JPS638721A - Optical switch device - Google Patents

Optical switch device

Info

Publication number
JPS638721A
JPS638721A JP15311386A JP15311386A JPS638721A JP S638721 A JPS638721 A JP S638721A JP 15311386 A JP15311386 A JP 15311386A JP 15311386 A JP15311386 A JP 15311386A JP S638721 A JPS638721 A JP S638721A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
switch device
optical
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15311386A
Other languages
Japanese (ja)
Inventor
Hidetaka Tono
秀隆 東野
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15311386A priority Critical patent/JPS638721A/en
Publication of JPS638721A publication Critical patent/JPS638721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To simultaneously attain a high on/off ratio and a high coupling efficiency by providing a light condensing grating coupler and providing plane plate electrodes between which a narrow gap is formed so that they cross a collimated guided light three-dimensionally and applying a voltage between electrodes. CONSTITUTION:A divergent light 5 from a semiconductor laser 4 passes an entrance-side substrate end face 6a and is projected to a light condensing grating coupler 3a. The light 5 is converted to a guided light 7 there and is simultaneously collimated by this coupler 3a. The collimated guided light 7 passes under buffer layers 8, and plane plate electrodes 9 are provided on buffer layers 8 and face each other in the same plane with a narrow gap 10 between them. When the voltage from a power source 11 is applied to electrodes 9, the refractive index in the part under the gap 10 of an optical waveguide 2 is reduced, and the guided light 7 is branched into a straight going light 12a and a reflected light 12b. If a width (g) of the gap 10 is narrow, a leak light occurs by the tunnel effect and the straight going light 12a remains. If the voltage is raised, the tunnel leak mode is reduced to attain a high on/off ratio.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバ通信、光応用計測、制御の分野に
関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the fields of optical fiber communications, optical applied measurement, and control.

従来の技術 第4図は従来の技術を示す鳥轍図である。同図において
、基板41上に形成された電気光学効果を有する3次元
光導波路42は、断面が数μm程度の大きさを有する交
差導波路であり、交差部の鋭角の中心線上に狭い空隙の
平行平板電極43を設けである。電極43の下に光の減
衰全防止するためにバッファ層44を設けである。光ス
イッチ装置への光の入出力結合方法は、第4図て示す様
なプリズム結合や端面結合等が用いられていた。
Prior Art FIG. 4 is a bird track diagram showing the prior art. In the figure, a three-dimensional optical waveguide 42 having an electro-optic effect formed on a substrate 41 is a crossing waveguide with a cross section of about several μm, and a narrow gap is formed on the center line of the acute angle of the intersection. Parallel plate electrodes 43 are provided. A buffer layer 44 is provided under the electrode 43 to completely prevent attenuation of light. As a method of coupling light into and out of an optical switch device, prism coupling, end face coupling, etc., as shown in FIG. 4, have been used.

プリズム結合は第4図に示す様に、光導波路42上てプ
リズム45を圧接させて、入出力用の光ファイバ46や
光源の半導体レーザの端面をレンズ47でプリズム45
の圧接部近傍に結像させる光学系を構成することにより
実現していた。端面結合は、3次元光導波路42の基板
41の端面露出部へ、入出力用の光ファイバ46や、光
源の半導体レーザの出力端面をつき合わせて、光結合を
実現するものである。電極43に信号源48の電圧信号
を印加すると、電極43の狭い空隙下に発生する電界に
より、光導波路42の電気光学効果を誘起し屈折率変化
を生ずる。この屈折率変化により交差導波路42中全伝
搬する導波光のモードが変わり、出力導波路が切り換わ
る。これは出力光ファイバに入力光ファイバ全入れ替え
て接続した事と等価である。これが導波路型光スイッチ
の動作原理である。
As shown in FIG. 4, prism coupling is performed by pressing a prism 45 onto an optical waveguide 42, and connecting the end face of an input/output optical fiber 46 or a semiconductor laser as a light source to the prism 45 with a lens 47.
This was achieved by configuring an optical system that focuses an image near the pressure contact part. In the end face coupling, optical coupling is achieved by bringing the input/output optical fiber 46 or the output end face of the semiconductor laser as the light source into contact with the exposed end face of the substrate 41 of the three-dimensional optical waveguide 42 . When a voltage signal from a signal source 48 is applied to the electrode 43, an electric field generated under the narrow gap between the electrodes 43 induces an electro-optic effect in the optical waveguide 42, causing a change in the refractive index. Due to this refractive index change, the mode of the guided light propagating throughout the crossed waveguide 42 changes, and the output waveguide is switched. This is equivalent to replacing and connecting all the input optical fibers to the output optical fibers. This is the operating principle of a waveguide optical switch.

発明が解決しようとする問題点 従来の技術では前述の様に、数μm程度の断面寸法全方
する光導波路へ光を結合させるために、大きな結合効率
を得ることは困難であった。特に、基板41と、光導波
路42の屈折率差の大きな、薄膜光導波路ではこの傾向
は顕著であった。PLZT系(x/y/z>薄膜(Pb
’ −10[I La+oo (zrJll T110
0” 、W。
Problems to be Solved by the Invention As described above, in the conventional technology, it is difficult to obtain a high coupling efficiency because light is coupled to an optical waveguide whose entire cross-sectional dimension is about several μm. This tendency was particularly noticeable in thin film optical waveguides in which the difference in refractive index between the substrate 41 and the optical waveguide 42 was large. PLZT system (x/y/z > thin film (Pb
' -10[I La+oo (zrJll T110
0”, W.

O3)は大きな電気光学係数を有しPLZT(2010
/100)では0.8 X 10 ”(m/v)2のカ
一定数を得ている。この薄膜全光導波路に用いる場合、
サファイア基板の屈折率17−r 、PLZT(201
0/1oo)薄膜の屈折率は2.6でちるので、厚み方
向シングル条件は光導波路としては、9311m程度以
下の厚みとなってしまう。この様な薄い導波路に光を高
効率で導波させるのは困難である。
O3) has a large electro-optic coefficient and PLZT (2010
/100), a force constant of 0.8 x 10'' (m/v)2 is obtained. When used in this thin film all-optical waveguide,
The refractive index of the sapphire substrate is 17-r, PLZT (201
0/1oo) Since the refractive index of the thin film is 2.6, the single condition in the thickness direction results in a thickness of approximately 9311 m or less for the optical waveguide. It is difficult to guide light with high efficiency through such a thin waveguide.

一般にはプリズム結合で高効率が得られるといわれてい
るが、再現性が悪く、量産性に欠け、光結合するビーム
のスポットサイズが100μmff1&以上の場合に高
結合効率が得られ、数μm幅の光導波路へ結合する場合
には、高効率結合条件が非常に厳しくなり、実際的では
なr0 更に、交差型導波路構造の場合には、構造により決まる
横導波モードの伝搬の様子によりオン・オフ比が決まり
通常20dB程度の値である。高オン・オフ比を得るに
は、導波路構造の作製条件が厳しくなり、実際的には歩
留まりが低いという問題点があった。
It is generally said that high efficiency can be obtained by prism coupling, but it has poor reproducibility and lacks mass productivity. When coupling to an optical waveguide, the high-efficiency coupling conditions become very strict, making it impractical.Furthermore, in the case of a crossed waveguide structure, the on-wavelength The off-ratio is determined and is usually a value of about 20 dB. In order to obtain a high on-off ratio, the manufacturing conditions for the waveguide structure must be strict, and in practice there is a problem in that the yield is low.

以上の様に、高オン・オフ比と高結合効率全同時に満足
し、かつ、量産性に優れた構造の光スイッチ装置はなか
った。
As described above, there has been no optical switch device with a structure that satisfies both high on-off ratio and high coupling efficiency at the same time and is excellent in mass production.

問題点を解決するための手段 電気光学効果を用いた、導波路光スィッチにおいて、基
板外からの導波光の入出力用および、導投光のコリメー
ト用として集光グレーティングカップラを設け、コリメ
ート導波光に立体交差する様に狭い間隙全配置した平板
電極を設け、間隙全狭む両平板電極間に印加する電圧に
より間隙下部の電気光学材料の屈折率変化全誘起してコ
リメート導波光の進行方向を変える。平板電極下を通過
した導波光は出力用グレーディングカップラにより、結
像され位置の変化となりて表われる。結像面上の一定位
置からの光の入出力関係が、平板電極に印加する電圧に
より変化する。
Means for Solving the Problems In a waveguide optical switch using the electro-optic effect, a condensing grating coupler is provided for inputting and outputting the guided light from outside the substrate and for collimating the guided light. Flat plate electrodes are arranged with a narrow gap completely intersecting the two flat plate electrodes, and a voltage applied between the two flat plate electrodes with a narrow gap completely induces a change in the refractive index of the electro-optic material at the bottom of the gap, thereby changing the traveling direction of the collimated guided light. change. The guided light that has passed under the flat electrode is imaged by the output grading coupler and appears as a change in position. The input/output relationship of light from a certain position on the imaging plane changes depending on the voltage applied to the flat electrode.

また、光導波路材料がPLZT系薄膜である場合には特
に有効である。
Further, it is particularly effective when the optical waveguide material is a PLZT thin film.

更に、平板電極下での光の減衰を押えるために、光導波
路と、平板電極間に光導波路より屈折率の低い透明絶縁
物材料から成るバッファ層を設けると有効である。
Furthermore, in order to suppress the attenuation of light under the flat plate electrode, it is effective to provide a buffer layer made of a transparent insulating material having a refractive index lower than that of the optical waveguide between the optical waveguide and the flat plate electrode.

加えて、平版電極の形状が、同一平面上の対向電極であ
るか、もしぐば、コプレーナ型マイクロストリップ線路
の間隙が前記平板電極の間隙となるものは光スイッチ構
成上有効である。
In addition, it is effective in constructing an optical switch if the shape of the planar electrodes is such that they are opposite electrodes on the same plane, or if the gap between the coplanar microstrip lines becomes the gap between the planar electrodes.

作用 本発明の実施により、光スイッチ装置への光入力結合用
のレンズが不要となり、かつ、集光グレーティングカッ
プラの基板側からの結像のため、高結合効率が得られる
。また、発散点光源からの光を、光導波路面内で導波さ
せ、かつコリメートさせる作用がある。コリメート光は
、面内横方向でガウス分布形状をしている。電圧を印加
した平板電極の間隙下に生ずる電界により光導波路の屈
折率変化を生じ、この細い部分でコリメート光は反射さ
れる。直進する導波光や反射された光は、出力用集光グ
レーティングカップラにより基板外の異なる位置に結像
される。この位置に、元ファイバや受光素子を配置する
ことi/Cより出力光を取り出せる。集光グレーティン
グカップラと、平板電極の組み合せにより高オン・オフ
比が得られる。
Effects By implementing the present invention, a lens for coupling optical input to the optical switch device is not required, and high coupling efficiency can be obtained because the image is formed from the substrate side of the condensing grating coupler. It also has the effect of guiding and collimating the light from the diverging point light source within the optical waveguide plane. The collimated light has a Gaussian distribution shape in the in-plane lateral direction. The electric field generated under the gap between the plate electrodes to which a voltage is applied causes a change in the refractive index of the optical waveguide, and the collimated light is reflected at this narrow portion. The linearly traveling guided light and the reflected light are imaged at different positions outside the substrate by the output condensing grating coupler. By arranging the original fiber and the light receiving element at this position, the output light can be taken out from the I/C. A high on/off ratio can be obtained by combining a condensing grating coupler and a flat plate electrode.

集光グレーティングカップラは、電極形成等と同様な、
平面微細加工であり半導体プロセスにより作製できるた
め、量産性に優れている。また、コリメート導波光と細
い線状の屈折率変化部分との相互作用を用いるために、
印加電圧の大きさを犬きくすることてよりこの部分で全
反射を生起させ、従来とは異なり高いオン・オフ化を得
ることが可能となる。光スィッチの製造工程は平面加工
と、基板側面加工で、従来の端面励振で必要であった低
歩留りの基板端面のエツジ加工は不要とな!ll製造歩
留りが向上する。
The condensing grating coupler is similar to electrode formation, etc.
Since it is a planar microfabrication process and can be manufactured using a semiconductor process, it is excellent in mass production. In addition, in order to use the interaction between the collimated guided light and the thin linear refractive index change part,
By increasing the magnitude of the applied voltage, total reflection occurs in this portion, making it possible to obtain higher on/off switching than in the past. The manufacturing process of the optical switch involves flat surface processing and board side processing, eliminating the need for low-yield edge processing of the board end face, which was necessary with conventional end face excitation! ll Manufacturing yield is improved.

導波路材料にPLZT系薄膜を用いることにより、高い
電気光学効果を利用することが出来、高効率な光スィッ
チが構成できる。また、バッファ層を平板電極と光導波
路との間に形成すると、電極部での元の減衰帯を少なく
することができる。
By using a PLZT thin film as a waveguide material, a high electro-optic effect can be utilized, and a highly efficient optical switch can be constructed. Furthermore, if a buffer layer is formed between the flat plate electrode and the optical waveguide, the original attenuation band at the electrode portion can be reduced.

更て、平板電極が狭い間隙を有し、同一面内で対向する
形状の場合には、電極形状が簡単なので、電極形成の歩
留りが良い。
Furthermore, if the flat plate electrodes have a narrow gap and are opposed in the same plane, the electrode shape is simple and the yield of electrode formation is high.

又、平板電極をコプレーナ型マイクロストリップ線路の
進行波電極にすると、導波光と、変調電気信号(マイク
ロ波)との位相定数差が少なくなり、変調帯域幅が広く
なる。
Furthermore, when the flat plate electrode is used as a traveling wave electrode of a coplanar microstrip line, the difference in phase constant between the guided light and the modulated electric signal (microwave) is reduced, and the modulation bandwidth is widened.

実施例 第1図、第2図は本発明の第一の実施例を示す鳥敞図お
よび上面図を示す。両図において詳細な説明を行う。基
板1上に形成したスラブ光導波路2に導波光の入出力を
行うために、集光グレーティングカップラ3a、3bi
設けである。基板1の両端面は所望の角度に研磨してあ
り、近傍に配置した発散点光源、図1では半導体レーザ
4からの発散光5は入口側基板端面6aを通り、集光グ
レーティングカップラ3aを照射する。ここで導波光γ
となり、同時に、集光グレーティングカップラ3aによ
りコリメートされる。コリメート導波光子は、バッファ
層8の下を通る。ハ、)ファ層8の上には、平板電極9
が設けられ、狭い間隙10を挾んで同一面内で対向する
電極である。ノくッファ層を介するために、コリメート
導波光子の光のしみ出しによる電極9での減衰は少ない
。電極9に電源11からの電圧を印加すると、光導波路
2の間隙10の下部の部分の屈折率が低下し、導波光7
は直進光12&と、反射光12bとに分かれる。導波光
7と、間隙10とのなす角をθとし、間隙下の実効屈折
率ヲn2 他の部分の実効屈折率全n1  とすると、 の時、全反射を生じ反射光12bとなる。しかし、間隙
100幅gが狭いと、トンネル効果により漏れ光を生じ
、直進光12&が残る。さらに電圧の大きさを大きくす
ると、トンネル漏れモードは少なくなり、高いオン・オ
フ比を得ることが出来る。
Embodiment FIGS. 1 and 2 show a bird's-eye view and a top view of a first embodiment of the present invention. A detailed explanation will be given in both figures. In order to input and output guided light to the slab optical waveguide 2 formed on the substrate 1, condensing grating couplers 3a and 3bi are used.
It is a provision. Both end faces of the substrate 1 are polished to a desired angle, and the diverging light 5 from a diverging point light source placed nearby, a semiconductor laser 4 in FIG. do. Here, the guided light γ
At the same time, the light is collimated by the condensing grating coupler 3a. The collimated guided photons pass under the buffer layer 8. C.) On top of the F layer 8, a flat plate electrode 9 is placed.
are provided, and are electrodes facing each other in the same plane with a narrow gap 10 in between. Because the light passes through the knockoff layer, there is little attenuation at the electrode 9 due to seepage of the collimated waveguide photons. When a voltage from the power source 11 is applied to the electrode 9, the refractive index of the lower part of the gap 10 of the optical waveguide 2 decreases, and the guided light 7
is divided into straight light 12& and reflected light 12b. Assuming that the angle between the guided light 7 and the gap 10 is θ, and the effective refractive index under the gap is n2 and the total effective refractive index of the other parts is n1, total reflection occurs and becomes reflected light 12b. However, if the width g of the gap 100 is narrow, leakage light occurs due to the tunnel effect, and straight light 12& remains. Furthermore, when the magnitude of the voltage is increased, the tunnel leakage mode is reduced, and a high on/off ratio can be obtained.

これは、従来の3次元導波路の場合とは異なり、導波光
7の横方向分布はほぼガウス分布形状ケしてほぼ平行に
伝搬していることに起因しており、集光グレーティング
カップラの集光作用によるものである。
This is due to the fact that, unlike in the case of conventional three-dimensional waveguides, the lateral distribution of the guided light 7 has an almost Gaussian distribution shape and propagates almost in parallel, and the condensing grating coupler This is due to light action.

集光グレーティングカップラの形状は、導波平面(ガウ
ス分布)光と、入・出射光との位相差の等しい複数の曲
線がらなり、電子ビーム露光法等により光導波路上や基
板に凹凸を形成して作製する。集光グレーティングカッ
プラは、点光源からの光を導波させ、かつ、コリメート
させる物、或いは、その逆の作用を行うものである。
The shape of the condensing grating coupler consists of multiple curves with the same phase difference between the waveguide plane (Gaussian distribution) light and the input and output light, and unevenness is formed on the optical waveguide and the substrate using an electron beam exposure method. Make it. A condensing grating coupler guides and collimates light from a point light source, or vice versa.

以下に具体例をあげる。図1において、基板1にはサフ
ァイアC面(屈折率1.77)%−用い、P L Z 
T (2010/100)薄膜を、プレーナマグネトロ
ンスパッタ法を甲いて約0.35μm作成した。このP
LZT薄膜は屈折率2.6で光導波路2となる。次に基
板1の両端面6a、6bi55°程度に研壱し、更に光
導波路上に部分的にバッファ層8を形成した。バッファ
層には、TΔ205薄膜(屈折率2j)’i用い、光の
入出射側端部はテーパになる様にスパッタ法により約0
.2 /1’ m厚に形成した。その上に間隙4μm、
長さ20 +1Lt 。
A specific example is given below. In FIG. 1, the substrate 1 uses sapphire C-plane (refractive index 1.77)%-, and P L Z
A T (2010/100) thin film with a thickness of about 0.35 μm was created by planar magnetron sputtering. This P
The LZT thin film has a refractive index of 2.6 and becomes the optical waveguide 2. Next, both end surfaces 6a and 6bis of the substrate 1 were polished to about 55 degrees, and a buffer layer 8 was further formed partially on the optical waveguide. For the buffer layer, a TΔ205 thin film (refractive index 2j)'i is used, and the edges on the light input/output side are tapered to about 0 by sputtering.
.. It was formed to have a thickness of 2/1' m. On top of that, a gap of 4 μm,
Length 20+1Lt.

奥行き1U程度のλg電極9をフォトリングラフィ去お
よび、リフトオフ去により形成した。電極9の間隙10
と、約3度の角を成す様に、入出力用の集光グレーティ
ングカップラを電子ビーム直接描画法により形成した。
A λg electrode 9 having a depth of about 1 U was formed by photolithography and lift-off. Gap 10 between electrodes 9
A condensing grating coupler for input and output was formed by an electron beam direct writing method so as to form an angle of about 3 degrees.

グレーティングは、PMMAレジストヲ用い光導波路2
上に形成した。
The grating is an optical waveguide 2 using PMMA resist.
formed on top.

集光グレーティングの焦点距離は、約4IuLで、幅方
向は1肌とした。Q、8371 mの光を導疫し、得ら
れた結合効率は片方で約40係で、従来のプリズム法に
よる数φ程度の結合効率をはるかに上回った。スイッチ
電圧は約30Vで、オンオフ比20dB以上を得、電圧
をさらに上げると、オン・オフ比が向上した。これは、
この光スイッチ装置の特徴である。
The focal length of the condensing grating was approximately 4 IuL, and the width direction was one skin. Q, 8371 m of light was transmitted, and the obtained coupling efficiency was about 40 factors on one side, far exceeding the coupling efficiency of several φ obtained by the conventional prism method. The switch voltage was about 30 V, and an on-off ratio of 20 dB or more was obtained, and when the voltage was further increased, the on-off ratio improved. this is,
This is a feature of this optical switch device.

また、基板1にLiNb0.単結晶全周い、光導波路2
にTi金属を熱拡散させて作製したものも、同様な特性
が得られた。この場合には電気光学効果が小さいので電
極9の長さを長くして、交差角θを小さくして、電圧を
数10vとすることが出来た。
In addition, the substrate 1 has LiNb0. Single crystal all around, optical waveguide 2
Similar characteristics were also obtained by thermally diffusing Ti metal. In this case, since the electro-optic effect is small, it was possible to increase the length of the electrode 9 and reduce the crossing angle θ, thereby making it possible to reduce the voltage to several tens of volts.

第3図は本発明の第二の実施例を示す、烏敞図である。FIG. 3 is a diagram showing a second embodiment of the present invention.

同図において、電極21は進行波電極でコプレーナ・マ
イクロストリップ線路であり、電源11から供給された
マイクロ波は、導波″5’[7とほぼ同じ方向に伝搬す
る。電極210間隙の下の光導波路の屈折率が変化する
。この場合、光スィッチの動作周波数帯域は、電極21
の下全通過する光と、電極21全云搬するマイクロ波と
の位相定数差により決まり数1oG[Izが可能である
。第3図にお1ハて、発散点光源には、光ファイバ22
を用いた場合を示している。他の特徴は第一の実施例と
同様である。
In the figure, the electrode 21 is a traveling wave electrode and is a coplanar microstrip line, and the microwave supplied from the power source 11 propagates in almost the same direction as the guided wave "5' [7]. The refractive index of the optical waveguide changes.In this case, the operating frequency band of the optical switch is
The number 1oG[Iz is determined by the phase constant difference between the light passing through the entire electrode 21 and the microwave propagating through the electrode 21. 1 in FIG. 3, the diverging point light source includes an optical fiber 22.
This shows the case where . Other features are similar to the first embodiment.

発明の効果 本発明の実施により、数10%程度の光結合が容易に得
られ、かつ、高オン・オフ比の光スイッチ装置が再現性
良く得られた。加えて、光スイッチ装置の主要動作部分
が同一平面上にあり作製が半導体加工技術と同様な工程
でできるために、量産性に富んだ構造で、低コスト化が
可能である。
Effects of the Invention By implementing the present invention, optical coupling of several tens of percent can be easily obtained, and an optical switch device with a high on/off ratio can be obtained with good reproducibility. In addition, since the main operating parts of the optical switch device are on the same plane and can be manufactured using the same process as semiconductor processing technology, the structure is suitable for mass production and can be manufactured at low cost.

スイッチの斜視図および上面図、第3図は同第二の実施
ψ11の斜視図、第4図は従来の光スィッチの斜視図で
ある。
A perspective view and a top view of the switch, FIG. 3 is a perspective view of the second implementation ψ11, and FIG. 4 is a perspective view of a conventional optical switch.

1・・・・・基板、2・・・・・・光導波路、3a 、
3b・・・集光グレーティングカップラ、4・・・・・
・半導体レーザ、5.13・・・・・光線、62L、6
b・・・・・・端面、了。
1...Substrate, 2...Optical waveguide, 3a,
3b... Concentrating grating coupler, 4...
・Semiconductor laser, 5.13...Light beam, 62L, 6
b... End face, completed.

122L、12b  ・・・導反光、8゛°°°°バツ
フア・・・電極。
122L, 12b... Reflected light, 8゛°°°° buffer... Electrode.

代理人の氏名 弁理士 中 尾 散 男 ほか1名! 
−一 幕  級 ?−尤導2路 3a、3b−一集えグレーティングカソフ′う4−半に
体レーザ 5.13−一九 隈 6a尾6−幾 面 7、12a、12b −−−導波光 8− バッファ層 9− 覚  杼 10−m−間  隙 第 2 図 21−m−覚 糧 22−  光ファイバ 23−#鴻低坑 第3図
Name of agent: Patent attorney San Nakao and 1 other person!
- One act level? - Two guiding paths 3a, 3b - A set of grating cassoffs' four and a half body lasers 5.13 - 19. - Gap Shuttle 10-m-Gap No. 2 Figure 21-m-Gap 22-Optical Fiber 23-#Honglow Pit Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)基板上に形成された光導波路と、前記基板外の端
面近傍に配置された発散点光源からの光を導波させ、か
つ前記光導波路面内方向にコリメートさせる少なくとも
一つの集光グレーティングカップラと、前記光導波路上
に形成された電気光学効果を生ぜしめる狭い間隙が前記
コリメートされた導波光と立体交差する様に配置された
平板電極と、前記平板電極下を通過し直進する導波光ま
たは前記電極に印加される電圧により進行方向を変えら
れた導波光を収束し、かつ前記基板外の他端面近傍に結
像させる少なくとも一つの集光グレーティングカップラ
とを具備したことを特徴とする光スイッチ装置。
(1) An optical waveguide formed on a substrate, and at least one condensing grating that guides light from a diverging point light source arranged near an end surface outside the substrate and collimates it in the in-plane direction of the optical waveguide. a coupler, a flat plate electrode formed on the optical waveguide and arranged so that a narrow gap that produces an electro-optic effect intersects the collimated waveguide light; and a waveguide light that passes under the flat plate electrode and travels straight. or at least one condensing grating coupler that converges the guided light whose traveling direction is changed by the voltage applied to the electrode and forms an image near the other end surface outside the substrate. Switch device.
(2)光導波路材料がPLZT系薄膜(Pb_1_−_
[_x_/_1_0_0_]La_x_/_1_0_0
(Zr_y_/_1_0_0Ti_z_/_1_0_0
)_1_−_[_x_/_4_0_0_]O_3、O≦
x、y、z≦100、y+Z=100)である事を特徴
とする特許請求の範囲第1項記載の光スイッチ装置。
(2) The optical waveguide material is a PLZT thin film (Pb_1_-_
[_x_/_1_0_0_]La_x_/_1_0_0
(Zr_y_/_1_0_0Ti_z_/_1_0_0
)_1_-_[_x_/_4_0_0_]O_3, O≦
2. The optical switch device according to claim 1, wherein x, y, z≦100, y+Z=100.
(3)光導波路と平板電極との間に前記光導波路より屈
折率の低い透明な絶縁材料から成るバッファ層を設けた
ことを特徴とする特許請求の範囲第1項記載の光スイッ
チ装置。
(3) The optical switch device according to claim 1, characterized in that a buffer layer made of a transparent insulating material having a lower refractive index than the optical waveguide is provided between the optical waveguide and the flat plate electrode.
(4)平板電極が狭い間隙を有して同一面上で対向する
ことを特徴とする特許請求の範囲第1項記載の光スイッ
チ装置。
(4) The optical switch device according to claim 1, wherein the flat plate electrodes face each other on the same surface with a narrow gap between them.
(5)平板電極が、駆動電圧信号の給電部と整合終端部
とを具え、かつ、前記、駆動信号を狭い間隙に沿って伝
送するコプレーナ型マイクロストリップ線路とから構成
されることを特徴とする特許請求の範囲第1項記載の光
スイッチ装置。
(5) The flat plate electrode is characterized by comprising a power feeding part for a driving voltage signal and a matching termination part, and comprising the above-mentioned coplanar microstrip line that transmits the driving signal along a narrow gap. An optical switch device according to claim 1.
JP15311386A 1986-06-30 1986-06-30 Optical switch device Pending JPS638721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15311386A JPS638721A (en) 1986-06-30 1986-06-30 Optical switch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15311386A JPS638721A (en) 1986-06-30 1986-06-30 Optical switch device

Publications (1)

Publication Number Publication Date
JPS638721A true JPS638721A (en) 1988-01-14

Family

ID=15555255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15311386A Pending JPS638721A (en) 1986-06-30 1986-06-30 Optical switch device

Country Status (1)

Country Link
JP (1) JPS638721A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176731A (en) * 1983-03-25 1984-10-06 Matsushita Electric Ind Co Ltd Optical switch
JPS60140204A (en) * 1983-12-28 1985-07-25 Toshiba Corp Light guide lens and its manufacture
JPS61121043A (en) * 1984-11-16 1986-06-09 Matsushita Electric Ind Co Ltd Optical switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176731A (en) * 1983-03-25 1984-10-06 Matsushita Electric Ind Co Ltd Optical switch
JPS60140204A (en) * 1983-12-28 1985-07-25 Toshiba Corp Light guide lens and its manufacture
JPS61121043A (en) * 1984-11-16 1986-06-09 Matsushita Electric Ind Co Ltd Optical switch

Similar Documents

Publication Publication Date Title
US4196964A (en) Optical waveguide system for electrically controlling the transmission of optical radiation
US4491384A (en) Optical switch device
JPH06289241A (en) Polarized light separating element
US4145109A (en) Electro-optic multiplexing with high interchannel isolation
US5291566A (en) Total internal reflection electro-optic modulator for multiple axis and asymmetric beam profile modulation
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JPS638721A (en) Optical switch device
US4179184A (en) Electrooptical modulator
US4199221A (en) Electro-optic thin-film waveguide modulator device
JP2739405B2 (en) Electric field sensor
JPH05297332A (en) Optical modulator
JPH0721597B2 (en) Optical switch
US4969701A (en) Integrated electro-optical modulator/commutator with pass-band response
JPH04204524A (en) Light modulator
JPS58202406A (en) Waveguide type optical beam splitter
JP2003287727A (en) Variable light attenuating device
JPS5993431A (en) Optical switch
JPH01239503A (en) Te/tm mode splitter
JPS61162030A (en) Optical switch element
JPH01201628A (en) Optical switch
JPS6236608A (en) Waveguide typemode splitter
JP2659786B2 (en) Mode light separator
JPH07270736A (en) Waveguide type acousto-optical element
JPH03200924A (en) Optical modulator
JPS5949521A (en) Optical switch