JPS6385021A - Production of single mode optical fiber having low dispersion and loss - Google Patents
Production of single mode optical fiber having low dispersion and lossInfo
- Publication number
- JPS6385021A JPS6385021A JP61226095A JP22609586A JPS6385021A JP S6385021 A JPS6385021 A JP S6385021A JP 61226095 A JP61226095 A JP 61226095A JP 22609586 A JP22609586 A JP 22609586A JP S6385021 A JPS6385021 A JP S6385021A
- Authority
- JP
- Japan
- Prior art keywords
- core rod
- core
- refractive index
- optical fiber
- quartz tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 26
- 239000006185 dispersion Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000009826 distribution Methods 0.000 claims abstract description 24
- 239000010453 quartz Substances 0.000 claims abstract description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000013461 design Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 9
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 7
- 238000005253 cladding Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- -1 tungsten halogen Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/0124—Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/0253—Controlling or regulating
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は低分散且つ低損失の単一モード光ファイバを製
造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a single mode optical fiber with low dispersion and low loss.
[従来の技術]
光通信技術及び光計測技術等における光伝送路として単
一モード光ファイバが広く用いられているが、この光フ
ァイバは主にコアの外周部に低屈折率のクラッドが設け
られ、ざらにクラッドの外周部にジャケットが設けられ
た構造を有している。このような光ファイバは一般にコ
ア部とクラッド部とからなるコアロッドを所定の延伸径
に延伸してこれをジャケット石英管内にロッドインし、
同時線引することにより製造される。[Prior art] Single-mode optical fibers are widely used as optical transmission lines in optical communication technology, optical measurement technology, etc., but these optical fibers mainly have a cladding with a low refractive index provided around the outer periphery of the core. It has a structure in which a jacket is provided around the outer periphery of the cladding. Such optical fibers generally consist of a core rod consisting of a core part and a cladding part, which is stretched to a predetermined diameter, and then inserted into a jacketed quartz tube.
Manufactured by simultaneous drawing.
ここで、従来行なわれていたコアロッドの延伸径の決定
方法を以下に述べる。Here, the conventional method of determining the drawn diameter of the core rod will be described below.
まず、製作したコアロッドの線引予定部分をプレフォー
ムアナライザで数ケ所測定し、その外径の平均値D[s
]、コア径(屈折率分布の半値幅)の平均値2T[m]
及び比屈折率差の平均値Δ[%]を求める。First, the area to be drawn of the manufactured core rod was measured at several locations using a preform analyzer, and the average value of the outer diameter D[s
], average value of core diameter (half width of refractive index distribution) 2T [m]
and the average value Δ[%] of the relative refractive index difference.
次に、目標のカットオフ波長をλCとしてコアロッドの
延伸径dを次の(1) +2)式に従い決定する。Next, the stretched diameter d of the core rod is determined according to the following equation (1) + 2), with the target cutoff wavelength set as λC.
ただし、Sは使用するジャケット石英管の公称断面積[
jII2]、Soはカットオフ波長をλCとするための
設計断面積[履2]、noはコアの屈折率の平均値であ
る。また、γは補正係数であり、実際のプロファイルが
完全なステップ状とはならないために導入したもので、
設計者がプロファイルを見て決定する。However, S is the nominal cross-sectional area of the jacketed quartz tube used [
jII2], So is the design cross-sectional area [2] for setting the cutoff wavelength to λC, and no is the average value of the refractive index of the core. In addition, γ is a correction coefficient, which was introduced because the actual profile does not have a perfect step shape.
The designer looks at the profile and makes a decision.
[発明が解決しようとする問題点]
しかしながら、このようなコアロッド延伸径dの決定方
法では次の如き問題点が発生する。[Problems to be Solved by the Invention] However, the following problems occur in such a method of determining the extended core rod diameter d.
■ 補正係数γが設計者の判断によって決められるので
得られたファイバのカットオフ波長λCに個人差が生じ
る。(2) Since the correction coefficient γ is determined by the designer's judgment, individual differences occur in the cutoff wavelength λC of the resulting fiber.
■ コアロッドの外径、コア径及び比屈折率差として数
ケ所における測定値の平均値を用いるために、光ファイ
バにスペックを満足しない部分が生じる恐れがある。そ
の結果、光ファイバの伝送特性が長手方向に均一でなく
低損失とならない場合がある。(2) Since the average value of measured values at several locations is used as the outer diameter, core diameter, and relative refractive index difference of the core rod, there is a risk that there will be parts of the optical fiber that do not meet the specifications. As a result, the transmission characteristics of the optical fiber may not be uniform in the longitudinal direction, and the loss may not be low.
■ コアロッドの屈折率分布に角形状や裾引き等の乱れ
が存在すると補正係数γの最適値を求めることが困難と
なり、得られるカットオフ波長が目標値と大幅に異なる
恐れがある。■ If there are irregularities such as angular shape or skirting in the refractive index distribution of the core rod, it will be difficult to find the optimal value for the correction coefficient γ, and the resulting cutoff wavelength may differ significantly from the target value.
■ 補正係数γを必要とするために得られるカットオフ
波長λCの精度は高々±0.06 jH4である。(2) Since the correction coefficient γ is required, the accuracy of the cutoff wavelength λC obtained is at most ±0.06 jH4.
従って、低分散ファイバを得ようとしても、分散特性は
比屈折率差が一定の場合にはカットオフ波長により決ま
るので、分散制御性に乏しく線引歩留りが悪くなる。Therefore, even if an attempt is made to obtain a low dispersion fiber, the dispersion characteristics are determined by the cutoff wavelength when the relative refractive index difference is constant, resulting in poor dispersion controllability and poor drawing yield.
かくして本発明の目的は上記従来技術の問題点を解消し
、長手方向に安定した伝送特性及び分散特性を示す低分
散低損失単一モード光ファイバを得ることができる製造
方法を提供することにある。SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a manufacturing method capable of solving the above-mentioned problems of the prior art and producing a low-dispersion, low-loss single-mode optical fiber that exhibits stable transmission and dispersion characteristics in the longitudinal direction. .
[問題点を解決するための手段]
本発明の低分散低損失単一モード光ファイバの製造方法
は上記目的を達成するために、コアロッドを所定の外径
に延伸してこれをジャケット石英管内に挿入した後、該
石英管がコアロッドと一体化するように潰しながら線引
きして単一モード光ファイバを製造する方法において、
上記コアロッドの延伸径de[ms+1を等価的なステ
ップ型屈折率分布におけるコアの屈折率n1e、比屈折
率差Δe [%]及び等価コア半径ae[ai+]を用
いて次式で決定される値とする方法である。[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a low-dispersion, low-loss single mode optical fiber of the present invention stretches a core rod to a predetermined outer diameter and inserts it into a jacketed quartz tube. After insertion, the method for manufacturing a single mode optical fiber by crushing and drawing the quartz tube so that it is integrated with a core rod,
A value determined by the following formula using the elongated diameter de[ms+1] of the core rod, the refractive index n1e of the core in an equivalent step-type refractive index distribution, the relative refractive index difference Δe [%], and the equivalent core radius ae[ai+] This is the method to do so.
(ただし、
Sはジャケット石英管の断面積[Ia2]、Dはコアロ
ッド外径[履]、λCはカットオフ波長設計値[*]、
aは線引きされた光ファイバの外径[*]である)
[作 用]
本発明はコアロッドの等価的なステップ型屈折率分布す
なわちE S I (E Quivalent S t
epI ndeX)分布に基づいてコアロッドの延伸径
deを決定するものであるので、補正係数が不要になる
と共に実際の屈折率分布に乱れが存在しても高精度でカ
ットオフ波長を制御することができる。(However, S is the cross-sectional area of the jacket quartz tube [Ia2], D is the outer diameter of the core rod [diameter], λC is the cut-off wavelength design value [*],
a is the outer diameter [*] of the drawn optical fiber) [Function] The present invention provides an equivalent step-type refractive index distribution of the core rod, that is, E S I (E Quivalent S t
Since the elongated diameter de of the core rod is determined based on the distribution (epI nde can.
具体的には、コアロッドの実際の屈折率分布を測定して
これを等価的なステップ型屈折率分布に置き換え、この
ステップ型屈折率分布におけるコアの屈折率n18.比
屈折率差Δe及び等価コア半径aeとジャケット石英管
の断面積S等を用いてコアロッドの延伸径deが決定さ
れる。Specifically, the actual refractive index distribution of the core rod is measured and replaced with an equivalent step-type refractive index distribution, and the refractive index n18 of the core in this step-type refractive index distribution is determined. The extended diameter de of the core rod is determined using the relative refractive index difference Δe, the equivalent core radius ae, the cross-sectional area S of the jacket quartz tube, etc.
さらに、ジャケット石英管の断面積Sを投影法等によっ
てその長手方向の関数として測定し、この測定値を用い
てコアロッドの延伸径deを決定すれば、なお−口長手
方向における伝送特性及び分散特性の安定性に優れた単
一モード光ファイバが得られる。Furthermore, if the cross-sectional area S of the jacketed quartz tube is measured as a function of its longitudinal direction by a projection method, etc., and this measured value is used to determine the extended diameter de of the core rod, then the transmission characteristics and dispersion characteristics in the longitudinal direction A single mode optical fiber with excellent stability can be obtained.
[実施例] 以下、本発明の実施例を添付図面に従って説明する。[Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.
まず、コア部とこれを囲繞するように設けられたクラッ
ド部とからなるコアロッドの線引予定部分を半径方向に
長さ 1jII+ないし2m毎にプレフォームアナライ
ザで測定し屈折率分布n(r)を求める。First, the portion of the core rod that is to be drawn, which consists of a core portion and a cladding portion provided to surround it, is measured in the radial direction every 1jII+ to 2 m in length using a preform analyzer to obtain the refractive index distribution n(r). demand.
次に、この屈折率分布n (r)から次の(り式で表わ
されるESI分布の等価的なコア半径ae[mlを算出
する。Next, from this refractive index distribution n (r), an equivalent core radius ae [ml of the ESI distribution expressed by the following formula is calculated.
ただし、
rN −n+
nl :コア部の最大屈折率
n2 :クラッド部の屈折率
さらに、次式に基づいて等価的なコアの屈折率1e
ここで、第1図にコアロッドの実際の屈折率分布1とE
SI81分布の関係を示す。ESI81分布は完全なス
テップ型の分布となっている。However, rN -n+ nl : Maximum refractive index of the core part n2 : Refractive index of the cladding part Furthermore, based on the following formula, the equivalent refractive index of the core 1e Here, the actual refractive index distribution 1 of the core rod is shown in Fig. 1. and E
The relationship of SI81 distribution is shown. The ESI81 distribution is a complete step type distribution.
ざらに、上述した(4■式により求められた等価コア半
径ae [履]、屈折率n1e及び比屈折率差Δe [
%]を用いてコアロッドの延伸径de[mlを次のよう
にして算出する。Roughly speaking, the equivalent core radius ae [ ], the refractive index n1e and the relative refractive index difference Δe [
%], the stretched diameter de[ml] of the core rod is calculated as follows.
ただし、Sはジャケット石英管の断面積[aI2]Dは
コアロッド外径[H]、λCはカットオフ波長設計値[
4] 、aは線引きされた光ファイバの外径[*]であ
る。However, S is the cross-sectional area of the jacket quartz tube [aI2], D is the outer diameter of the core rod [H], and λC is the cut-off wavelength design value [
4], a is the outer diameter [*] of the drawn optical fiber.
このようにして各測定点での延伸径daを求め、その結
果に基づいてコアロッドを延伸する。そして、このコア
ロッドをジャケット石英管内にロッドインし同時線引き
して単一モード光ファイバを製造する。In this way, the stretched diameter da at each measurement point is determined, and the core rod is stretched based on the results. Then, this core rod is inserted into a jacketed quartz tube and simultaneously drawn to produce a single mode optical fiber.
線引きされた光ファイバの外径aを1257Jとして種
々のカットオフ波長設定値λCを有する複数の単一モー
ド光ファイバを作成し、それぞれカットオフ波長を実測
したところ第2図のような結果が得られた。すなわち、
±O,015声以内の精度でカットオフ波長を制御する
ことが可能であり、その伝送特性及び分散特性は極めて
良好で且つ長手方向に均一であった。When the outer diameter a of the drawn optical fiber was set to 1257J, a plurality of single mode optical fibers with various cutoff wavelength settings λC were created, and the cutoff wavelengths of each were actually measured, and the results shown in Figure 2 were obtained. It was done. That is,
It was possible to control the cutoff wavelength with an accuracy within ±0.015 tones, and the transmission and dispersion characteristics were extremely good and uniform in the longitudinal direction.
なお、使用するジャケット石英管の断面積Sがその長手
方向でばらついている場合があるので、予め例えば第3
因に示す投影法によりジャケット石英管の断面積Sをそ
の長手方向の関数として測定しておくと有効である。Note that the cross-sectional area S of the jacketed quartz tube used may vary in the longitudinal direction, so for example,
It is effective to measure the cross-sectional area S of the jacketed quartz tube as a function of its longitudinal direction using the projection method shown above.
すなわら、ジャケット石英管3をその軸のまわりに回転
させながらタングステンハロゲンランプ4からの光をレ
ンズ5を介してジャケット石英管3に照射する。そして
、ジャケット石英管3を側法からTVカメラ6で撮像し
、カメラコントローラ7を介してモニタTV8に像を投
影しつつ制御部9にてジャケット石英管3の断面積Sの
ばらつきを測定する。That is, the jacketed quartz tube 3 is rotated around its axis while the jacketed quartz tube 3 is irradiated with light from the tungsten halogen lamp 4 through the lens 5. Then, the jacketed quartz tube 3 is imaged from the side with the TV camera 6, and while the image is projected onto the monitor TV 8 via the camera controller 7, the variation in the cross-sectional area S of the jacketed quartz tube 3 is measured by the control section 9.
このようにして求めたジャケット石英管3の断面積Sの
関数を自動延伸装置に記憶させて延伸速度をプログラム
制御することにより、なお−層長手方向における伝送特
性及び分散特性の均一な単一モード光ファイバが得られ
る。By storing the function of the cross-sectional area S of the jacketed quartz tube 3 determined in this way in an automatic stretching device and controlling the stretching speed by a program, it is possible to achieve uniform transmission and dispersion characteristics in the longitudinal direction of the layer. Optical fiber is obtained.
[発明の効果]
以上説明したように本発明によれば、次の如き優れた効
果が発揮される。[Effects of the Invention] As explained above, according to the present invention, the following excellent effects are exhibited.
(1) カットオフ波長を高精度でIII nするこ
とができるので、長手方向における伝送特性及び分散特
性の安定性に優れた低分散低損失単一モード光ファイバ
が得られる。(1) Since the cutoff wavelength can be set to IIIn with high precision, a low dispersion, low loss single mode optical fiber with excellent stability of transmission characteristics and dispersion characteristics in the longitudinal direction can be obtained.
■ コアロッドの屈折率分布に乱れが存在していても個
人差によらずに再現性よくカットオフ波長を制御するこ
とができるので線引歩留りが向上する。■ Even if there is a disturbance in the refractive index distribution of the core rod, the cutoff wavelength can be controlled with good reproducibility regardless of individual differences, improving the drawing yield.
(3) 従って、単一モード光ファイバの低コスト化
が達成される。(3) Therefore, cost reduction of single mode optical fiber is achieved.
第1図はコアロッドの実際の屈折率分布とES■分布と
の関係を示す説明図、第2図は本発明の方法により製造
された光ファイバのカットオフ波長の設計値と実測値と
の関係を示すグラフ、第3図はジャケット石英管の断面
積のばらつきを測定する装置の概略構成図である。
図中、1はコアロッドの屈折率分布、2はES■分布で
ある。Figure 1 is an explanatory diagram showing the relationship between the actual refractive index distribution and the ES ■ distribution of the core rod, and Figure 2 is the relationship between the designed value and the actual measured value of the cutoff wavelength of the optical fiber manufactured by the method of the present invention. FIG. 3 is a schematic diagram of an apparatus for measuring variations in cross-sectional area of jacketed quartz tubes. In the figure, 1 is the refractive index distribution of the core rod, and 2 is the ES■ distribution.
Claims (3)
ット石英管内に挿入した後、該石英管がコアロッドと一
体化するように潰しながら線引きして単一モード光ファ
イバを製造する方法において、上記コアロッドの延伸径
de[mm]を等価的なステップ型屈折率分布における
コアの屈折率n_1_e、比屈折率差Δe[%]及び等
価コア半径ae[mm]を用いて次式で決定される値と
することを特徴とする低分散低損失単一モード光ファイ
バの製造方法。 de=D√(S/S_0_e) (ただし、 S_0_e=π/4[(〔2n_1_eπaae√{2
△e/100}〕/〔2・2.405λc〕)^2−D
^2]Sはジャケット石英管の断面積[mm^2]、D
はコアロッド外径[mm]、λcはカットオフ波長設計
値[μm]、aは線引きされた光ファイバの外径[μm
]である)(1) A method of manufacturing a single mode optical fiber by stretching a core rod to a predetermined outer diameter and inserting it into a jacketed quartz tube, and then drawing the quartz tube while crushing it so that it becomes integrated with the core rod, The stretched diameter de [mm] of the core rod is determined by the following formula using the refractive index n_1_e of the core in an equivalent step-type refractive index distribution, the relative refractive index difference Δe [%], and the equivalent core radius ae [mm]. A method for manufacturing a low-dispersion, low-loss single-mode optical fiber characterized by a low-dispersion, low-loss single-mode optical fiber. de=D√(S/S_0_e) (However, S_0_e=π/4[([2n_1_eπaae√{2
△e/100}/[2・2.405λc])^2-D
^2] S is the cross-sectional area of the jacket quartz tube [mm^2], D
is the core rod outer diameter [mm], λc is the cutoff wavelength design value [μm], a is the outer diameter of the drawn optical fiber [μm]
)
の関数として測定されることを特徴とする特許請求の範
囲第1項記載の製造方法。(2) A manufacturing method according to claim 1, characterized in that the cross-sectional area S of the jacketed quartz tube is measured as a function of its longitudinal direction.
測定されることを特徴とする特許請求の範囲第2項記載
の製造方法。(3) The manufacturing method according to claim 2, wherein the cross-sectional area S of the jacketed quartz tube is measured by a projection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61226095A JPS6385021A (en) | 1986-09-26 | 1986-09-26 | Production of single mode optical fiber having low dispersion and loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61226095A JPS6385021A (en) | 1986-09-26 | 1986-09-26 | Production of single mode optical fiber having low dispersion and loss |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6385021A true JPS6385021A (en) | 1988-04-15 |
Family
ID=16839744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61226095A Pending JPS6385021A (en) | 1986-09-26 | 1986-09-26 | Production of single mode optical fiber having low dispersion and loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6385021A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2809386A1 (en) * | 2000-05-25 | 2001-11-30 | Cit Alcatel | METHOD FOR MANUFACTURING OPTICAL FIBER WITH CONTROL OF TRANSMISSION CHARACTERISTICS |
JP2006514316A (en) * | 2003-10-03 | 2006-04-27 | ドラカ・コムテツク・ベー・ベー | Chromatic dispersion compensating optical fiber |
-
1986
- 1986-09-26 JP JP61226095A patent/JPS6385021A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2809386A1 (en) * | 2000-05-25 | 2001-11-30 | Cit Alcatel | METHOD FOR MANUFACTURING OPTICAL FIBER WITH CONTROL OF TRANSMISSION CHARACTERISTICS |
EP1160211A1 (en) * | 2000-05-25 | 2001-12-05 | Alcatel | Method of manufacturing an optical fibre with control of the transmission characteristics |
JP2006514316A (en) * | 2003-10-03 | 2006-04-27 | ドラカ・コムテツク・ベー・ベー | Chromatic dispersion compensating optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8322166B2 (en) | Method of manufacturing optical fiber with selected draw tension | |
JP2002318315A (en) | Optical fiber and method for manufacturing the same | |
CN111796361B (en) | Preparation method and application of multi-core fiber coupler with flat broadband transmission | |
EP0681196A1 (en) | Fiber optic coupler exhibiting low nonadiabatic loss | |
JPH10501633A (en) | Optical waveguide | |
AU768742B2 (en) | Single-mode optical fiber and its production method | |
EP0035237A1 (en) | A single-mode-transmission optical fiber and a method of manufacturing the same | |
JPS6385021A (en) | Production of single mode optical fiber having low dispersion and loss | |
JP2965236B2 (en) | Manufacturing method of preform for optical fiber | |
NL8200149A (en) | OPTICAL FIBER AND METHOD OF MANUFACTURING THE SAME | |
JPS61191543A (en) | Quartz base optical fiber | |
EP3657223A1 (en) | Optical fiber and method for producing same | |
JP2001272567A (en) | Multimode optical fiber structure having lessened scattering loss | |
US20040055340A1 (en) | Method of fabricating graded-index optical fiber lenses | |
EP2640672B1 (en) | Method of manufacturing optical fiber with selected draw tension | |
JP3948055B2 (en) | Optical fiber manufacturing method and optical fiber | |
JP4214647B2 (en) | Optical fiber manufacturing method | |
US20060185398A1 (en) | Method for fabricating a multimode optical fiber preform having longitudinal uniformity | |
CN218298568U (en) | Tapered mode field graded optical fiber | |
JPS586923B2 (en) | optical fiber | |
WO2024171849A1 (en) | Method for producing base material for multicore fiber | |
JPH08248245A (en) | Production of image fiber | |
JP4152613B2 (en) | Optical fiber manufacturing method | |
JP2001066453A (en) | Optical fiber | |
JP3101958B2 (en) | Broadband coupler and method of manufacturing the same |