JPS6387506A - Layer height indicator of fluidized bed boiler - Google Patents

Layer height indicator of fluidized bed boiler

Info

Publication number
JPS6387506A
JPS6387506A JP22958586A JP22958586A JPS6387506A JP S6387506 A JPS6387506 A JP S6387506A JP 22958586 A JP22958586 A JP 22958586A JP 22958586 A JP22958586 A JP 22958586A JP S6387506 A JPS6387506 A JP S6387506A
Authority
JP
Japan
Prior art keywords
fluidized bed
pipe
air
boiler
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22958586A
Other languages
Japanese (ja)
Inventor
Hideo Yashima
八島 秀男
Kyoichi Yorozu
萬 強一
Shigenobu Takada
高田 茂伸
Masahiko Tanabe
田辺 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP22958586A priority Critical patent/JPS6387506A/en
Publication of JPS6387506A publication Critical patent/JPS6387506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To facilitate the operation of the boiler by placing a plurality of horizontal pipes in the fluidized bed and a hollow tower part, to make air flows within the tubes uniform and to indicate an outlet temperature on a screen. CONSTITUTION:Air which has passed through a pipeline 8 is supplied to a wind box 2 of the fluidized bed boiler 1, and a fluidizing medium of a porous plate 3 is fluidized to form a fluidized bed 4. Within the bed a heat transfer tube 15 for generating steam and an overheated steam tube group 16 are provided. A branched pipe 8' of the pipeline 8 supplies air from a blower 18 to an upright header 9. One end of each of horizontal pipes 5a-5e is connected to the header 9, and the other end thereof forms an outlet pipe which is provided with valves 6a-6e and flowmeters 14a-14e, and is connected to an outlet pipe header 11. The temperature of air in the outlet pipe is indicated on a screen indicator 13 from temperature transmitters 7a-7e via a control box 12. Since the measurement of the temperature is not conducted using steam but is conducted using air so that even when a measuring pipe is damaged, it does not lower the efficiency of the boiler and also does not cause the stoppage of the boiler.

Description

【発明の詳細な説明】 〈産業上の利用分野さ この発明は、流動層燃焼装置に係り、特に流動層ボイラ
に於ける蒸発量と蒸気温度過熱蒸気温度制御に関連する
流動媒体の層高を監視制御するのに好適な層高指示装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fluidized bed combustion apparatus, and in particular to a method for controlling the bed height of a fluidized medium related to evaporation amount and steam temperature superheated steam temperature control in a fluidized bed boiler. The present invention relates to a height indicating device suitable for monitoring and controlling.

〈従来の技術及びその問題点〉 従来の流動層燃焼装置の流動層層高監視装置は、第4図
に示すように、ウィンドボックスと層外の圧力を検出し
この圧力差から流動層高を算出する方法をとっていた。
<Prior art and its problems> As shown in Fig. 4, the fluidized bed height monitoring device of the conventional fluidized bed combustion equipment detects the pressure between the wind box and the outside of the bed, and calculates the fluidized bed height from this pressure difference. I used a calculation method.

しかし圧力変動が激しく正確な圧力差が得られない点及
び、層差圧が媒体の比重によって異な多層差圧のみで流
動層高が一義的に決定されない点については配慮がされ
ていなかった。
However, no consideration was given to the fact that pressure fluctuations are large and accurate pressure differences cannot be obtained, and that the height of the fluidized bed is not uniquely determined only by the multi-layer pressure difference, which varies depending on the specific gravity of the medium.

また第5図に示すように、層内の基準層圧を検出し層内
下部と層外の圧力差から層高を算出する方法があるが、
これも層内の圧力検出用ドラフト座に媒体が詰まったり
、層差圧が変動し正確な値が得られない点については配
慮されていなかった。なお、この種の装置としては、例
えば特開昭56−46901 (詔56.4.28公開
)のものがあるが、これは直管を水平かつ多段に配置し
夫々の管の中に水、蒸気を流し出口の温度検出により層
高を管理するものである。しかしこの検出管が摩耗した
シ破iした場合は、層内に水、蒸気を噴出することにな
夛、ボイラ等の運転が安全かつ安定したものにならない
と言う欠点がある。
Additionally, as shown in Figure 5, there is a method of detecting the standard layer pressure within the layer and calculating the layer height from the pressure difference between the lower part of the layer and the outside.
This also did not take into account the fact that the draft seat for pressure detection in the layer would be clogged with media, and that the differential pressure between layers would fluctuate, making it impossible to obtain accurate values. An example of this type of device is JP-A-56-46901 (published on April 28, 1983), which has straight pipes arranged horizontally and in multiple stages, and each pipe contains water and water. The height of the layer is controlled by flowing steam and detecting the temperature at the outlet. However, if this detection tube wears out and breaks, water and steam will be ejected into the layer, making the operation of the boiler etc. unsafe and unstable.

上記従来の技術は、流動用圧力気体の吹き抜け、沸騰状
の流動形成により流動層圧力変動が激しい点、層内の圧
力検出管に対しては流動媒体が詰まる点及び、層差圧が
流動媒体の比重によ)異なる点について特に配置される
ことなく正確な層高が把握されないという問題であった
The above-mentioned conventional technology has the following points: the fluidized bed pressure fluctuates rapidly due to the blow-through of the fluidizing pressure gas and the formation of boiling fluid, the fluidic medium clogs the pressure detection tube in the bed, and the bed differential pressure The problem was that the exact height of the layer could not be determined because different points (depending on the specific gravity of the layer) were not specifically arranged.

〈発明の目的〉 この発明の目的は正しい層高の計測をしこれを画面表示
する等して流動層ボイラの負荷制御蒸気温度制御を容易
にする装置を提供するにある。
<Object of the Invention> An object of the present invention is to provide a device that facilitates load control and steam temperature control of a fluidized bed boiler by measuring the correct bed height and displaying the measurement on a screen.

く手段の概要〉 流動層及び空塔部に複数の管を水平に配置し、この管内
を流れる空気の流量を6管とも均一にし出口部の空気温
度をブラウン管等を用い画面表示し、流動層ボイラの運
転を容易にしたものである。
Overview of the means for achieving this> A plurality of tubes are arranged horizontally in the fluidized bed and the empty tower section, the flow rate of the air flowing inside these tubes is made uniform for all six tubes, and the air temperature at the outlet section is displayed on a screen using a cathode ray tube, etc. This makes the boiler easier to operate.

〈実施例) 第1〜6図はこの発明の一実施例にかかる流動層ボイラ
な燃焼装置とする装置の構造を示す図面である。
Embodiment FIGS. 1 to 6 are drawings showing the structure of a fluidized bed boiler combustion apparatus according to an embodiment of the present invention.

流動層ボイラ1の風箱2へは送風機18から流動用と燃
焼用に使用される圧力空気が管路8より供給される。多
孔板3上の流動媒体(砂等)はこの圧力空気によp#、
勧化され流動層4を形成する。層内には伝熱管群15が
設けられ、図示しない燃料供給装置より供給される燃料
の燃焼による熱を吸収し蒸気を発生する。また過熱蒸気
管群16(通常蒸発器管群と同様層内に分散配置する)
も流動層内に設けられる。
Pressurized air used for fluidization and combustion is supplied from a blower 18 to the wind box 2 of the fluidized bed boiler 1 through a pipe 8. The fluid medium (sand, etc.) on the perforated plate 3 is p#,
fluidized bed 4 is formed. A heat transfer tube group 15 is provided within the layer, and absorbs heat from combustion of fuel supplied from a fuel supply device (not shown) to generate steam. Also, superheated steam pipe group 16 (normally distributed within the layer like the evaporator tube group)
is also provided within the fluidized bed.

流動層内での伝熱管への熱伝達率は200〜250Ka
d/m2−ん・℃程度であシ、層外の空塔部での熱伝達
率はこれより遥かに小さく 50Km/m2・h・℃程
度である。
The heat transfer coefficient to the heat transfer tube in the fluidized bed is 200 to 250 Ka.
The heat transfer coefficient in the void space outside the layer is much smaller, about 50 Km/m2-h-°C.

一方流動層内の温度は燃料の自燃の継続、またNOx発
生を防止する見地より約800〜850℃に保持される
。従って燃料の供給量の制御による蒸発量、及び過熱蒸
気温度の制御は流動層内に浸漬する伝熱管の面積の増減
に依存することとなるので、流動層の深さ、即ち層高(
H)を確認し制御することが重要な課題となる。
On the other hand, the temperature within the fluidized bed is maintained at approximately 800 to 850°C from the viewpoint of continuing self-combustion of the fuel and preventing the generation of NOx. Therefore, controlling the amount of evaporation and superheated steam temperature by controlling the amount of fuel supplied depends on the increase or decrease in the area of the heat exchanger tubes immersed in the fluidized bed, so the depth of the fluidized bed, that is, the bed height (
Confirming and controlling H) is an important issue.

流動層の層高は図示しない流動媒体の供給装置、抜き出
し装置により行なわれる。
The bed height of the fluidized bed is controlled by a fluidized medium supplying device and a drawing device (not shown).

この実施例においては層高検出用の水平管5α。In this embodiment, a horizontal pipe 5α is used for layer height detection.

5b、5c、5d、5g (5a’ 5b’ 5c’ 
5d’ 5a’ )は等レベル間隔S(第2図)(要す
れば定格運転時の層表面近唐についてはS寸法を小にし
て、より変動を配置する。また管内を流れる空気との熱
交換に充分な時間を得る通路長さ確保のため図示の如く
U型に折曲げした管としてよい。
5b, 5c, 5d, 5g (5a'5b'5c'
5d'5a') is an equal level interval S (Fig. 2) (if necessary, the S dimension should be made smaller near the layer surface during rated operation, and the variation should be more arranged. In order to ensure a passage length sufficient for replacement, the tube may be bent into a U shape as shown in the figure.

管路8より分岐する管8′は直立するヘッダ9に送風機
18からの圧力空気を供給する。
A pipe 8' branching from the pipe line 8 supplies pressurized air from a blower 18 to an upright header 9.

水平管5α〜5e(5α′〜58′)の−の管端はこの
ヘッダ9に接続し、他の端部に接続する出口管には弁6
α〜6eと流量計14α〜14gが夫々に設けられる。
The - pipe ends of the horizontal pipes 5α to 5e (5α' to 58') are connected to this header 9, and the outlet pipes connected to the other ends are provided with valves 6.
α to 6e and flowmeters 14α to 14g are provided respectively.

この出口管は更に出口ヘッダ11に接続する。This outlet pipe further connects to an outlet header 11.

なお装置起動前に管内を流れる空気の流速を各水平管相
互に均等にし熱伝達条件を同じくするため管内の流速を
表示する流量計内の浮子を監視し弁6α〜6eの開度を
調節する。
Before starting the device, in order to equalize the flow velocity of air flowing through the pipes in each horizontal pipe and to make the heat transfer conditions the same, monitor the float in the flow meter that displays the flow velocity in the pipes and adjust the opening degrees of valves 6α to 6e. .

浮子20は透明なガラス管19で、その内径は下側を小
、上側を大にしたものの内に収容されている。浮子の外
周には小さなスリット17が軸心に斜めに刻まれておシ
、気体がガラス管内を流れると回転しながら流量に応じ
た安定した位置に浮き上がる。
The float 20 is housed in a transparent glass tube 19 whose inner diameter is smaller at the bottom and larger at the top. A small slit 17 is cut diagonally to the axis on the outer circumference of the float, and when gas flows through the glass tube, the float rotates and floats to a stable position according to the flow rate.

この流量計(14α〜14e)を同一レベルに配置する
ときは浮子と同一レベルにすればよいので弁の開度調節
は容易である。
When the flowmeters (14α to 14e) are placed at the same level as the float, the opening degree of the valve can be easily adjusted.

また出口管に、は温度発信器(7α〜7g)を取付けら
れておシ、それぞれの出口管内を流れる空気の温度を計
測し、制御箱12経由、ブラウン管等を使用した画面表
示装置13により温度表示をする。この場合図示の如く
空気温度に大きな差の出る水平管の間に層高が位置する
ことが直ちに判る。
In addition, a temperature transmitter (7α to 7g) is attached to each outlet pipe, and the temperature of the air flowing through each outlet pipe is measured, and the temperature is displayed on a screen display device 13 using a cathode ray tube or the like via a control box 12. Display. In this case, as shown in the figure, it is immediately clear that the layer height is located between the horizontal pipes where there is a large difference in air temperature.

なおこの層高Hに対応する位置信号を使用して媒体の供
給抜き出し、燃料、燃焼用空気の供給量の制御により層
温と層高を制御することができる。
Note that the layer temperature and layer height can be controlled by using the position signal corresponding to the layer height H to control the supply and extraction of the medium and the supply amount of fuel and combustion air.

く効  果) この発明を実施することにより、 (1)従来の水または蒸気を使用する場合の如く、管破
損したときのようにボイラ水、蒸気の噴出によるボイラ
効率の低下がない。
(Effects) By implementing the present invention, (1) Unlike the conventional case of using water or steam, there is no reduction in boiler efficiency due to spouting of boiler water or steam, which occurs when a pipe breaks.

(2)  管が破損しても空気なるゆえ、燃焼用空気と
なるだけでボイラ停上等につながることがない。
(2) Even if a pipe is damaged, it becomes air, so it only becomes combustion air and does not lead to boiler stoppages.

(3)画面表示なので運転が容易である。(3) It is easy to drive because it is displayed on the screen.

(4)  流量計を並列配置して水平管内の空気流量を
調節することが容易である。
(4) It is easy to adjust the air flow rate in the horizontal pipe by arranging flowmeters in parallel.

(5)  層高検出装置の媒体詰9などの問題は一切な
くなった。
(5) Problems such as media clogging 9 of the layer height detection device have completely disappeared.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す装置の一部破断斜視
図、第2図は第1図の装置の部分横断面図、第3図は浮
子式流量計の正面図、第4図、第5図は従来Q層高計測
装置の模式断面図である。
Fig. 1 is a partially cutaway perspective view of a device showing an embodiment of the present invention, Fig. 2 is a partial cross-sectional view of the device shown in Fig. 1, Fig. 3 is a front view of the rotor type flowmeter, and Fig. 4 , FIG. 5 is a schematic cross-sectional view of a conventional Q layer height measuring device.

Claims (1)

【特許請求の範囲】 1、流動層内と空塔部に夫々分散板上面より相互に間隔
をもち配置された複数の水平管に空気を供給し、該水平
管の管体排出側に設けた温度計の指示温度により流動層
層高を検知するように構成したことを特徴とする流動層
燃焼装置の層高指示装置。 2、夫々の水平管に流量計と、水平管の出口に温度計を
設け、かつこれらの計測数値を対比表示する装置を設け
たことを特徴とする特許請求の範囲第1項記載の流動層
燃焼装置の層高指示装置。 3、水平管内の空気の流速の計測を夫々の管路に設けた
浮子式流量計で行ない、その流量制御を夫々の管路に設
けた制御弁により行なうことを特徴とする特許請求の範
囲第1項記載の流動層燃焼装置の層高指示装置。
[Claims] 1. Air is supplied to a plurality of horizontal pipes arranged at intervals from the upper surface of the distribution plate in the fluidized bed and the empty column, respectively, and provided on the pipe body discharge side of the horizontal pipes. 1. A bed height indicating device for a fluidized bed combustion apparatus, characterized in that the bed height of the fluidized bed is detected based on the temperature indicated by a thermometer. 2. The fluidized bed according to claim 1, characterized in that each horizontal pipe is provided with a flowmeter, a thermometer is provided at the outlet of the horizontal pipe, and a device is provided for comparing and displaying these measured values. Combustion equipment layer height indicator. 3. The flow velocity of the air in the horizontal pipe is measured by a rotary flow meter provided in each pipe, and the flow rate is controlled by a control valve provided in each pipe. A bed height indicating device for a fluidized bed combustion apparatus according to item 1.
JP22958586A 1986-09-30 1986-09-30 Layer height indicator of fluidized bed boiler Pending JPS6387506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22958586A JPS6387506A (en) 1986-09-30 1986-09-30 Layer height indicator of fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22958586A JPS6387506A (en) 1986-09-30 1986-09-30 Layer height indicator of fluidized bed boiler

Publications (1)

Publication Number Publication Date
JPS6387506A true JPS6387506A (en) 1988-04-18

Family

ID=16894488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22958586A Pending JPS6387506A (en) 1986-09-30 1986-09-30 Layer height indicator of fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPS6387506A (en)

Similar Documents

Publication Publication Date Title
AU598325B2 (en) Mass flowmeter apparatus
US20140151908A1 (en) Desuperheater with flow measurement
CN107144312A (en) Flow measuring apparatus and flow meter assembly
US1940921A (en) Expansible fluid meter
JPS6387506A (en) Layer height indicator of fluidized bed boiler
CN206787968U (en) A kind of limestone-based process spray column slurry density measurement device
CN208721164U (en) Differential pressure type steam-flow meter
CN105424106B (en) A kind of vertically-mounted structure of V cone flow meters
CN102012331B (en) Gas and pressure measuring method with anti-clogging function for gas measurement
EP3080515B1 (en) Desuperheater with flow measurement
CN107907168A (en) Flow measurement device and system with choke preventing function
CN216410340U (en) Double-cavity float liquid level meter
CN210741609U (en) Storage tank liquid level measurement system with more accurate measurement
CN210221154U (en) V-cone flowmeter
CN205642474U (en) Flow measurement device
US6826956B1 (en) Differential pressure level control
CN201081743Y (en) Cannula type flow sensor and intelligent cannula type flow meter with the cannula type flow sensor
CN208505416U (en) Liquid-phase pressure taking device for differential pressure type level gauge
US8707779B2 (en) Internal liquid measurement and monitoring system for a three phase separator
CN207610734U (en) Flow measurement device with choke preventing function and system
US1068280A (en) Apparatus for measuring flow of liquids in closed conduits.
JP3710105B2 (en) Ball valve for gas conduit with built-in flow meter
CN105841756A (en) Pressure difference flow detection head and application thereof
CN209639771U (en) A kind of Annular Round Model PFB being easily installed
CN216433090U (en) Temperature and pressure flow integrated measuring device of AO pool aeration air pipe