JPS638693B2 - - Google Patents

Info

Publication number
JPS638693B2
JPS638693B2 JP56201341A JP20134181A JPS638693B2 JP S638693 B2 JPS638693 B2 JP S638693B2 JP 56201341 A JP56201341 A JP 56201341A JP 20134181 A JP20134181 A JP 20134181A JP S638693 B2 JPS638693 B2 JP S638693B2
Authority
JP
Japan
Prior art keywords
tank
vacuum gap
current
main body
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56201341A
Other languages
Japanese (ja)
Other versions
JPS58103822A (en
Inventor
Hitoshi Himi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP56201341A priority Critical patent/JPS58103822A/en
Publication of JPS58103822A publication Critical patent/JPS58103822A/en
Publication of JPS638693B2 publication Critical patent/JPS638693B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Housings And Mounting Of Transformers (AREA)
  • Protection Of Transformers (AREA)

Description

【発明の詳細な説明】 本発明は誘導電気機器に係り、特に絶縁媒体を
封入しかつ接地したタンクに機器本体を収納して
なる誘導電気機器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to induction electric equipment, and more particularly to an induction electric equipment in which a main body of the equipment is housed in a grounded tank filled with an insulating medium.

一般に、油絶縁またはガス絶縁の変圧器または
リアクトル等の誘導電気機器は、第1図に示すよ
うに、絶縁油または絶縁ガスの如き絶縁媒体を封
入しかつ接地したタンク1に、鉄心2およびこの
鉄心2に巻装した3相のコイル3からなる機器本
体4を収納するとともに、機器本体4の入出力端
子5をタンク1に挿着したブツシング6を介して
タンク1から導出し、かつタンク1にその内部に
おける入出力端子5の如き充電部とアース電位の
タンク1との間の閃絡アークAによる事故時にタ
ンク1の破損を防止すべく放圧装置7を設けて構
成されている。
In general, inductive electrical equipment such as oil-insulated or gas-insulated transformers or reactors is constructed by placing an iron core 2 and the A device main body 4 consisting of a three-phase coil 3 wound around an iron core 2 is housed, and an input/output terminal 5 of the device main body 4 is led out from the tank 1 through a bushing 6 inserted into the tank 1. A pressure relief device 7 is provided to prevent damage to the tank 1 in the event of an accident due to a flash arc A between a live part such as an input/output terminal 5 inside the tank 1 and the tank 1 at ground potential.

ところが、昨今における誘導電気機器の大容量
化に伴い、その電圧が275KV、500KVクラスの
ものにおいてはタンクが大形化するとともに、閃
絡アークの発生点と放圧装置の放圧弁との間の距
離が10m以上にも及ぶものが出現し、また超高電
圧化により閃絡アークのアークエネルギも増大し
て来ている。
However, with the recent increase in the capacity of induction electrical equipment, the tanks for those with voltages of 275KV and 500KV have become larger, and the distance between the point of flash arc generation and the pressure relief valve of the pressure relief device has increased. Types with distances of 10 meters or more have appeared, and the arc energy of flash arcs is increasing due to ultra-high voltage.

しかして、絶縁油を絶縁媒体とする誘導電気機
器において内部閃絡事故が発生した場合、油中の
衝撃波の伝播速度は約1200m/secであるから、
閃絡アークの発生点から放圧弁までの距離を10m
とすると、衝撃波の放圧弁に到達するに要する時
間は約0.008sec、換言すると約0.42〓(50Hzベー
ス)を要する。このため、タンクは、通常鋼板製
のため或る寸法までは瞬間的に延びてタンク内容
積を大きくする等の働きがあるものの、事故発生
から放圧弁が作動するまでの間にその破壊または
爆発を生ずるおそれがある。
However, if an internal flash fault occurs in an induction electrical device that uses insulating oil as an insulating medium, the propagation speed of the shock wave in the oil is approximately 1200 m/sec, so
The distance from the flash arc generation point to the pressure relief valve is 10m.
Then, the time required for the shock wave to reach the pressure relief valve is approximately 0.008 seconds, or in other words, approximately 0.42〓 (based on 50Hz). For this reason, although tanks are usually made of steel plates and have the ability to instantly expand to a certain size and increase the internal volume of the tank, they may be destroyed or exploded between the time of the accident and the activation of the pressure relief valve. There is a risk that this may occur.

また、絶縁ガスを絶縁媒体とする誘導電気機器
において内部閃絡事故が発生した場合、気中の衝
撃波の伝播速度は約350〜400m/secであるから、
閃絡アークの発生点から放圧弁までの距離を10m
とし、衝撃波の伝播速度を400m/secとすると、
衝撃波の放圧弁に到達するに要する時間は、
0.025sec(50Hzベースで2.5〓)を要する。ために、
タンクは、油入のものよりはるかに高い確率で破
壊または爆発を生ずるおそれがあるとともに、仮
りにタンクが爆発等を生ずることなく放圧弁が有
効に作動したとしても、絶縁ガスがSF6ガスであ
るときは、SF6ガスが閃絡アークにより分解さ
れ、SF4、S2F10等の有毒ガスを含めて放圧装置
から放出されるおそれがある。
In addition, when an internal flash fault occurs in induction electrical equipment that uses insulating gas as an insulating medium, the propagation speed of the shock wave in the air is approximately 350 to 400 m/sec.
The distance from the flash arc generation point to the pressure relief valve is 10m.
If the propagation speed of the shock wave is 400 m/sec, then
The time required for the shock wave to reach the relief valve is
It takes 0.025sec (2.5〓 based on 50Hz). for,
Tanks have a much higher probability of breaking or exploding than those filled with oil, and even if the tank does not explode and the pressure relief valve operates effectively, the insulating gas is SF 6 gas. In some cases, SF 6 gas may be decomposed by flash arcs and released from pressure relief devices, including toxic gases such as SF 4 and S 2 F 10 .

したがつて、いずれの絶縁媒体を用いる場合で
あつても、タンク強度を高めなければならず不経
済であり、また、有毒ガスが放出される場合に
は、このガスを吸収する装置を付設しなければな
らない等の問題がある。
Therefore, no matter which insulating medium is used, the strength of the tank must be increased, which is uneconomical, and if toxic gas is released, a device must be attached to absorb this gas. There are problems such as having to do this.

本発明は、上述した問題に鑑みてなされたもの
で、その目的とするところは、機器本体の充電部
とタンクとの間にトリガ式真空ギヤツプを介挿す
るとともに、機器本体の入力側および出力側の双
方またはいずれか一方に変流器を配設し、変流器
の差電流または過電流を信号として真空ギヤツプ
のトリガ電極に高電圧を印加するように設けるこ
とによつて、内部閃絡事故発生時に真空ギヤツプ
を点弧せしめて充電部とタンクとを接続して内部
閃絡アークを直ちに消滅せしめ、もつてタンクの
破損または爆発を防止し得るようにした誘導電気
機器を提供するにある。以下、第2図以降の図面
を参照して本発明の実施例を詳細に説明する。
The present invention has been made in view of the above-mentioned problems, and its purpose is to insert a trigger-type vacuum gap between the charging part of the main body of the device and the tank, and to Internal flash faults can be eliminated by installing a current transformer on either or both sides and applying a high voltage to the trigger electrode of the vacuum gap using the differential current or overcurrent of the current transformer as a signal. To provide an induction electric device capable of igniting a vacuum gap to connect a live part and a tank in the event of an accident to immediately extinguish an internal flash arc, thereby preventing damage or explosion of the tank. . Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings from FIG. 2 onwards.

本発明に係る誘導電気機器は、油入変圧器を例
示した第2図に示すように、絶縁媒体である絶縁
油を封入しかつ大地Eに接続(接地)したタンク
8に、機器本体である1次側コイル9および2次
側コイル10を収納するとともに、1次側コイル
9のU、V、Wの各相の入力側端子9U(図にお
いてはU相のみ示す)および2次側コイル10の
U、V、Wの各相の出力側端子10U(図におい
てはU相のみ示す)をタンク8に挿着したそれぞ
れのブツシング11によりタンク8から導出して
概略構成されている。そして、タンク8内におけ
る各相の入力端子および出力端子の双方またはい
ずれか一方とタンク8の内壁との間には、トリガ
式真空ギヤツプ12(図においては1次側のU相
のみ示す)がそれぞれ介挿接続されている。トリ
ガ式真空ギヤツプ12は、その内部放電を利用し
てタンク8の内壁との間に閃絡アークAにより事
故を発生した入、出力端子(充電部)を瞬間的に
接地して閃絡アークAの消滅を図るためのもの
で、円筒状に形成された絶縁物からなる複数の絶
縁筒13を同軸的に接合して1本の絶縁筒とする
とともに、この絶縁筒の両開口端を円板状の金属
端板14,14により閉塞し、かつ内部を高真空
に排気して真空容器を形成し、この真空容器の各
金属端板14の中央部から気密に導入したリード
棒15の内端部に設けた電極16間に、支持金具
17を介し各絶縁筒13に支持されるとともに、
両端に電極18を取付けた電極棒19を真空容器
の軸線上に適宜に離隔し複数のギヤツプ20を形
成し、またいずれか一方(第2図において左方)
の金属端板14にこの金属端板14を絶縁物21
を介し気密に貫通して導入されたトリガ電極22
の先端を適宜の間隙を有し対向せしめて構成され
ている。
As shown in FIG. 2, which shows an example of an oil-immersed transformer, the induction electric device according to the present invention has a main body of the device in a tank 8 which is filled with insulating oil as an insulating medium and connected to earth E (grounded). It houses the primary coil 9 and the secondary coil 10, as well as the input terminal 9U of each phase of U, V, and W of the primary coil 9 (only the U phase is shown in the figure) and the secondary coil 10. The output side terminal 10U of each phase of U, V, and W (only the U phase is shown in the figure) is led out from the tank 8 by respective bushings 11 inserted into the tank 8. A trigger type vacuum gap 12 (only the U phase on the primary side is shown in the figure) is connected between both or one of the input terminal and output terminal of each phase in the tank 8 and the inner wall of the tank 8. Each is connected through an intervening connection. The trigger type vacuum gap 12 utilizes the internal discharge to momentarily ground the input and output terminals (live parts) that have caused an accident due to the flash arc A between the tank 8 and the inner wall of the tank 8, thereby eliminating the flash flash arc A. A plurality of insulating cylinders 13 made of cylindrical insulators are coaxially joined to form one insulating cylinder, and both open ends of this insulating cylinder are connected to disks. The inner end of the lead rod 15 is closed by metal end plates 14, 14 having a shape, and the inside is evacuated to a high vacuum to form a vacuum container, and the inner end of the lead rod 15 is airtightly introduced from the center of each metal end plate 14 of this vacuum container. It is supported by each insulating cylinder 13 via a support fitting 17 between electrodes 16 provided in the section, and
Electrode rods 19 with electrodes 18 attached to both ends are appropriately spaced apart on the axis of the vacuum container to form a plurality of gaps 20, and either one (left side in FIG. 2)
This metal end plate 14 is attached to the insulator 21.
Trigger electrode 22 introduced through hermetically through the
The tips of the two are opposed to each other with an appropriate gap between them.

なお、真空ギヤツプ12の一方の金属端板14
に挿着したリード棒15の外端は、接続線23を
介しタンク8の内壁に接続されるとともに、他方
の金属端板14に挿着したリード棒15の外端
は、接続線24を介し充電部である入、出力端子
とタンク8内において接続されているものであ
る。また、第2図において25a,25b,25
cはそれぞれ絶縁筒13の内面保護等を図るシー
ルドである。
Note that one metal end plate 14 of the vacuum gap 12
The outer end of the lead rod 15 inserted into the other metal end plate 14 is connected to the inner wall of the tank 8 via the connecting wire 23, and the outer end of the lead rod 15 inserted into the other metal end plate 14 is connected to the inner wall of the tank 8 via the connecting wire 24. It is connected inside the tank 8 to input and output terminals that are charging parts. In addition, in FIG. 2, 25a, 25b, 25
C is a shield for protecting the inner surface of the insulating cylinder 13, respectively.

前記各相の入、出力端子(第2図においてはU
相のみ示す)には、貫通形の変流器26,27が
タンク8内において嵌装されており、これらの変
流器26,27は常時の負荷運転状態においては
差電流が生せず、閃絡アークAによる事故時にの
み差電流が生ずるように逆接続されるとともに、
計器用変圧器28の1次コイル28aに接続され
ている。そして、計器用変圧器28の2次コイル
28bの一端は、前記真空ギヤツプ12のトリガ
電極22の外端と接続されており、また、2次コ
イル28bの他端は、タンク8と一方のリード棒
15とを接続する接続線23に接続されている。
Input and output terminals of each phase (U in Fig. 2)
In the phase (only phases shown), through-type current transformers 26 and 27 are fitted in the tank 8, and these current transformers 26 and 27 do not generate a differential current under normal load operation, In addition to being reversely connected so that a differential current occurs only in the event of an accident caused by flash arc A,
It is connected to the primary coil 28a of the instrument transformer 28. One end of the secondary coil 28b of the instrument transformer 28 is connected to the outer end of the trigger electrode 22 of the vacuum gap 12, and the other end of the secondary coil 28b is connected to the tank 8 and one lead. It is connected to a connecting line 23 that connects the rod 15.

以上の構成により、タンク8内においてその内
壁と1次側または2次側における各相のいずれか
の端子、たとえば1次側におけるU相の入力端子
9Uとの間が閃絡アークAにより短絡すれば、短
絡電流が流れるので、変流器26,27の差電流
により計器用変圧器28の1次コイル28aに電
流が流れるとともに、計器用変圧器28の2次コ
イル28bに生じた高電圧が真空ギヤツプ12の
トリガ電極22に印加される。これによりトリガ
電極22の先端とアース電位の一方の金属端板1
4との間にアークプラズマが生ずるとともに、こ
のアークプラズマが真空容器内に拡散されかつ真
空中のアーク電圧が絶縁油中のアーク電圧の1/60
〜1/100程度であることによつて各ギヤツプ20
間がアークプラズマにより一斉に短絡される。し
たがつて、1次側におけるU相の入力端子9Uと
アーク電位のタンク8とが真空ギヤツプ12を介
し電気的に接続され、閃絡アークが約0.5〓(10
ms)で消滅するとともに、内圧上昇も停止され
てタンク8の破損または爆発が確実に防止され
る。
The above configuration prevents a short circuit due to a flash arc A between the inner wall of the tank 8 and any terminal of each phase on the primary or secondary side, for example, the input terminal 9U of the U phase on the primary side. For example, since a short circuit current flows, a current flows through the primary coil 28a of the instrument transformer 28 due to the difference current between the current transformers 26 and 27, and the high voltage generated in the secondary coil 28b of the instrument transformer 28 is applied to the trigger electrode 22 of the vacuum gap 12. As a result, the tip of the trigger electrode 22 and one metal end plate 1 at ground potential.
An arc plasma is generated between
~20 each gap by being about 1/100
The arc plasma short-circuits them all at once. Therefore, the U-phase input terminal 9U on the primary side and the arc potential tank 8 are electrically connected via the vacuum gap 12, and the flashover arc is approximately 0.5〓(10
ms), and the increase in internal pressure is also stopped, thereby reliably preventing damage or explosion of the tank 8.

なお、真空ギヤツプ12による入、出力端子と
タンク8との接続は、真空ギヤツプ12の各ギヤ
ツプ20間に介在されるアークプラズマが電流の
自然零値近傍において消滅することにより自動的
にしや断されるものであり、また、タンク8内の
絶縁媒体が絶縁ガス、たとえばSF6ガスである場
合には、真空中のアーク電圧がSF6ガス中のアー
ク電圧の約1/10であるため、絶縁油によるものと
同様に真空ギヤツプ12による入、出力端子の接
地が行なわれるものである。
The connection between the input and output terminals of the vacuum gap 12 and the tank 8 is automatically cut off when the arc plasma interposed between the gaps 20 of the vacuum gap 12 disappears near the natural zero value of the current. In addition, if the insulating medium in the tank 8 is an insulating gas, for example SF 6 gas, the arc voltage in vacuum is about 1/10 of the arc voltage in SF 6 gas, so the insulation The input and output terminals are grounded by the vacuum gap 12 in the same way as by oil.

なお、上述した実施例においては、真空ギヤツ
プ12のトリガ電極22に印加する電圧を得るた
めに、変流器26,27からの交流電流を信号と
して直接に計器用変圧器28に入力した場合につ
いて述べたが、これに限定されるものではなく、
たとえば第3図に示すように、計器用変圧器28
を介しトリが電極22に高電圧を印加するため直
流電源を用い、その外部回路として自動停止タイ
マーを内蔵したインバータ29を設け、このイン
バータ29に入力される直流回路の開閉を変流器
26,27の差電流により作動される継電器30
により行なうようにしてもよいものである。
In the above embodiment, in order to obtain the voltage to be applied to the trigger electrode 22 of the vacuum gap 12, the alternating current from the current transformers 26 and 27 is directly input as a signal to the instrument transformer 28. As mentioned above, it is not limited to this,
For example, as shown in FIG.
A DC power supply is used to apply high voltage to the electrodes 22 through the inverter 29, which is equipped with an inverter 29 equipped with an automatic stop timer as an external circuit, and a current transformer 26, Relay 30 activated by the differential current of 27
It may also be done by

また、上述した実施例においては、計器用変圧
器28に直接にまたは間接に高電圧を誘起せしめ
るべく、タンク8内において入、出力端子に嵌装
した逆接続の変流器26,27の差電流を信号と
して用いた場合について述べたが、これに限らず
たとえば入力端子または出力端子のいずれか一方
に貫通形の変流器を嵌装し、その過電流を計器用
変圧器に直接にまたは間接に高電圧を誘起せしめ
る信号として用いてもよいものである。
Furthermore, in the embodiment described above, in order to induce a high voltage directly or indirectly in the instrument transformer 28, the difference between the reversely connected current transformers 26 and 27 fitted to the input and output terminals in the tank 8 is Although we have described the case where current is used as a signal, the present invention is not limited to this.For example, a through-type current transformer may be fitted to either the input terminal or the output terminal, and the overcurrent may be directly connected to the voltage transformer or It may also be used as a signal that indirectly induces a high voltage.

さらに、上述した実施例においては、真空ギヤ
ツプ12をタンク8内に配設した場合について述
べたが、これに限らずたとえば真空ギヤツプをタ
ンク8とは別個のタンク内に収納するとともに、
このタンクをブツシング11と並べてタンク8上
部に配設し、かつ絶縁スペーサを介しタンク8内
の入、出端子等と真空ギヤツプとを接続するよう
にしてもよいものである。
Further, in the above embodiment, the vacuum gap 12 is disposed inside the tank 8, but the present invention is not limited to this. For example, the vacuum gap may be housed in a tank separate from the tank 8, and
This tank may be arranged above the tank 8 in line with the bushing 11, and the inlet and outlet terminals in the tank 8 and the vacuum gap may be connected through insulating spacers.

また、上述した実施例においては、真空ギヤツ
プ12を複数のギヤツプ20を有するものとして
述べたが、これに限らず単一の絶縁筒内に1個の
ギヤツプを有するものであつてもよいのは勿論で
ある 以上の如く本発明は、絶縁媒体を封入しかつ接
地したタンクに機器本体を収納してなる誘導電気
機器において、前記機器本体の充電部とタンクと
の間にトリガ式真空ギヤツプを介挿し、前記機器
本体の入力側および出力側の双方またはいずれか
一方に変流器を配設し、前記変流器の差電流また
は過電流を信号として前記トリガ式真空ギヤツプ
のトリガ電極に高電圧を印加するように設けたも
のであるから、内部閃絡事故による閃絡アークを
直ちに消滅せしめてタンクの破損または爆発を確
実に防止することができる。ために、タンク強度
をタンクの大形化に従つて高める必要がなく経済
的であるとともに、絶縁媒体がSF6ガスである場
合であつてもこれの有毒な分解ガスを吸収する装
置を設ける必要がない等の効果を奏する。
Further, in the above-described embodiment, the vacuum gap 12 is described as having a plurality of gap 20, but the vacuum gap 12 is not limited to this and may have one gap in a single insulating cylinder. Of course, as described above, the present invention provides an induction electric device in which the main body of the device is housed in a tank that is sealed with an insulating medium and is grounded. A current transformer is installed on both the input side and the output side of the device main body, and the differential current or overcurrent of the current transformer is used as a signal to apply a high voltage to the trigger electrode of the trigger type vacuum gap. Since the tank is provided so as to apply , flash arcs due to internal flash faults can be extinguished immediately, and damage or explosion of the tank can be reliably prevented. Therefore, it is not necessary to increase the strength of the tank as the tank becomes larger, which is economical, and even if the insulating medium is SF 6 gas, it is necessary to provide a device to absorb the toxic decomposition gas of SF 6 gas. It has the effect that there is no waste.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の誘導電気機器の概略構成図、第
2図は本発明に係る誘導電気機器の概略構成図、
第3図は本発明の要部の他の実施例の回路図であ
る。 8……タンク、9……1次側コイル、9U……
入力端子、10……2次側コイル、10U……出
力端子、12……真空ギヤツプ、22……トリガ
電極、26,27……変流器、28……計器用変
圧器。
FIG. 1 is a schematic diagram of a conventional induction electric device, FIG. 2 is a schematic diagram of an induction electric device according to the present invention,
FIG. 3 is a circuit diagram of another embodiment of the main part of the present invention. 8...Tank, 9...Primary side coil, 9U...
Input terminal, 10... Secondary coil, 10U... Output terminal, 12... Vacuum gap, 22... Trigger electrode, 26, 27... Current transformer, 28... Instrument transformer.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁媒体を封入しかつ接地したタンクに機器
本体を収納してなる誘導電気機器において、前記
機器本体の充電部とタンクとの間にトリガ式真空
ギヤツプを介挿し、前記機器本体の入力側および
出力側の双方またはいずれか一方に変流器を配設
し、前記変流器の差電流または過電流を信号とし
て前記トリガ式真空ギヤツプのトリガ電極に高電
圧を印加するように設けたことを特徴とする誘導
電気機器。
1. In an induction electric device in which the main body of the device is housed in a tank sealed with an insulating medium and grounded, a trigger-type vacuum gap is inserted between the live part of the device main body and the tank, and the input side of the device main body and A current transformer is disposed on both or either one of the output sides, and a high voltage is applied to the trigger electrode of the trigger type vacuum gap using the differential current or overcurrent of the current transformer as a signal. Features induction electrical equipment.
JP56201341A 1981-12-14 1981-12-14 Induction electric device Granted JPS58103822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201341A JPS58103822A (en) 1981-12-14 1981-12-14 Induction electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201341A JPS58103822A (en) 1981-12-14 1981-12-14 Induction electric device

Publications (2)

Publication Number Publication Date
JPS58103822A JPS58103822A (en) 1983-06-21
JPS638693B2 true JPS638693B2 (en) 1988-02-24

Family

ID=16439414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201341A Granted JPS58103822A (en) 1981-12-14 1981-12-14 Induction electric device

Country Status (1)

Country Link
JP (1) JPS58103822A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958189B (en) * 2010-07-15 2012-07-25 电光防爆电气(宿州)有限公司 Multi-voltage dry type transformer in explosive gas environment

Also Published As

Publication number Publication date
JPS58103822A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
US5283709A (en) Lightning arrester on tower for power transmission
US4743996A (en) Electrical distribution apparatus having fused draw-out surge arrester
US5391835A (en) Explosion resistant, oil insulated, current transformer
US2220615A (en) Electric transformer structure
US7295416B2 (en) Device and method for triggering a spark gap
US1923727A (en) Protection of distribution transformers against lightning
JPS638693B2 (en)
JPH0158725B2 (en)
SU1498404A3 (en) High-voltage installation
CA1141428A (en) Protected electrical inductive apparatus
US2439931A (en) Protective fuse for electrical apparatus immersed in a dielectric liquid
JPS61190910A (en) Gas insulated transformer
RU18115U1 (en) HIGH VOLTAGE INPUT
US2010018A (en) Excess-voltage protective device
US2271890A (en) Surge voltage protection for electrical apparatus
JPS63150677A (en) Accident detecting method for high-voltage composite device
US3144582A (en) Lightining arrester
JPS58119189A (en) Arrester
Grant High-power fusible cut-outs
JP3103232B2 (en) Power receiving equipment
RU2124246C1 (en) Outdoor high-voltage potential transformer
KR20240065907A (en) Arc shield for load switchgear
JPH0819135A (en) Gas insulated switch
JPS63148514A (en) Gas breaker
JPS60106376A (en) Impulse voltage generator