕集することが可能である。なお本
実施例においては、排気口と気体導入口における気圧差
が300mmAq程度で、正常に運転され所期の結果が
得られた。
In the above embodiments of the present invention, the exhaust port 2 and the liquid injection port 3
3, and inject a liquid that thoroughly wets the porous body M from the liquid injection port 3, immersing the porous body M, and leaving a slight liquid layer on the mesh at position 7. . Close the liquid injection port 3, open the gas introduction port 4, and pressurize the gas A, or suck it from the exhaust port 2 to remove the gas A.
is introduced into the lower part of the tube 1, and further into the part filled with the breathable porous material M. Gas A is divided into fine bubbles by the porous body M, but since the liquid is selected to wet the porous body M well, all the walls of the pores of the porous body M are covered with the liquid, and the bubbles are is not in direct contact with the wall surface of the porous body M, but is surrounded by the liquid. When particles suspended in a gas come into contact with a liquid, they are taken into the liquid and exhibit a so-called cleaning and dust collection effect, but the particles suspended in the air bubbles are moved to the walls made of the liquid due to Brownian motion. You will have an Isokai that you will be in contact with. For all the suspended particles in the bubbles to move into the liquid,
In the case of large, long and thin bubbles, it is necessary that the diameter of the bubbles be sufficiently small and that the residence time in the liquid is sufficient. Even relatively large suspended particles can be almost entirely transferred to the liquid while passing through the porous body Mt. Porous body M
The size of the bubbles passing through and the residence time in the porous material
" is determined by the size of the pores of the porous body and the amount of gas A introduced per unit time, but the diameter of the pores of the porous body M and the amount of gas A introduced per unit time can also be controlled. quantities, and therefore by controlling these quantities,
Almost all of the suspended particles in the bubble B are transferred to the liquid, and it is possible to completely separate and collect them. In this example, the pressure difference between the exhaust port and the gas inlet port was approximately 300 mmAq, and the device was operated normally and the expected results were obtained.

気体Aを通過させ、多孔体M内に保持されている液体に
、捕集された粒子の濃度が高くなって、液体りによる浮
遊粒子の捕集能力が低下した場合は、注液口3から液体
を圧入するとともに、排液口5を開き、液体りの捕集能
力の落ちた部分を。
If the concentration of particles collected in the liquid held in the porous body M by passing the gas A becomes high and the ability of the liquid to collect suspended particles decreases, the liquid is injected from the liquid injection port 3. While pressurizing the liquid, open the liquid drain port 5 and drain the area where the liquid collection ability has decreased.

新鮮なものと交換することができる。It can be replaced with a fresh one.

なお、通気性多孔体Mは、管に充填して気体を通過させ
た場合、この気体を分割して微細な気泡あるいは細い気
柱として通過することを強制するものであればよく、海
綿状の物質の他、砂状、チップ状または繊維状のものを
管1に充填したものか、あるいは、細い柱状体または毛
細管を管1の長さの方向に並列に充填したものを、通気
性多孔体Mとして使用することができる。
In addition, the breathable porous material M may be any material that, when filled into a pipe and allows gas to pass through, splits the gas and forces it to pass through as fine bubbles or thin air columns. In addition to the substance, the tube 1 is filled with sand, chips, or fibers, or the tube 1 is filled with thin columnar bodies or capillaries in parallel in the length direction of the tube 1. It can be used as M.

気体A中の浮遊粒子を十分に液体り中に捕集するには、
浮遊粒子の表面を濡らし易い液体を、液体りとして選ぶ
が、液体りは多孔体Mの孔の内壁の表面をよく濡らすも
のでなければならない。それで気体から除去すべき浮遊
粒子の界面化学的性質によって、液体りと多孔体Mを選
択する必要がある。この選択が適切であれば、本発明の
方法はほとんどすべての質の粒子の分離に適用できる。
In order to sufficiently collect suspended particles in gas A in liquid,
A liquid that easily wets the surface of the suspended particles is selected as the liquid, but the liquid must be able to wet the inner wall surfaces of the pores of the porous body M well. Therefore, it is necessary to select the liquid and the porous body M depending on the surface chemistry of the suspended particles to be removed from the gas. If this choice is appropriate, the method of the invention can be applied to the separation of almost any quality of particles.

また液体りの性質によっては、浮遊粒子を除去できるだ
けでなく、気体Aからその幾つかの気体成分(例えば空
気中の硫黄酸化物や窒素酸化物)を液体りに吸収して除
去することもできる。
Also, depending on the properties of the liquid, it is possible not only to remove suspended particles, but also to remove some gaseous components (for example, sulfur oxides and nitrogen oxides in the air) from gas A by absorbing them into the liquid. .

なお、本発明の方法ならびに装置は、濾過および濾過の
装置に似て見えるが、濾過は第3図のように、濾過体の
網目より大きい粒子を、濾過体自身によって通過を阻止
しで捕捉するか、第4図のように、濾過体のある程度の
目づまりが、濾過体の網目よりも小さい粒子をも捕捉す
ることを可能にするものである。これに対して1本発明
における通気性多孔体は濾過における濾過体に似ていて
も、この通気性多孔体を貫通している孔の径は。
Note that the method and device of the present invention look similar to filtration and filtration devices, but as shown in FIG. Alternatively, as shown in FIG. 4, a certain degree of clogging of the filter makes it possible to trap even particles smaller than the mesh of the filter. On the other hand, even though the breathable porous body of the present invention is similar to a filter body used in filtration, the diameter of the pores penetrating this breathable porous body is small.

捕集すべき粒子の径に比してはるかに大ぎく、多孔体そ
のものが直接捕集すべき粒子の通過を阻止するものでは
なく1本発明の方法および装置は濾過とは全く作用機構
を異にするものである。
The diameter of the porous material is much larger than that of the particles to be collected, and the porous body itself does not directly prevent the particles from passing through.The method and device of the present invention have a completely different mechanism of action from filtration. It is something to do.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、捕集すべき粒子
が浮遊している気体を、液体に浸漬した通気性多孔体を
通過させて1粒子と液体との接触機会を多くすることに
よって1粒子を液体中に捕集分離し得るし、適切な液体
の選択により、はとんどあらゆる種類の質の粒子の捕集
が可能であり。
As explained above, according to the present invention, the gas in which the particles to be collected are suspended is passed through an air permeable porous body immersed in a liquid to increase the chances of each particle coming into contact with the liquid. One particle can be collected and separated in a liquid, and by selecting an appropriate liquid, particles of almost any quality can be collected.

また本発明の方法で捕集され得る粒子の大きさは。Also, what is the size of particles that can be collected by the method of the present invention?

径が数μmから数nm以下の従来の方法に見られぬ広範
囲にわたるのである。また更に混合気体の成分である気
体を分離して除去することも、適切な液体の選択によっ
て可能である。
The diameter ranges from several μm to several nanometers, which is not seen in conventional methods. Furthermore, it is also possible to separate and remove gases that are components of the gas mixture by selecting an appropriate liquid.

また本発明の方法と装置は、濾過法における目づまり、
サイクロン法における011μm以下の径の粒子の捕集
の困難さ、電気集塵法における帯電しにくい粒子の捕集
の困難さなど、従来、実用に供されてきた集塵方法の短
所のすべてを解決した。また運転に要するエネルギーも
従来の実用的な方法より多くなく、装置の構造も簡単で
故障も起りにくい。
The method and apparatus of the present invention also prevent clogging in filtration methods.
Solved all of the shortcomings of conventional dust collection methods, such as the difficulty in collecting particles with a diameter of 0.11 μm or less in the cyclone method, and the difficulty in collecting particles that are difficult to charge in the electrostatic precipitator method. did. In addition, the energy required for operation is less than that of conventional practical methods, the structure of the device is simple, and failures are less likely to occur.

本発明は、空気清浄機、分析用サンプラー、更に微粉末
製造工程における回収機としでも応用可能である。
The present invention can be applied as an air cleaner, an analytical sampler, and a recovery machine in a fine powder manufacturing process.

4、図の簡単な説明 第1図は本発明の実施例の縦断面図、第2図は本発明の
実施例の運転時における通気性多孔体の部分を拡大して
メカニズムを示す模式的縦断面図、第3図および第4図
は濾過における濾過体の作用を示す図である。
4. Brief explanation of the figures Figure 1 is a longitudinal sectional view of the embodiment of the present invention, and Figure 2 is a schematic longitudinal sectional view showing the mechanism of the embodiment of the present invention by enlarging the part of the permeable porous body during operation. The top view, FIGS. 3 and 4 are diagrams showing the action of the filter body in filtration.

1・・・・・・管       2・・・・・・排気口
3・・・・・・注液口     4・・・・・・気体導
入口5・・・・・・排液口     6・・・・・・下
の網保持具7・・・・・・上の網保持具 A・・・・・・被処理気体   A・・・・・・処理後
の気体B・・・・・・気泡      L・・・・・・
液体M・・・・・・通気性多孔体  F・・・・・・濾
過体P・・・・・・粉状粒子 特許出願人   梶 谷    敬 マ1t′A
1...Pipe 2...Exhaust port 3...Liquid inlet 4...Gas inlet 5...Drain port 6... ...Lower net holder 7...Upper net holder A...Gas to be treated A...Gas after treatment B...Bubble L...
Liquid M...Breathable porous body F...Filter P...Powder particle Patent applicant Keima Kajitani 1t'A

Claims (2)

【特許請求の範囲】[Claims] (1)気体中に浮遊する粒子をその気体から分離する方
法であって、浮遊粒子を含む気体を、液体に浸漬した通
気性多孔体中を通過せしめ、上記気体中の浮遊粒子と上
記液体との接触により、上記浮遊粒子を上記気体内から
上記液体内に捕集することを特徴とする、気体中の粒子
分離方法。
(1) A method for separating particles suspended in a gas from the gas, in which the gas containing the suspended particles is passed through a porous body immersed in a liquid, and the suspended particles in the gas are separated from the liquid. A method for separating particles in a gas, characterized in that the suspended particles are collected from the gas into the liquid by contact with the liquid.
(2)一端に排気口、他端に気体導入口を有し、通気性
多孔体を充填した管に、液体を注入して上記の通気性多
孔体を浸漬しておき、上記の管の内部は上記の排気口と
気体導入口を通じてのみ外部に通じているという状態に
しておいて、上記気体導入口から、浮遊粒子を含む気体
を導入して上記通気性多孔体を通過させることによって
上記浮遊粒子を上記液体中に捕集し、上記の排気口から
浮遊粒子が除去された気体を得るように構成された気体
中の粒子分離装置。
(2) A liquid is injected into a tube that has an exhaust port at one end and a gas inlet at the other end and is filled with a breathable porous material, and the above-mentioned breathable porous material is immersed. is connected to the outside only through the above-mentioned exhaust port and gas inlet, and the above-mentioned suspended particles are removed by introducing a gas containing suspended particles from the gas inlet and passing through the permeable porous body. An apparatus for separating particles in a gas, configured to collect particles in the liquid and obtain a gas from which suspended particles are removed from the exhaust port.
JP23400486A 1986-10-01 1986-10-01 Method and apparatus for separating particle in gas Pending JPS6388013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23400486A JPS6388013A (en) 1986-10-01 1986-10-01 Method and apparatus for separating particle in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23400486A JPS6388013A (en) 1986-10-01 1986-10-01 Method and apparatus for separating particle in gas

Publications (1)

Publication Number Publication Date
JPS6388013A true JPS6388013A (en) 1988-04-19

Family

ID=16964046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23400486A Pending JPS6388013A (en) 1986-10-01 1986-10-01 Method and apparatus for separating particle in gas

Country Status (1)

Country Link
JP (1) JPS6388013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721515A (en) * 2014-01-03 2014-04-16 大连市锦泽精密模具有限公司 Air purification exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721515A (en) * 2014-01-03 2014-04-16 大连市锦泽精密模具有限公司 Air purification exchanger
CN103721515B (en) * 2014-01-03 2015-08-12 大连市锦泽精密模具有限公司 A kind of air cleaning exchanger

Similar Documents

Publication Publication Date Title
US3505785A (en) Superficially porous supports for chromatography
US20020160518A1 (en) Microfluidic sedimentation
US4012209A (en) Liquid film target impingement scrubber
CN110193215A (en) A kind of method and device gas force closed type extraction and/or purified
JP2005098704A (en) Method for fractionating particulate of different specific gravity
US7662217B2 (en) Soil separator and sampler and method of sampling
JPS6133251A (en) Extractor for liquid phase of suspension
Walsh Recent advances in the understanding of fibrous filter behaviour under solid particle load
KR100312018B1 (en) Double Cyclone for Removing Dust
JPS6388013A (en) Method and apparatus for separating particle in gas
JPS585085B2 (en) Upflow moving bed filtration equipment
US3823602A (en) Sampling device
US4163649A (en) Collection of fine particles from a gas stream by moving the gas stream upward through a shallow bed of solid granules
McCarthy et al. Miltistage fluidized bed collection of aerosols
JP2002506390A (en) Mechanical separator for gaseous effluent stream and corresponding manufacturing method
JP2009209094A (en) Microchip for protein extraction, protein extraction apparatus, protein measurement apparatus, protein extraction method using them, and air conditioner
JPS6041295B2 (en) Device for collecting dispersed phase from moving mixed phase
US20200108395A1 (en) Methods for the filtration of small-volume heterogeneous suspensions in a digital microfluidic device
JPS6372323A (en) Exhaust gas desulfurizing method
Gimenes et al. A model for particle collection in a turbulent bed contactor—New packings
US11559808B2 (en) Microfluidic device
CN102872668A (en) Agglomerate cyclone separator
JPS61200832A (en) Method and apparatus for separating particle in gas
JPH0725231Y2 (en) Mist separator
SU797743A1 (en) Adsorber