JPS638540A - Liquid chromatography flame analysis - Google Patents

Liquid chromatography flame analysis

Info

Publication number
JPS638540A
JPS638540A JP15306086A JP15306086A JPS638540A JP S638540 A JPS638540 A JP S638540A JP 15306086 A JP15306086 A JP 15306086A JP 15306086 A JP15306086 A JP 15306086A JP S638540 A JPS638540 A JP S638540A
Authority
JP
Japan
Prior art keywords
organic compound
flame
acetylene
liquid chromatography
compound sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15306086A
Other languages
Japanese (ja)
Inventor
Tomiyuki Maeda
前田 富之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP15306086A priority Critical patent/JPS638540A/en
Publication of JPS638540A publication Critical patent/JPS638540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To achieve a higher sensitivity, by introducing an organic compound sample into a high temperature chemical flame produced by complete combustion of acetylene to perform a qualitative and quantitative determination of the organic compound based on the intensity and holding time of molecular emission generated at this time. CONSTITUTION:The amount of oxygen and the amount of acetylene are adjusted so that a flame is produce by complete combustion of acetylene at a burner section 4. A carrier solution containing an organic compound sample separated by a liquid chromatograph 1 is introduced into a nebulizer 3 through a carrier path (a) and further into a flame at the burner 4 to burn. The intensity of molecular emission generated is spectrally analyzed continuously by a monochrometer 5 and detected by a detector 6 to be recorded on a recording section 8.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は液体クロマトグラフィー炎光分析法に関する
。さらに詳しくは液体クロマトグラフにより分離されか
つ金属元素を含有しない有機化合物を化学炎中で励起さ
せその有機化合物に基づく可視域の分子発光強度を検出
して有機化合物の分析を行う方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to liquid chromatography flame spectroscopy. More specifically, the present invention relates to a method for analyzing organic compounds by exciting organic compounds separated by liquid chromatography and containing no metal elements in a chemical flame and detecting the molecular emission intensity in the visible range based on the organic compounds.

(ロ)従来の技術 液体クロマトグラフに原子吸光分光光度計を接続して、
該液体クロマトグラフの分離成分を分析する方法が知ら
れている。これは液体クロマトグラフの分離成分中の金
属成分に着目して原子吸光法により分離成分を検出しよ
うとするものである。
(b) Conventional technology By connecting an atomic absorption spectrophotometer to a liquid chromatograph,
A method for analyzing the separated components of the liquid chromatograph is known. This method focuses on metal components in the components separated by liquid chromatography and attempts to detect the separated components using atomic absorption spectrometry.

(ハ)発明が解決しようとする問題点 しかし上記の方法では、原子吸光分光光度計は元素、こ
とに金属元素の検出・定量に用いられるしのであり、従
って測定の対象となる成分は、その成分分子中に金属元
素をなんらかの形で含有していなければならず、従って
間接的にしか有機化合物を測定できない。また原子吸光
分光光度計の制約上一連の分離成分のうち対象となるの
は、一種類の金属のみとなる。また液体クロマトグラフ
ィの試料量と原子吸光法の試料量の関係で、検出感度が
必ずしも高くない。
(c) Problems to be solved by the invention However, in the above method, the atomic absorption spectrophotometer is used to detect and quantify elements, especially metal elements, and therefore the components to be measured are The component molecules must contain some form of metal element, and therefore organic compounds can only be measured indirectly. Furthermore, due to the limitations of the atomic absorption spectrophotometer, only one type of metal can be targeted among a series of separated components. Furthermore, detection sensitivity is not necessarily high due to the relationship between the sample amount for liquid chromatography and the sample amount for atomic absorption spectrometry.

この発明はかかる状況に鑑み為されたものであり、原子
吸光分光光度計やフレーム分光光度計を用いて液体クロ
マトグラフの分離成分を簡便にかつ感度良好に検出する
液体クロマトグラフィー炎光分析法を提供しようとする
ものである。
This invention has been made in view of the above situation, and provides a liquid chromatography flame spectrometry method that uses an atomic absorption spectrophotometer or a flame spectrophotometer to detect separated components of a liquid chromatograph simply and with good sensitivity. This is what we are trying to provide.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、液体クロマトグラフにより
分離され1こ有機化合物試料を含有する移動相を連続的
に気化させ、気化物を酸素−アセチレン系の化学炎中に
導入させて上記有機化合物試料を励起させ、そしてこの
励起した有機化合物試料に基づ(波長400〜700n
mの発光強度を検出して有機化合物の定性・定量を行う
ことを特徴とする液体クロマトグラフィー炎光分析法が
提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a mobile phase separated by a liquid chromatograph and containing one organic compound sample is continuously vaporized, and the vaporized material is converted into an oxygen-acetylene-based chemical. The above organic compound sample is excited by introducing it into a flame, and based on this excited organic compound sample (wavelength 400 to 700 nm).
Provided is a liquid chromatography flame spectrometry method characterized in that organic compounds are qualitatively and quantitatively determined by detecting the luminescence intensity of m.

この発明の方法の最も特徴とする点は、液体クロマトグ
ラフで分離される有機化合物を直接炎光内に導入して検
出することである。
The most distinctive feature of the method of this invention is that organic compounds separated by liquid chromatography are directly introduced into the flame and detected.

この発明の方法における炎光分析には、通常の原子吸光
分光光度計やフレーム分光光度計を用いることができ、
汎用性の点で前者が好ましい。この場合液体クロマトグ
ラフのカラム出口を上記原子吸光分析光度計のネプライ
ザに直接接続して用いるのが適している。
For flame analysis in the method of this invention, a normal atomic absorption spectrophotometer or flame spectrophotometer can be used.
The former is preferable in terms of versatility. In this case, it is suitable to connect the column outlet of the liquid chromatograph directly to the nebulizer of the atomic absorption spectrophotometer.

この発明の炎光分析に用いられる化学炎は、高温(20
00〜4000’C)のものが適し、ことに酸素−アセ
チレンが適している。酸素源としては空気を用いてらよ
い。上記化学炎は検出に際しバックグラウンドが生じな
いようアセチレンを完全燃焼させて用いられる。
The chemical flame used in the flame photoanalysis of this invention is at a high temperature (20
00-4000'C) are suitable, especially oxygen-acetylene. Air may be used as the oxygen source. The above chemical flame is used to completely burn acetylene so that no background occurs during detection.

液体クロマトグラフで分離された有機化合物試料は、前
記ネプライザで気化された状聾て連続的に上記化学炎中
に導入されて燃焼に付され、その結果該炎中で励起され
た分子が生じる。この励起された分子の分子発光(40
0〜700nm)の強度が、分光器で連続的に分光検出
され有機化合物の検出に用いられる。
The organic compound sample separated by the liquid chromatography is vaporized in the nebulizer and continuously introduced into the chemical flame to be burned, resulting in excited molecules in the flame. The molecular luminescence of this excited molecule (40
The intensity from 0 to 700 nm) is continuously detected by a spectrometer and used to detect organic compounds.

(ホ)作用 この発明によれば、アセチレンが完全燃焼される高温の
化学炎中に、有機化合物試料が導入されると、該試料は
不完全燃焼されその結果該有機化合物試料分子の分子発
光が生じる。この分子発光は400〜7QQnmの可視
域のスペクトルを有するため、該発光強度は容易に分光
検出てき、この強度および保持時間に基づいてq様化合
物の定性・定量が行われることとなる。
(E) Effect According to the present invention, when an organic compound sample is introduced into a high temperature chemical flame in which acetylene is completely burned, the sample is incompletely burned, and as a result, the molecules of the organic compound sample emit molecular light. arise. Since this molecular emission has a spectrum in the visible range of 400 to 7QQ nm, the emission intensity can be easily detected spectroscopically, and the q-like compound can be qualitatively and quantitatively determined based on this intensity and retention time.

以下実施例軒よりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図はこの発明の方法を実施する装置の一例の構成説
明図である。
(F) Embodiment FIG. 1 is an explanatory diagram of the configuration of an example of an apparatus for carrying out the method of the present invention.

図において(1)は液体クロマトグラフ、(2)は原子
吸光分光光度計であり、(3)はネプライザ、(4)は
バーナ一部、(5)はモノクロメータ、(6)は検出器
、(7)は光電子増倍管、(8)は記録部、(a)はキ
ャリア流路、(b)はドレインである。
In the figure, (1) is a liquid chromatograph, (2) is an atomic absorption spectrophotometer, (3) is a nebulizer, (4) is part of a burner, (5) is a monochromator, (6) is a detector, (7) is a photomultiplier, (8) is a recording section, (a) is a carrier flow path, and (b) is a drain.

上記装置において液体クロマトグラフ(1)のカラム(
図示しない)から延設されるキャリア流路(a)が原子
吸光分光光度計(2)のネプライザ(3)に管路接続さ
れており、を様化合物を含有するキャリア溶液はこのネ
プライザ(3)で気化された後バーナ一部(4)で燃焼
される。上記接続部には化学炎用の酸素導入管(31)
およびアセチレン導入管(32)が管路接続されている
In the above device, the column of liquid chromatograph (1) (
A carrier flow path (a) extending from the atomic absorption spectrophotometer (2) is connected to the nebulizer (3) of the atomic absorption spectrophotometer (2), and the carrier solution containing the compound is passed through the nebulizer (3). After being vaporized in the burner part (4), it is combusted. At the above connection part is an oxygen introduction pipe (31) for chemical flame.
and an acetylene introduction pipe (32) are connected.

検出に先立って、バーナ一部(4)においてアセチレン
が完全燃焼したフレームになるよう酸素量とアセチレン
量とが調節される。次いで液体クロ°マドグラフ(1)
で分離された有機化合物試料を含有するキャリア溶液を
、キャリア流路(a)を経てネプライザ(3)に導入し
、さらにバーナ一部(4)のフレーム中に導入して燃焼
する。このとき該フレーム中でキャリア中に含有されて
いた有機化合物分子が順次励起され分子発光が生じる。
Prior to detection, the amount of oxygen and the amount of acetylene are adjusted to create a flame in which acetylene is completely burned in the burner part (4). Next, liquid chromatograph (1)
The carrier solution containing the separated organic compound sample is introduced into the nebulizer (3) through the carrier flow path (a), and further into the flame of the burner part (4) to be burned. At this time, the organic compound molecules contained in the carrier in the frame are sequentially excited to generate molecular light emission.

これらの分子発光強度がモノクロメータ(5)で400
〜700nmの可視域で連続的に分光され、検出器(6
)で検出されてこの検出出力が光電子増倍管(7)で増
幅されて記録部(8)において記録される。
The luminescence intensity of these molecules was measured with a monochromator (5) at 400
Spectroscopy is performed continuously in the visible range of ~700 nm, and the detector (6
), and this detection output is amplified by a photomultiplier tube (7) and recorded in a recording section (8).

以上の操作に基づいて、トルエン(イ)およびベンゼン
(ロ)の2成分をそれぞれ5μσずつ含有するキャリア
(メタノール、水=1:1)を上記装置に付し、モノク
ロメータ(5)により550nm付近の発光強度を検出
したところ、第2図に示すごとく明確にかつ感度良好に
2つの有機化合物が分離検出されたクロマトグラム図が
得られ、有機化合物の分子発光に基づく定性・定量が可
能であることが判明された。
Based on the above operation, a carrier (methanol, water = 1:1) containing 5 μσ of each of the two components toluene (a) and benzene (b) was applied to the above device, and a monochromator (5) was used to measure the temperature around 550 nm. When the luminescence intensity of the organic compound was detected, a chromatogram was obtained in which two organic compounds were clearly separated and detected with good sensitivity, as shown in Figure 2, and qualitative and quantitative analysis based on the molecular luminescence of the organic compound was possible. It turned out that.

以上のごとくこの発明の方法により金属元素を含まない
有機物質が検出される。
As described above, organic substances containing no metal elements can be detected by the method of the present invention.

(ト)発明の効果 この発明によれば、有機化合物の分子発光を直接利用す
る方法であるため、1種類の金属元素をモニタして間接
的に測定する従来の方法(LC−AA法、LC−ICP
法等)に比べ、金属の有無を問わず液体クロマトグラフ
の分離成分中の有機化合物が広く検出の対象となり、検
出感度も改善される。またU■検出器では検出不可能な
吸収を持たない有機化合物も検出することができ、さら
に示差屈折よりも感度の向上が期待できる。
(G) Effects of the Invention According to the present invention, since the method directly utilizes the molecular luminescence of organic compounds, it is possible to use the conventional method (LC-AA method, LC -ICP
(e.g., methods), organic compounds in the components separated by liquid chromatography can be detected more widely, regardless of the presence or absence of metals, and detection sensitivity is also improved. In addition, the U■ detector can detect organic compounds that do not have undetectable absorption, and can also be expected to have higher sensitivity than differential refraction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を実施する装置の一例の構成説
明図、第2図は第1図の装置により検出された有機化合
物のクロマトグラム図である。 (1)・・・・・・液体クロマトグラフ、(2)・・・
・・・原子吸光分光光度計、(3)・・・・ネプライザ
、   (4)・・・・・・バーナ一部、(5)・・・
・・・モノクロメータ、 (6)・・・・・・検出器、
(7)・・・・・光電子増倍管、  (8)・・・・・
記録部、(31)・・・・・酸素導入管、(32)・・
・・アセヂレン導入晋、(a)・・・・・・キャリア流
路、  (b)・・・・・・ドレイン。
FIG. 1 is an explanatory diagram of the configuration of an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a chromatogram of organic compounds detected by the apparatus of FIG. 1. (1)...Liquid chromatograph, (2)...
... Atomic absorption spectrophotometer, (3) ... Nepurizer, (4) ... Part of burner, (5) ...
...monochromator, (6) ...detector,
(7)...Photomultiplier tube, (8)...
Recording section, (31)...Oxygen introduction tube, (32)...
... Acetylene introduction, (a) ... carrier channel, (b) ... drain.

Claims (1)

【特許請求の範囲】[Claims] 1、液体クロマトグラフにより分離された有機化合物試
料を含有する移動相を連続的に気化させ、気化物を酸素
−アセチレン系の化学炎中に導入させて上記有機化合物
試料を励起させ、そしてこの励起した有機化合物試料に
基づく波長400〜700nmの発光強度を検出して有
機化合物の定性・定量を行うことを特徴とする液体クロ
マトグラフィー炎光分析法。
1. Continuously vaporize the mobile phase containing the organic compound sample separated by liquid chromatography, introduce the vapor into an oxygen-acetylene chemical flame to excite the organic compound sample, and excite the organic compound sample. 1. A liquid chromatography flame spectroscopy method, characterized in that the organic compound is qualitatively and quantitatively determined by detecting the emission intensity at a wavelength of 400 to 700 nm based on the organic compound sample.
JP15306086A 1986-06-30 1986-06-30 Liquid chromatography flame analysis Pending JPS638540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15306086A JPS638540A (en) 1986-06-30 1986-06-30 Liquid chromatography flame analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15306086A JPS638540A (en) 1986-06-30 1986-06-30 Liquid chromatography flame analysis

Publications (1)

Publication Number Publication Date
JPS638540A true JPS638540A (en) 1988-01-14

Family

ID=15554103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15306086A Pending JPS638540A (en) 1986-06-30 1986-06-30 Liquid chromatography flame analysis

Country Status (1)

Country Link
JP (1) JPS638540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520964A (en) * 2004-11-16 2008-06-19 ジョイント・アナリティカル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for determining material properties using HPLC

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520964A (en) * 2004-11-16 2008-06-19 ジョイント・アナリティカル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for determining material properties using HPLC
JP2011252920A (en) * 2004-11-16 2011-12-15 Joint Analytical Systems Gmbh Device and method for determining material property using hplc
US8187539B2 (en) 2004-11-16 2012-05-29 Joint Analytical Systems Gmbh Device and method for determining material properties by means of HPLC

Similar Documents

Publication Publication Date Title
US7906071B2 (en) Flame photometric detector having improved sensitivity
US6130095A (en) Method for the measurement of sulfur compounds
Ciajolo et al. Fluorescence spectroscopy of aromatic species produced in rich premixed ethylene flames
Kato et al. Determination of methylmercury species by capillary column gas chromatography with axially viewed inductively coupled plasma atomic emission spectrometric detection
EP0904531B1 (en) Method of explosives detection
Marschner et al. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison
EP0015284B1 (en) Flameless emission spectroscope apparatus and sample introduction method for same
Dědina et al. Argon shielded, highly fuel-rich, hydrogen–oxygen diffusion microflame—a new hydride atomizer
Stedman et al. Analytical applications of gas phase chemiluminescence
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
Slaets et al. Determination of organomercury compounds with a miniaturised automated speciation analyser
US6133740A (en) Chlorine specific gas chromatographic detector
JPS638540A (en) Liquid chromatography flame analysis
Van Dalen et al. The selective determination of halogens and sulphur in solution by atmospheric-pressure helium microwave-induced plasma emission spectrometry coupled to an electrothermal introduction system
Camuna et al. Determination of halides by microwave induced plasma and stabilized capacitive plasma atomic emission spectrometry after on-line continuous halogen generation
US3504976A (en) Process and apparatus for the detection of halogens
US5702954A (en) Method to detect phosphorus
Petrucci et al. Analytical and spectroscopic characterization of double-resonance laser-induced fluorescence of gold atoms in a graphite furnace and in a flame
Pack et al. Use of an air/argon microwave plasma torch for the detection of tetraethyllead
Robinson et al. A selective gas chromatographic detector for polynuclear aromatics based on ultraviolet fluorescence
JPS62217145A (en) Method and device for analyzing gaseous mixture and visible emission spectrum generator therefor
Futoma et al. Spectroscopic methods of analysis for polycyclic aromatic hydrocarbons in the aqueous environment
JP5114587B2 (en) Apparatus and method for determining material properties using HPLC
Cooney et al. Comparison of multichannel SIT image vidicon and photomultiplier sequential linear scanning systems for the measurement of steady-state and transient fluorescence of molecules in solution
Matsumoto et al. Determination of phosphorus by gas-phase chemiluminescence after hydride generation