JPS638529A - Inspection of optical fiber which holds single polarized wave - Google Patents

Inspection of optical fiber which holds single polarized wave

Info

Publication number
JPS638529A
JPS638529A JP15289786A JP15289786A JPS638529A JP S638529 A JPS638529 A JP S638529A JP 15289786 A JP15289786 A JP 15289786A JP 15289786 A JP15289786 A JP 15289786A JP S638529 A JPS638529 A JP S638529A
Authority
JP
Japan
Prior art keywords
optical fiber
light
stress
maintaining optical
single polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15289786A
Other languages
Japanese (ja)
Other versions
JPH0678965B2 (en
Inventor
Kazunori Senda
千田 和憲
Itaru Yokohama
横浜 至
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15289786A priority Critical patent/JPH0678965B2/en
Publication of JPS638529A publication Critical patent/JPS638529A/en
Publication of JPH0678965B2 publication Critical patent/JPH0678965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3181Reflectometers dealing with polarisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3812Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres having polarisation-maintaining light guides

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To inspect the direction of the principal axis of a portion to which a stress is applied in noncontact manner by irradiating light from the side of an optical fiber to be inspected and detecting that the interfere pattern of light scattered by the optical fiber is changed by the rotation of the optical fiber. CONSTITUTION:White light or a laser beam 20 is led to objective lenses 32a and 32b via direction changing mirrors 31a and 31b, respectively, and the light or the beam throttled thereby is irradiated on a single polarized wave holding optical fiber 10. The distribution of forward scattering light transmitted through the optical fiber 10 is observed on screens 22a and 22 and the light intensities of the central portions of the screens are detected and processed by PIN diodes 34a and 34b and current-to-voltage converters 35a and 35b via holes 33a and 33b, respectively. Since, when the optical fiber 10 is rotated about a principal axis, the outputs of the converters 35a and 35b are changed, the direction of the principal axis of a portion which is provided on both sides of the optical fiber 10 and to which a stress is applied can be inspected in noncontact manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信や光フアイバセンサの分野に用いる単一
偏波保持光ファイバの応力付与部の位置を、非接触で検
査する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for non-contactly inspecting the position of a stress-applying portion of a single polarization-maintaining optical fiber used in the fields of optical communications and optical fiber sensors.

(従来の技術) 光ファイバの製造技術の進展に伴い、直線偏波を主軸に
沿って長距離にわたって安定に保存する単一モード光フ
ァイバが開発され、単一偏波保持光ファイバと呼ばれて
、光通信や光フアイバセンサの分野に新たな進歩を生み
出すものと期待されている。
(Conventional technology) With advances in optical fiber manufacturing technology, single-mode optical fibers that stably preserve linearly polarized waves along their principal axis over long distances have been developed, and are called single-polarization-maintaining optical fibers. It is expected that this will lead to new advances in the fields of optical communications and optical fiber sensors.

単一偏波保持光ファイバとして、各種の構造を有する光
ファイバが提案・開発されている。このな力)で、PA
NDAファイバ(T、Ho5aka、他Electro
n。
Optical fibers having various structures have been proposed and developed as single polarization maintaining optical fibers. With this power), PA
NDA fiber (T, Ho5aka, etc. Electro
n.

Lett、、Vol、17. tl&115.pp、5
30−53H1981) )は単一モード光ファイバの
コアの両側に応力付与部を設け、この応力によってコア
部に非軸対称の残留応力を加えた構成となっており、低
損失で低クロストークの単一偏波保持光ファイバとして
存望視されている。
Lett, Vol. 17. tl&115. pp.5
30-53H1981)) has a structure in which stress applying parts are provided on both sides of the core of a single mode optical fiber, and this stress applies non-axisymmetric residual stress to the core part, resulting in low loss and low crosstalk. It is expected to survive as a single polarization-maintaining optical fiber.

単一偏波保持光ファイバを光通信や光フアイバセンサの
構成部品として使用するに際しては、その直線偏波保持
性が要求される。さらにクロストークの極めて小さい単
一偏波保持光フアイバカップラの作製や、単一偏波保持
光フアイバジャイロ用ファイバコイルの作製等において
は、応力付与部の位置を正確に検出し、位置合わせを行
う必要がある。
When a single polarization-maintaining optical fiber is used as a component of optical communication or an optical fiber sensor, linear polarization-maintaining property is required. Furthermore, in the production of single-polarization-maintaining optical fiber couplers with extremely low crosstalk and the production of single-polarization-maintaining optical fiber gyro fiber coils, the position of the stress-applying part must be accurately detected and aligned. There is a need.

−C的な単一偏波保持光フアイバカップラの作製手順を
第3図に示す。第3図(a)は、単一偏波保持光ファイ
バの断面図であり、単一偏波保持光ファイバはコア1と
、コア1を囲むクラッド2と、コアIの相対向する両側
に配置され、クラッド2の熱膨張係数と異なる熱膨張係
数を有する応力付与部3とを具備している。単一偏波保
持光フアイバカップラの作製手順は、第3図(b)に示
すように、2本の単一偏波保持光ファイバの外被を取り
除き、裸ファイバ10とし平行に配列する。ついで、応
力付与部3の中心とコア1の中心を結ぶ方向の主軸4(
以下、応力付与部の主軸という。)が互いに平行に揃う
ように、顕微鏡11で光フアイバ側面から応力付与部3
を観察する。この際、光ファイバ10は屈折率整合液1
2に浸し、さらに必要に応じては、偏光13または紫外
光14によって補助照明を行い、応力付与部の主軸を検
出し、光ファイバlOをその中心軸5にそって回転させ
て位置決めを行う。
FIG. 3 shows the procedure for manufacturing a -C type single polarization maintaining optical fiber coupler. FIG. 3(a) is a cross-sectional view of a single polarization-maintaining optical fiber, and the single polarization-maintaining optical fiber includes a core 1, a cladding 2 surrounding the core 1, and a cladding 2 arranged on opposite sides of the core I. The stress applying section 3 has a thermal expansion coefficient different from that of the cladding 2. The procedure for manufacturing a single polarization maintaining optical fiber coupler is as shown in FIG. 3(b), by removing the jackets of two single polarization maintaining optical fibers and arranging them in parallel as bare fibers 10. Next, the main axis 4 (
Hereinafter, this will be referred to as the main axis of the stress applying section. ) are aligned parallel to each other, using the microscope 11 to remove the stress applying part 3 from the side surface of the optical fiber.
Observe. At this time, the optical fiber 10 is connected to the refractive index matching liquid 1.
If necessary, auxiliary illumination is performed using polarized light 13 or ultraviolet light 14, the main axis of the stress-applying part is detected, and the optical fiber IO is rotated along its central axis 5 for positioning.

ついで第3図(c)に示すように、光ファイバ10の一
部分15を高温加熱融着し、さらに延伸を行って第3図
(d)に示すように、カップラ部16を構成し、単一偏
波保持光ファイバカップラとする。
Next, as shown in FIG. 3(c), a portion 15 of the optical fiber 10 is heat-fused at high temperature and further stretched to form a coupler portion 16 as shown in FIG. 3(d). It is a polarization-maintaining optical fiber coupler.

単一偏波保持光ファイバカップラの重要な特性として、
挿入損失とクコストークの特性および延伸部の強度特性
がある。挿入損失に対して応力付与部の主軸配列は大き
くは影響を与えないが、クロストークに関しては重要な
影響がある。また主軸配列の際に使用する屈折率整合液
12の使用は、屈折率整合液中に含まれるごみや、はこ
り等の微粒子により、カップラの損失増加をもたらすこ
とがある。
The important characteristics of a single polarization maintaining optical fiber coupler are:
There are insertion loss, cocoon stalk characteristics, and strength characteristics of the stretched portion. Although the main axis arrangement of the stress applying section does not have a large effect on insertion loss, it has an important effect on crosstalk. Further, the use of the refractive index matching liquid 12 used for main axis alignment may result in increased loss of the coupler due to particulates such as dust and clumps contained in the refractive index matching liquid.

前記のように、クロストークを減少させる目的として、
主軸配列のために屈折率整合液12を使用すると、カッ
プラの損失増加を伴うという不都合が生じる場合があり
、カップラ作製の歩留り向上のために、屈折率整合液1
2を必要としない応力付与部の主軸方向検査法が望まれ
ていた。
As mentioned above, for the purpose of reducing crosstalk,
If the refractive index matching liquid 12 is used for main axis alignment, there may be a problem that the loss of the coupler increases.
There has been a desire for a method for inspecting the stress-applying portion in the principal axis direction, which does not require the following.

jT、単一偏波保持光フアイバジャイロ用ファイバコイ
ルの作製においては、光フアイバジャイロが地磁気に起
因するファラデー効果によって地球自転相当のドリフト
が生じるのを低減化するため、単一偏波保持光フアイバ
コイルを用いているが、コイル作製時の応力付与部の主
軸ねじれがドリフトの原因となっている(参考文献二田
部、保守、信学技報OQE 85〜91.1985)。
jT, When manufacturing a fiber coil for a single polarization maintaining optical fiber gyro, a single polarization maintaining optical fiber is used to reduce the drift of the optical fiber gyro equivalent to the rotation of the earth due to the Faraday effect caused by the geomagnetism. Although a coil is used, twisting of the main axis of the stress-applying part during coil production causes drift (Reference: Nitabe, Maintenance, IEICE Technical Report OQE 85-91, 1985).

単一偏波保持光フアイバコイル作製時に応力付与部の主
軸を所望の位置に配列するための主軸方向検出法は皆無
であり、単一偏波保持光ファイバカソプラ作製時以上に
、応力付与部の主軸方向検査法が強く望まれていた。
There is no method of detecting the direction of the principal axis of the stress-applying part to align it at a desired position when manufacturing a single polarization-maintaining optical fiber coil, and the stress-applying part There was a strong desire for an inspection method in the principal axis direction.

(発明が解決しようとする問題点) 本発明は、単一偏波保持光ファイバの応力付与部の主軸
方向を非接触で検査する方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for non-contactly inspecting the principal axis direction of a stress-applying portion of a single polarization-maintaining optical fiber.

(問題点を解決するための手段) 本発明は、単一偏波保持光ファイバの側面から白色光ま
たはレーザ光を照射し、コアや応力付与部より構成され
る光ファイバを透過した光の後方散乱光の干渉模様、ま
たは光ファイバの表面および内部構造物のコアや応力付
与部によって前方へ散乱された光の干渉模様を検出し、
光ファイバを光ファイバの中心軸にそって回転させて、
応力付与部の主軸方向を検査する。
(Means for Solving the Problems) The present invention irradiates white light or laser light from the side of a single polarization maintaining optical fiber, and the rear of the light transmitted through the optical fiber consisting of a core and a stress-applying part. Detects the interference pattern of scattered light or the interference pattern of light scattered forward by the core or stress applying part of the surface and internal structure of the optical fiber,
By rotating the optical fiber along the central axis of the optical fiber,
Inspect the main axis direction of the stress applying part.

従来の技術では単一偏波保持光ファイバの応力付与部の
主軸方向を検出するために必須であった屈折率整合液を
必要とせず、非接触で応力付与部の主軸方向が検査でき
、低クロストークの単一偏波保持光ファイバカップラの
作製や、光ファイバジャイロ用コイルの作製に非常に有
効である。
Conventional technology does not require a refractive index matching liquid, which was essential for detecting the principal axis direction of the stress applying section of a single polarization maintaining optical fiber, and the principal axis direction of the stress applying section can be inspected without contact, resulting in low It is very effective for producing crosstalk single polarization maintaining optical fiber couplers and for producing coils for optical fiber gyros.

以下、具体的な実施例により、本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail with reference to specific examples.

第2図は本発明の検査原理を説明する図であって、(a
)は前方散乱光を用いた場合を示し、(b)は後方散乱
光を用いた場合を示す。
FIG. 2 is a diagram explaining the inspection principle of the present invention, (a
) shows the case where forward scattered light is used, and (b) shows the case where back scattered light is used.

第2図(a)において、白色光またはレーザ光20を単
一偏波保持光ファイバ10に入射させる。入射した光は
、光ファイバのレンズ効果で光ファイバの出射点の後方
で焦点21を結び、ついで拡大されてスクリーン22に
投影する。一方、光ファイバに入射しなかった光もスク
リーン上に投影され、これらの光が干渉し合ってスクリ
ーン上に干渉模様23を形成する。この干渉模様23は
、光ファイバの応力付与部の主軸4を回転させると変化
する。この干渉模様23の一点または複数点の強度変化
または分布形状の強度分布変化と主軸4の回転角の関係
を定量化することによって、応力付与部の主軸の方向を
検出することができる。
In FIG. 2(a), white light or laser light 20 is introduced into a single polarization-maintaining optical fiber 10. In FIG. The incident light is focused 21 behind the output point of the optical fiber due to the lens effect of the optical fiber, and is then enlarged and projected onto the screen 22. On the other hand, the light that has not entered the optical fiber is also projected onto the screen, and these lights interfere with each other to form an interference pattern 23 on the screen. This interference pattern 23 changes when the main axis 4 of the stress applying portion of the optical fiber is rotated. By quantifying the relationship between the intensity change at one or more points of the interference pattern 23 or the intensity distribution change in the distribution shape and the rotation angle of the main shaft 4, the direction of the main axis of the stress applying portion can be detected.

以下、本発明を第2図(a)の場合、すなわち前方散乱
光を用いた場合について、具体的な実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on a specific example for the case shown in FIG. 2(a), that is, the case where forward scattered light is used.

第1図は本発明の具体的な一実施例を説明するための図
であって、(a)は光学系、(b) 、 (c)はスク
リーン22b、 22a上の光強度分布形状の測定例、
(d)は電流電圧変換器35a、 35bの2点での光
強度変化を示す図である。レーザ光20として51のI
f e N eレーザ光を用い、半透鏡30でレーザ光
を2方向に分け、それぞれ方向変更v131a、 31
bでレーザ光を単一偏波保持光ファイバ10に90°の
角度差で入射するように方向変更する。方向変更したレ
ーザ光は20倍の対物レンズ32a、 32bで焦点2
1a、 21bを結ぶ。対物レンズ32a、 32bは
、単一偏波保持光ファイバ10の外径よりわずかに拡大
した範囲まで単一偏波保持光ファイバ10に向けて光を
照射できるような位置にそれぞれ設置する。ついで前方
散乱光分布を単一偏波保持光ファイバ10より20cm
前方においたスクリーン22a、 22bで観察し、ま
たスクリーン中央部の外径3n++++φの穴33a、
 33bを介して光強度をPINダイオード(UDT社
PIN 5D)34a。
FIG. 1 is a diagram for explaining a specific embodiment of the present invention, in which (a) shows the optical system, and (b) and (c) show the measurement of the shape of the light intensity distribution on the screens 22b and 22a. example,
(d) is a diagram showing changes in light intensity at two points of the current-voltage converters 35a and 35b. 51 I as laser beam 20
Using f e Ne laser light, the laser light is divided into two directions with a semi-transparent mirror 30, and the directions are changed respectively v131a, 31
At b, the direction of the laser beam is changed so that it is incident on the single polarization maintaining optical fiber 10 with an angle difference of 90°. The laser beam whose direction has been changed is focused at focal point 2 by 20x objective lenses 32a and 32b.
Connect 1a and 21b. The objective lenses 32a and 32b are each installed at a position where they can irradiate light toward the single polarization-maintaining optical fiber 10 to a range slightly larger than the outer diameter of the single-polarization-maintaining optical fiber 10. Next, the forward scattered light distribution was measured 20 cm from the single polarization maintaining optical fiber 10.
Observation was made using screens 22a and 22b placed in front, and a hole 33a with an outer diameter of 3n+++φ in the center of the screen.
The light intensity is transmitted through the PIN diode (UDT PIN 5D) 34a through the PIN diode 33b.

34bで検出し、電流電圧変換器35a、 35bで信
号処理した。また単一偏波保持光ファイバ10の回転に
は直流ギヤモータ(S静へMURA電気MM13B−J
l−1500)を用い、0.16の精度とし、さらに回
転中の光ファイバの光軸変動を防止するため光ファイバ
を■溝式真空チャックで支持した。
34b, and signal processing was performed by current-voltage converters 35a and 35b. In addition, a DC gear motor (MURA electric MM13B-J) is used to rotate the single polarization-maintaining optical fiber 10.
1-1500) with an accuracy of 0.16, and furthermore, the optical fiber was supported by a groove type vacuum chuck to prevent optical axis fluctuation of the optical fiber during rotation.

光軸の主軸〔第3図(a)に示す対物レンズ32bの光
軸〕と単一偏波保持光ファイバの応力付与部の主軸4と
のなす角をθと定めた。
The angle between the principal axis of the optical axis (the optical axis of the objective lens 32b shown in FIG. 3(a)) and the principal axis 4 of the stress applying portion of the single polarization maintaining optical fiber was defined as θ.

単一偏波保持光ファイバ10としては、外径200μm
、コア径6.5μm、コア部の比屈折率差7=0.4%
、カットオフ波長λ。=1.1 μm1応力付与部の直
径40μm、応力付与部の比屈折率差A=−〇、4%の
PANDA型を用いた。
The single polarization maintaining optical fiber 10 has an outer diameter of 200 μm.
, core diameter 6.5 μm, relative refractive index difference of core part 7 = 0.4%
, cutoff wavelength λ. = 1.1 μm 1 A PANDA type was used in which the diameter of the stress applying portion was 40 μm and the relative refractive index difference A of the stress applying portion was −〇, 4%.

第1図(b) 、 (c)は、それぞれスクリーン22
b。
FIGS. 1(b) and 1(c) show the screen 22, respectively.
b.

22a上の前方散乱光分布を示し、Qが90°の場合で
ある。
The forward scattered light distribution on 22a is shown in the case where Q is 90°.

第1図(b)の場合と第1図(c)の場合を比較すると
、強度分布の全体は第1図(b)の方が高く、またその
明暗も第1図(c)に比べて明確である。
Comparing the cases in Figure 1(b) and Figure 1(c), the overall intensity distribution is higher in Figure 1(b), and its brightness is also higher than in Figure 1(c). It is clear.

さらに周辺部の高次の回折によって出現した強度も明6
育に有意差を生じている。
Furthermore, the intensity that appears due to higher-order diffraction in the peripheral area is also bright.
There is a significant difference in education.

第1図(d)は光ファイバを回転させた場合の電流電圧
変換器35a、 35bの出力を示している。この結果
から、35a、 35bのいずれの信号からも±1゜の
角度変化で、出力強度が士約10〜20%変化している
ことがわかる。この電流電圧変換器35a、 35bか
らの出力を差動増幅して光源のノイズ、等を取り除いた
結果、光線の主軸と応力付与部の主軸のなす角度θ−9
0”の設定に対して、±0.26の精度で角度を検出す
ることができた。
FIG. 1(d) shows the outputs of the current-voltage converters 35a and 35b when the optical fiber is rotated. From this result, it can be seen that the output intensity changes by approximately 10 to 20% with an angular change of ±1° from either signal 35a or 35b. As a result of differentially amplifying the outputs from the current-voltage converters 35a and 35b and removing noise from the light source, the angle θ-9 between the principal axis of the light beam and the principal axis of the stress applying section is
The angle could be detected with an accuracy of ±0.26 with respect to the setting of 0''.

以上の実施例は前方散乱光を用いた場合について述べた
が、本発明は第2図(b)の場合、すなわち後方散乱光
を用いた場合についても有効であることは言うまでもな
い。
Although the above embodiments have been described using forward scattered light, it goes without saying that the present invention is also effective in the case shown in FIG. 2(b), that is, when back scattered light is used.

次に本発明を用いて、2本の単一偏波保持光ファイバの
応力付与部の主軸を平行に゛位置合わせし、単一偏波保
持光フアイバカップラの製造を行った。
Next, using the present invention, the main axes of the stress applying parts of two single polarization maintaining optical fibers were aligned in parallel, and a single polarization maintaining optical fiber coupler was manufactured.

このようにして作製したカップラのクロストークは平均
で一40dBあり、この値から応力付与部の主軸の配列
誤差を推定すると、約0.6 °以下となる。
The crosstalk of the coupler manufactured in this manner is 140 dB on average, and when the alignment error of the principal axis of the stress applying portion is estimated from this value, it is approximately 0.6° or less.

従来の方法で見られたほこり等による損失増加は、見ら
れなかった。
Increased loss due to dust, etc., which was observed with conventional methods, was not observed.

本発明の他の実施例としては、光フアイバジャイロ用フ
ァイバコイルの作製を行った。PANDAファイバの線
引き工程中に本発明の検査方法を導入した。通常の外径
50mmφのPANDAファイバ母材を抵抗加熱炉を用
い2000℃の高温で加熱溶融し、毎分20mの速度で
外径200μmの単−偏波保持光ファイバとし、抵抗加
熱炉から引き出した。抵抗加熱炉の1m下部に本発明の
第1図(a)に示す光学系を取り付け、応力付与部の主
軸方向を検出した。
As another example of the present invention, a fiber coil for an optical fiber gyro was manufactured. The inspection method of the present invention was introduced during the drawing process of PANDA fiber. A normal PANDA fiber base material with an outer diameter of 50 mmφ was heated and melted at a high temperature of 2000°C using a resistance heating furnace, and a single polarization-maintaining optical fiber with an outer diameter of 200 μm was produced at a speed of 20 m/min, which was pulled out from the resistance heating furnace. . The optical system shown in FIG. 1(a) of the present invention was installed 1 m below the resistance heating furnace to detect the principal axis direction of the stress applying part.

ついで、この主軸の方向が一定方向となるように、巻取
りドラムを回転させて光ファイバを巻き取った。このド
ラム上の光ファイバを紫外線硬化型の樹脂で被覆硬化し
、ついで光ファイバを切断し、断面の配列を検査した。
Next, the winding drum was rotated to wind up the optical fiber so that the direction of the main axis was in a fixed direction. The optical fibers on this drum were coated and cured with an ultraviolet curable resin, and then the optical fibers were cut and the cross-sectional arrangement was inspected.

その結果、角度配列誤差1°以下で、応力付与部の主軸
方向が制御されていることを確認した。
As a result, it was confirmed that the main axis direction of the stress applying portion was controlled with an angular alignment error of 1° or less.

単−偏波保持光ファイバとして、応力付与部の形状が円
形ではない構造のものについても、上記検査方法により
、応力付与部で定まる主軸の方向を検出することができ
ることは言うまでもない。
It goes without saying that even for single-polarization maintaining optical fibers in which the shape of the stress-applying portion is not circular, the direction of the principal axis determined by the stress-applying portion can be detected by the above-described testing method.

(発明の効果) 以上説明したように、本発明の単−偏波保持光ファイバ
の検査方法によれば、応力付与部の主軸方向を非接触で
検出できるので、単−偏波保持光ファイバカソプラを製
造するとき、製造歩留りの向上や強度特性の向上を図る
ことができ、また光フアイバジャイロ用コイルを作製す
るとき、応力付与部の主軸ねじれを防止できる等、絶大
な効果がある。
(Effects of the Invention) As explained above, according to the method for testing a single-polarization maintaining optical fiber of the present invention, the direction of the principal axis of the stress-applying portion can be detected without contact. When manufacturing sopras, it is possible to improve the manufacturing yield and strength characteristics, and when manufacturing optical fiber gyro coils, it has great effects such as preventing twisting of the main axis of the stress applying part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の光学系を示す図、第
1図(b) 、 (c)は第1図(a)の実施例におけ
るスクリーン22b、 22a上の光強度分布状態を示
す図、第1図(d)は第1図(a)の実施例における電
流電圧変換器35a、 35bの2点での光強度変化を
示す図、 第2図は本発明の検査原理を説明するための図、第3図
(a) 、 (b) 、 (c) 、 (d)は一般的
な偏波保持光フアイバカップラの作製手順を示す図であ
る。 1・・・コア       2・・・クラッド3・・・
応力付与部    4・・・応力付与部の主軸5・・・
光ファイバの中心軸 10・・・単−偏波保持光ファイハ 11・・・顕微鏡      12・・・屈折率整合液
13・・・偏光       14・・・紫外光15・
・・光ファイバ10の一部分 16・・・カップラ部 20・・・白色光またはレーザ光 21、21a、 21b・・・焦点 22、22a、 22b・・・スクリーン23・・・干
渉模様     30・・・半透鏡31a、 31b・
・・方向変更鏡 32a、 32b・・・対物レンズ3
3a、 33b・−穴 34a、 34b−・・PTNダイオード35a、 3
5b・・・電流電圧変換器第1図 スクリーン22b上のイi、1 スクリーン22a−辷−のイ江1 尤牟皇の主軸幻にカイ寸与肩戸の1軸と0な1角θ第2
図 (a) 第3図 ゛(
FIG. 1(a) is a diagram showing an optical system of an embodiment of the present invention, and FIGS. 1(b) and 1(c) are light intensity distributions on the screens 22b and 22a in the embodiment of FIG. 1(a). A diagram showing the state, FIG. 1(d) is a diagram showing light intensity changes at two points of the current-voltage converters 35a and 35b in the embodiment of FIG. 1(a), and FIG. 2 is a diagram showing the inspection principle of the present invention. Figures 3(a), 3(b), 3(c), and 3(d) are diagrams for explaining the manufacturing procedure of a general polarization-maintaining optical fiber coupler. 1... Core 2... Clad 3...
Stress applying part 4...Main axis 5 of stress applying part...
Central axis of optical fiber 10...Single-polarization maintaining optical fiber 11...Microscope 12...Refractive index matching liquid 13...Polarized light 14...Ultraviolet light 15...
...Part 16 of the optical fiber 10...Coupler section 20...White light or laser light 21, 21a, 21b...Focus 22, 22a, 22b...Screen 23...Interference pattern 30... Semi-transparent mirrors 31a, 31b・
...Direction changing mirror 32a, 32b...Objective lens 3
3a, 33b--holes 34a, 34b--PTN diode 35a, 3
5b...Current-voltage converter Figure 1 I, 1 on screen 22b, 1 on screen 22a, 1 on screen 22a. 2
Figure (a) Figure 3゛(

Claims (1)

【特許請求の範囲】 1、コアと、該コアを囲むクラッドと、前記コアの相対
向する両側に、前記クラッドの熱膨張係数と異なる熱膨
張係数を有する応力付与部とを持つ単一偏波保持光ファ
イバの側面から、白色光またはレーザ光を照射し、光フ
ァイバを透過した前方散乱光の干渉模様または光ファイ
バの表面および内部構造物によって光の入射側に散乱さ
れた光の後方散乱光の干渉模様を検出し、光ファイバを
光ファイバの中心軸にそつて回転させて、応力付与部の
主軸方向を検査することを特徴とする単一偏波保持光フ
ァイバの検査方法。 2、単一偏波保持光ファイバの中心軸に対して互いに9
0°異なる2方向の側面から白色光またはレーザ光を照
射し、前方散乱または後方散乱によって発生する2方向
の干渉模様を検出することを特徴とする特許請求の範囲
第1項記載の単一偏波保持光ファイバの検査方法。
[Claims] 1. A single polarized wave having a core, a cladding surrounding the core, and stress applying portions having a thermal expansion coefficient different from that of the cladding on opposite sides of the core. White light or laser light is irradiated from the side of the optical fiber being held, and the interference pattern of the forward scattered light transmitted through the optical fiber or the backscattered light of the light scattered toward the light incident side by the surface and internal structures of the optical fiber 1. A method for inspecting a single polarization-maintaining optical fiber, comprising detecting an interference pattern of the fiber, rotating the optical fiber along the central axis of the optical fiber, and inspecting the main axis direction of the stress applying part. 2.9 to each other with respect to the central axis of a single polarization-maintaining optical fiber
The single polarization device according to claim 1, characterized in that white light or laser light is irradiated from the sides in two directions different by 0°, and interference patterns in two directions generated by forward scattering or backward scattering are detected. Inspection method for wave-maintaining optical fiber.
JP15289786A 1986-06-30 1986-06-30 Inspection method for single polarization maintaining optical fiber Expired - Fee Related JPH0678965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15289786A JPH0678965B2 (en) 1986-06-30 1986-06-30 Inspection method for single polarization maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15289786A JPH0678965B2 (en) 1986-06-30 1986-06-30 Inspection method for single polarization maintaining optical fiber

Publications (2)

Publication Number Publication Date
JPS638529A true JPS638529A (en) 1988-01-14
JPH0678965B2 JPH0678965B2 (en) 1994-10-05

Family

ID=15550521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15289786A Expired - Fee Related JPH0678965B2 (en) 1986-06-30 1986-06-30 Inspection method for single polarization maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPH0678965B2 (en)

Also Published As

Publication number Publication date
JPH0678965B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
JP3737107B2 (en) Determination of angular offset between optical fibers with optical axial asymmetry and fiber centering and splicing
US6984077B2 (en) System for joining polarization-maintaining optical fiber waveguides
US4124728A (en) Method for monitoring the concentricity of plastic coatings on optical fibers
EP0586964B1 (en) Method of determining azimuthal position of transverse axes of optical fibers with elliptical cores
Beguin et al. Fabrication and performance of low loss optical components made by ion exchange in glass
Zheng et al. Interrelation profile analysis method for alignment of polarization-maintaining fiber
US5488683A (en) Method for splicing polarization maintaining fiber with elliptical stress member
JPH10507849A (en) Connection between twin-core optical fiber and single-core fiber
JPH0815563A (en) Alignment method in coupling part of optical fiber having non-axisymmetrical refractive index distribution and optical waveguide, optical fiber fixing structure and coupling part
JPS638529A (en) Inspection of optical fiber which holds single polarized wave
US5317575A (en) System for determining birefringent axes in polarization-maintaining optical fiber
JP3343756B2 (en) Manufacturing method of collimator for optical circuit
KR101056409B1 (en) Axis Determination System of Photonic Crystal Optical Fiber and Axis Decision Method Using The Same
WO2023234403A1 (en) Fusion splicing device and fusion splicing method
Yamada et al. Arc fusion splicer with profile alignment system for high-strength low-loss optical submarine cable
Gu et al. Experimental investigation of fibre-optical confocal scanning microscopy: including a comparison with pinhole detection
El-Diasty Laser-scattering-based method for investigation of ultra-low-loss arc fusion-spliced single-mode optical fibers
Filipenko et al. Improving of photonic crystal fibers connection quality using positioning by the autoconvolution method
JP2005173210A (en) Method for determining rotational reference position of plane of polarization keeping optical fiber and optical fiber fusion-splicing machine
Katagiri et al. Optical microscope observation method of a single-mode optical-fiber core for precise core-axis alignment
WO2023182224A1 (en) Fiber fusion splicing device and fiber fusion splicing method
JPH0815562A (en) Alignment method of direction of rotating direction of optical fiber in optical fiber array and optical fiber array
JP2859680B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JP3574714B2 (en) Optical element connection method
JP2903748B2 (en) Shape measurement method by laser microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees