JPS638555A - Fast liquid chromatograph - Google Patents

Fast liquid chromatograph

Info

Publication number
JPS638555A
JPS638555A JP15225586A JP15225586A JPS638555A JP S638555 A JPS638555 A JP S638555A JP 15225586 A JP15225586 A JP 15225586A JP 15225586 A JP15225586 A JP 15225586A JP S638555 A JPS638555 A JP S638555A
Authority
JP
Japan
Prior art keywords
mobile phase
column
analysis column
sample
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15225586A
Other languages
Japanese (ja)
Inventor
Keiji Gamo
蒲生 啓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP15225586A priority Critical patent/JPS638555A/en
Publication of JPS638555A publication Critical patent/JPS638555A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To set eluting conditions suitable for a desired component independently, by switching columns while supplying a mobile phase suited to the elution of the desired component to a plurality of columns. CONSTITUTION:When feed pumps 4 and 11 are operated to inject a sample into a sample injection port 5, a sample flows into an analysis column 2 by a first mobile phase to hold a elutable component alone. When a second passage is formed by an changeover valve 9, a component not held by the first mobile phase flows into a second analysis column 9. The desired component shifted to the second analysis column 9 is eluted by a second mobile phase to be held by a second analysis column 9. This keeps the flow rate ratio between the first and second moving layers, which flow into a liquid mixing means 8 from a branch tube 7, constant even at the switching of these passages and causes the layers to be mixed thoroughly, thereby eliminating hourly variations in the background noise of a detector 12.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、溶離条件が異なる目的物資を複数種含んたサ
ンプルの分析に適した高速液体クロマトグラフ装=に関
する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a high-performance liquid chromatography system suitable for analyzing samples containing a plurality of target substances under different elution conditions.

口、従来技術 溶離条件が大きく異なる成分を含むサンプルを高速液体
クロマトグラフ装置により分析する場合には、各目的成
分の溶離に適した複数種の溶媒を用意し、各溶媒の混合
率を時間的に変化させで目的成分を溶Mざぜるグラジェ
ント溶離法か適用されている。
Conventional technology When analyzing samples containing components with significantly different elution conditions using a high-performance liquid chromatography device, prepare multiple types of solvents suitable for elution of each target component, and adjust the mixing ratio of each solvent over time. A gradient elution method is used in which the target component is dissolved by changing the concentration.

しかしながら、移動相を構成する複数の溶媒の混合率を
時間的に変化させるため、分析条件の設定に熟練を必要
とするばかってなく、溶媒の時間的変化によつ模出器出
力のバッククランドノイズも時間的に変動するため、像
量成分のピークの検出が困難となつ、高感度分析には不
向きであるという問題かあった。
However, since the mixing ratio of multiple solvents constituting the mobile phase is changed over time, it not only requires skill to set the analysis conditions, but also the background of the output of the modeler due to the change in the solvent over time. Since the noise also varies over time, it becomes difficult to detect the peak of the image component, making it unsuitable for high-sensitivity analysis.

ざらに、複数の試料を連続して分析する場合には、カラ
ム内の移動相を排除して一旦初期状態に戻す必要かある
ため、測定サイクルか長期化するという問題があった。
Generally speaking, when a plurality of samples are analyzed continuously, it is necessary to remove the mobile phase in the column and return it to the initial state, which poses the problem of prolonging the measurement cycle.

ハ、目的 本発明はこのような問題に鑑みてなされプごものであっ
て、その目的とするところはバックグランドノイズを安
定化して分析感度の向上と、測定サイクルの短縮を図る
ことのできる新規な高速液体クロマトグラフ装置を提供
することにある。
C. Purpose The present invention was made in view of these problems, and its purpose is to improve analytical sensitivity and shorten measurement cycles by stabilizing background noise. The object of the present invention is to provide a high-performance liquid chromatography device.

二1発明の構成 すなわち、本発明が特徴とするところは、複数のカラム
に目的成分の溶離に適した移動相を供給しつつ、カラム
を切り換え可能とした点にある。
21. Structure of the Invention, that is, the present invention is characterized in that it is possible to switch between columns while supplying a mobile phase suitable for elution of a target component to a plurality of columns.

ホ、実施例 そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
E. Embodiments The details of the present invention will be explained below based on illustrated embodiments.

第1図は、本発明の一実施例を示したものであって、図
中符号1は高圧六方バルブからなる切換弁で、後述する
第1と筒2の分析流路を切り換えるものである。2は、
第1の高速液体クロマトグラフ用分析カラムで、その流
入口は、流路にかかわりなく移動相液槽3に連通する第
1の送液ポンプ4の吐出口が試料注入口5を介して接続
されている。一方、流出口は、第1流路形成時(図中実
線)には抵抗管6、及び分岐管7を介してミキシングコ
イル等の液混合手段8に接続され、また第2流路形成時
(図中点線)には、後述する第2の高速液体クロマトグ
ラフ用分析カラム9の流入口に接続される。9は、前述
の第2の分析用カラムで、その流出口は流路にかかわり
なく分岐管7を介してミキシングコイル8に接続され、
また流入口は、第1の流路形成時には移動相液槽10に
連通する送液ポンプ11の吐出口か接続され、また第2
流路形成時には箇1カラム2の流出口が接続される。一
方、第2の送液ポンプ11の吐出口は、第2流路形成時
には、抵抗管6を介してミキシングコイル8に接Syc
される。なお、図中符号12は、ミキシングコイル8の
流出口に接続された検出器を示す。
FIG. 1 shows one embodiment of the present invention, and reference numeral 1 in the figure is a switching valve consisting of a high-pressure six-way valve, which switches between the first and second analysis channels, which will be described later. 2 is
The inlet of the first analysis column for high-performance liquid chromatography is connected via the sample injection port 5 to the discharge port of the first liquid feed pump 4, which communicates with the mobile phase liquid tank 3 regardless of the flow path. ing. On the other hand, the outlet is connected to a liquid mixing means 8 such as a mixing coil through a resistance tube 6 and a branch pipe 7 when forming the first flow path (solid line in the figure), and when forming the second flow path (solid line in the figure). The dotted line in the figure) is connected to the inlet of a second analytical column 9 for high performance liquid chromatography, which will be described later. 9 is the aforementioned second analysis column, the outlet of which is connected to the mixing coil 8 via the branch pipe 7 regardless of the flow path;
Further, the inflow port is connected to the discharge port of the liquid feeding pump 11 that communicates with the mobile phase liquid tank 10 when the first flow path is formed, and
When forming the flow path, the outlet of column 2 is connected. On the other hand, the discharge port of the second liquid pump 11 is connected to the mixing coil 8 via the resistance tube 6 when forming the second flow path.
be done. Note that the reference numeral 12 in the figure indicates a detector connected to the outlet of the mixing coil 8.

この実施例において、各移動相液槽3.10にサンプル
の各目的成分を溶離することのできる溶媒を収′容し、
また切換弁1を操作して第1の流路形成を行なうと、第
1の送液ポンプ4→試料注入口5→第1の分析カラム2
→抵抗管6→ミキシングコイル8という流路と、これと
は別に第2の送液ポンプ11→第2の分析カラム9→ミ
キシングコイル8という流路が形成される。
In this example, each mobile phase tank 3.10 contains a solvent capable of eluting each target component of the sample;
Furthermore, when the switching valve 1 is operated to form the first flow path, the first liquid feeding pump 4 → the sample injection port 5 → the first analysis column 2
A flow path →resistance tube 6 →mixing coil 8 and, separately from this, a flow path such as second liquid feeding pump 11 →second analysis column 9 →mixing coil 8 are formed.

このような準備を終えた段階で各送液ポンプ4.11を
作動させてサニ/プルを試料注入口5に注入すると、サ
ンプルは第1の移動相によって菓1の分析カラム2に流
入し、第1の移動相によつ溶離可能な成分だけが第1の
分析カラム2に保持され、一方、第1の移動相によって
保持不可能な他の成分は第1の分析カラム2に停まるこ
となく、これから排出される。この排出時点で切換弁1
を操作して第2の流路を形成して第1の分析カラム2の
流出口を第2の分析カラム9に接続すると、第1の移動
相により保持されない成分が第1の移動相とともに蔦2
の分析カラム9に流入する。第1の移動相により保持さ
れない成分か全て分析用カラム9に流入し終わった時点
で、再び切換弁1を操作して第1の流路を形成する。云
うまでもなく、第1の移動相によって溶離可能な成分は
、菓1の分析用カラム2に保持されているから、第2の
分析用カラム9に排出されるようなことは起こらない。
When such preparations are completed, each liquid pump 4.11 is activated to inject the sample/pull into the sample injection port 5, and the sample flows into the analytical column 2 of the column 1 by the first mobile phase. Only components that can be eluted by the first mobile phase are retained in the first analytical column 2, while other components that cannot be retained by the first mobile phase remain in the first analytical column 2. It will be discharged from now on. At this point of discharge, switching valve 1
When the outlet of the first analytical column 2 is connected to the second analytical column 9 by forming a second flow path, the components not retained by the first mobile phase are absorbed together with the first mobile phase. 2
into analytical column 9. When all the components not retained by the first mobile phase have flowed into the analytical column 9, the switching valve 1 is operated again to form the first flow path. Needless to say, since the components that can be eluted by the first mobile phase are retained in the analytical column 2 of the food 1, they will not be discharged to the second analytical column 9.

ところで、これら流路の切換時においても分岐管7から
液混合手段8に流入する第1、及び第2の移動相の流量
比は一定に保持され、かつ液混合手段8により十分に混
合されるため、検出器12のバックグランドノイズが時
間的に変動するようなことはない。
By the way, even when these flow paths are switched, the flow rate ratio of the first and second mobile phases flowing into the liquid mixing means 8 from the branch pipe 7 is kept constant, and the liquid mixing means 8 sufficiently mixes them. Therefore, the background noise of the detector 12 does not fluctuate over time.

第1の分析カラム2から第2の分析カラム9に移された
目的成分は、第2の移動相により溶離されて第2の分析
カラム9の保持される。このようにして、各分析用カラ
ム2.9に保持された目的成分は、それぞれのカラムの
流入しで来る移動相により分離されて、分析条件で定ま
るリテンションタイムか経過した後にカラム2.9から
移動相とともに排出される。これら排出された成分は、
移動相によって分岐管7そ介して液混合手段8に流入す
る。液混合手段8に流入した両移動相は、ここにおいて
混合されて均一な媒体となって各カラムからの成分を検
出器12に移送する。
The target component transferred from the first analytical column 2 to the second analytical column 9 is eluted by the second mobile phase and retained in the second analytical column 9. In this way, the target components retained in each analytical column 2.9 are separated by the mobile phase flowing into each column, and are removed from the column 2.9 after a retention time determined by the analytical conditions has elapsed. It is discharged together with the mobile phase. These discharged components are
The mobile phase flows into the liquid mixing means 8 via the branch pipe 7. Both mobile phases flowing into the liquid mixing means 8 are mixed here to form a homogeneous medium that transfers the components from each column to the detector 12.

これにより、目的成分は、時間的に一定な媒体に混合し
た状態で検出器]2に流入して、一定のバックグランド
ノイズに上乗せされた状態でピークを形成することにな
り、像小なピークであって面積や高さの検出を極めて容
易に行なうことかできる。
As a result, the target component flows into the detector] 2 in a state mixed with a temporally constant medium, and forms a peak while being added to a constant background noise. Therefore, area and height can be detected extremely easily.

このようにしで、全ての成分がカラム2.9から排出さ
れた時点では、カラム2.9には分析に使用する移動相
たけが存在することになるから、引続いて次のサンプル
を注入することにより分析か可能となる。
In this way, when all the components have been discharged from column 2.9, there will be enough mobile phase in column 2.9 to be used for analysis, so the next sample can be injected. This makes analysis possible.

なお、この実施例においては、2種類の移動相を使用す
る場合に例を採って説明したが、分析カラムを3本以上
用いて、これらカラムを切換弁により直列接続と、各カ
ラムに異なる移動相を供給可能とすることによつ、溶離
条件が異なる3種類以上の目的成分を含むサンプルの分
析にも適用できることは明らかである。
In this example, the case where two types of mobile phases are used was explained. However, when three or more analytical columns are used, these columns can be connected in series using a switching valve, and each column can be moved differently. It is clear that by allowing the phase to be supplied, the present invention can also be applied to the analysis of samples containing three or more types of target components under different elution conditions.

また、この実施例においでは切換弁を用いて複数の流路
を形成させているが、三方弁や止弁そ組合わせても同様
の作用を奏することは云うまでもない。
Further, in this embodiment, a plurality of flow passages are formed using a switching valve, but it goes without saying that a combination of a three-way valve and a stop valve can provide the same effect.

ざらに、カラム2.9の温N%個々に設定することによ
り一層正確、かつ高感度な分析が可能となる。
In general, by setting the temperature N% of column 2.9 individually, more accurate and sensitive analysis becomes possible.

へ、変力果 以上、説明したように本発明においては、複数のカラム
を直列、及び並列に接続可能とするとともに、直列接続
時に先頭をなすカラムには試料注入手段を介して送液ポ
ンプを接続し、また並列接続時には各カラムの流入口に
それぞれ独立の送液ポンプ78接続する一方、流出口側
は共通の液混合手段を介して検出手段に接続したので、
目的成分に適した溶出条件を独立に設定することができ
で、分析条件の自由度が大きくなるばかってなく、検出
手段に流入する移動相の成分を時間的に一定にしてバッ
クグランドノイズを一定化することができで微量な成分
の分析か可能となつ、ざらには分析終了時においでは各
カラムに、これに適した移動相だけか存在することにな
って、カラムの初期化処理か不要となって分析サイクル
の短縮を図ることができる。
As explained above, in the present invention, a plurality of columns can be connected in series or in parallel, and when connected in series, a liquid pump is connected to the first column through a sample injection means. In addition, when connected in parallel, an independent liquid pump 78 was connected to the inlet of each column, while the outlet side was connected to the detection means via a common liquid mixing means.
Elution conditions suitable for target components can be set independently, which not only increases the degree of freedom in analysis conditions, but also keeps background noise constant by keeping the components of the mobile phase flowing into the detection means constant over time. This makes it possible to analyze trace amounts of components, and in general, at the end of the analysis, only the appropriate mobile phase is present in each column, eliminating the need for column initialization. As a result, the analysis cycle can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す装置の構成図である。 1・・・・切換弁    2・・・・分析用カラム3・
・・・移動相液槽  4・・・・送液ポンプ5・・・・
試料注入口  8・・・・液混合手段9・・・・分析用
カラム 10・・・・移動相液槽11・・・・送液ポン
The figure is a configuration diagram of an apparatus showing an embodiment of the present invention. 1...Switching valve 2...Analysis column 3.
... Mobile phase liquid tank 4 ... Liquid pump 5 ...
Sample injection port 8...Liquid mixing means 9...Analysis column 10...Mobile phase liquid tank 11...Liquid pump

Claims (1)

【特許請求の範囲】[Claims] 複数のカラムを直列、及び並列に接続可能とするととも
に、直列接続時に先頭をなすカラムには試料注入手段を
介して送液ポンプを接続し、また並列接続時には各カラ
ムの流入口にそれぞれ独立の送液ポンプを接続する一方
、流出口を共通の液混合手段を介して検出手段に接続し
てなる高速液体クロマトグラフ装置。
Multiple columns can be connected in series or in parallel, and when connected in series, a liquid pump is connected to the first column via a sample injection means, and when connected in parallel, an independent pump is connected to the inlet of each column. A high-speed liquid chromatography device in which a liquid sending pump is connected, and an outlet is connected to a detection means via a common liquid mixing means.
JP15225586A 1986-06-27 1986-06-27 Fast liquid chromatograph Pending JPS638555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15225586A JPS638555A (en) 1986-06-27 1986-06-27 Fast liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15225586A JPS638555A (en) 1986-06-27 1986-06-27 Fast liquid chromatograph

Publications (1)

Publication Number Publication Date
JPS638555A true JPS638555A (en) 1988-01-14

Family

ID=15536483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15225586A Pending JPS638555A (en) 1986-06-27 1986-06-27 Fast liquid chromatograph

Country Status (1)

Country Link
JP (1) JPS638555A (en)

Similar Documents

Publication Publication Date Title
US11656208B2 (en) Multi-injection mode valve module
JP3868899B2 (en) Liquid chromatograph
US7214313B2 (en) Liquid chromatograph
US7959801B2 (en) Device for generating micro- and nanoflow mobile phase gradients for high-performance liquid chromatography
US20100107782A1 (en) Separation Analyzer
US20150122655A1 (en) Two-dimensional fluid separation with controlled pressure
US8343774B2 (en) Chromatography-based monitoring and control of multiple process streams
US10802001B2 (en) Online dilution for a liquid chromatography system using a sample metering pump
US20200406165A1 (en) Multi-dimensional chromatographic system for analyzing multiple sample components
EP2721403A1 (en) Two-dimensional fluid separation with first separation unit feeding to high-pressure end of second separation unit
US11079360B2 (en) Systems and methods for chromatographic analysis
JP3865119B2 (en) Mobile phase gradient apparatus and high-performance liquid chromatograph using the same
JP6733733B2 (en) Liquid chromatograph
JPS638555A (en) Fast liquid chromatograph
CN112180021B (en) Liquid Chromatography System
US20230039500A1 (en) Fluid separation with sampling unit selectively coupling upstream and downstream of separation unit
JP3886406B2 (en) Multiple liquid chromatograph
CN111610264A (en) Hydrophilic interaction chromatography-reversed phase chromatography combined two-dimensional liquid phase system and analysis method thereof
CN211086205U (en) Multidimensional online solid phase extraction liquid chromatography device
JP2002168842A (en) Liquid chromatograph and analyzing method using the same
CN210665632U (en) Liquid chromatography device for detecting blood concentration
JPH0438288Y2 (en)
JPH05188050A (en) Simultaneous analysis device for antibacterial agent in meat
CN117120836A (en) Automated semi-preparative gradient recirculating liquid chromatography
JPS6312951A (en) Gradient device