JPS6383938A - Magneto-optical disk - Google Patents

Magneto-optical disk

Info

Publication number
JPS6383938A
JPS6383938A JP23059286A JP23059286A JPS6383938A JP S6383938 A JPS6383938 A JP S6383938A JP 23059286 A JP23059286 A JP 23059286A JP 23059286 A JP23059286 A JP 23059286A JP S6383938 A JPS6383938 A JP S6383938A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
film
magneto
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23059286A
Other languages
Japanese (ja)
Inventor
Seiji Okada
誠二 岡田
Masahiro Miyazaki
宮崎 正裕
Itaru Shibata
格 柴田
Kazunori Naito
一紀 内藤
Motonobu Mihara
基伸 三原
Hidekazu Nakajima
英一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23059286A priority Critical patent/JPS6383938A/en
Publication of JPS6383938A publication Critical patent/JPS6383938A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To execute the overwrite of information by providing the magnetic layer of the high magnetic permeability having a vertical anisotropy, on a protective film. CONSTITUTION:A magnetic layer 5 consists of a high magnetic permeability material, and constituted by bringing it to perpendicular magnetization against the film surface by controlling a film forming condition and the thickness of a film. When an external magnetic field does not exist, the magnetization of a magnetic domain 8 of a recording layer 3 becomes a reflux structure, and a magnetic pole is not generated in the outside, but when the external magnetic field 9 of magnitude for distributing the magnetizing direction to a prescribed direction is applied, the magnetic domain 8 is oriented and a polarization is generated on the upper and lower faces, and when a magnetic domain 10 therein is taken notice of, a loop-shaped magnetic flux distribution 11 as indicated with a short dash line is generated, and as a result, the horizontal component of a magnetic flux of the external magnetic field 9 and the horizontal component of a magnetic flux generated from the magnetic domain 10 are offset mutually, and on the other hand, the vertical components intensity each other, and as a result, the vertical component of the magnetic field applied to the recording layer 3 is increased. In such a manner, since a high frequency magnetic field such as a ring head can be used, overwrite can be executed.

Description

【発明の詳細な説明】 〔概要〕 光磁気ディスクへの重ね書きを可能にするために、透明
基板上に下地膜、記録層、保護膜と形成してなる光磁気
ディスクの保護膜上に基板面に対し垂直に磁化した高透
磁率の磁性層を設けた光磁気ディスク。
[Detailed Description of the Invention] [Summary] In order to enable overwriting on a magneto-optical disk, a base film, a recording layer, and a protective film are formed on a transparent substrate. A magneto-optical disk with a high permeability magnetic layer magnetized perpendicular to the surface.

〔産業上の利用分野〕[Industrial application field]

本発明は高周波磁界を効率的に用いることにより重ね書
きを可能にした光磁気ディスクの構成に関する。
The present invention relates to the structure of a magneto-optical disk that enables overwriting by efficiently using a high-frequency magnetic field.

光磁気ディスクは光ディスクと共にレーザ光を用いて高
密度の情報記録を行うメモリであり、記録容量が大きく
、非接触で記録と再生を行うことができ、また塵埃の影
響を受けないなど優れた特徴をもっている。
A magneto-optical disk is a memory that uses laser light to record high-density information along with an optical disk, and has excellent features such as a large storage capacity, non-contact recording and playback, and being unaffected by dust. have.

すなわち、レーザ光はレンズによって直径が約1μmの
小さなスポットに絞り込むことが可能であり、従って1
ビツトの情報記録に要する面積は1μm2程度で足りる
In other words, the laser beam can be narrowed down to a small spot with a diameter of about 1 μm by a lens, and therefore 1 μm in diameter.
The area required for recording bit information is approximately 1 μm2.

また、レンズで絞り込まれたレーザ光の焦点面までの距
離は1〜21■とれるので、非接触化が可能であり、ま
た基板面では光ビームの径は約111となるので、たと
え基板面に数10μm2の大きさの塵埃が存在していて
も記録・再生に殆ど影響を与えずに済ませることができ
る。
In addition, since the distance to the focal plane of the laser beam narrowed down by the lens can be 1 to 21 cm, non-contact is possible, and the diameter of the light beam is approximately 111 mm at the substrate surface, so even if the laser beam is Even if there is dust with a size of several tens of micrometers, it can be done with almost no effect on recording and reproduction.

ここで、光ディスクは記録媒体として低融点金属を用い
、情報の記録と再生を穴(ピット)の有無により行う読
み出し専用メモリ(Read 0nly Memory
)であるのに対し、光磁気ディスクは書き換え可能なメ
モリ(Erasable Memory)として開発が
進められているもので、記録媒体は垂直磁化した磁性膜
からなり、レーザ照射された磁性膜の温度上昇による磁
化反転が情報の記録と消去に用いられ、磁性膜からの反
射光あるいは透過光の偏光面の回転が磁化方向により異
なるのを利用して再生が行われている。
Here, an optical disk is a read-only memory that uses a low-melting point metal as a recording medium and records and reproduces information using the presence or absence of holes (pits).
) On the other hand, magneto-optical disks are being developed as rewritable memories (Erasable Memory), and the recording medium consists of a perpendicularly magnetized magnetic film. Magnetization reversal is used to record and erase information, and reproduction is performed by utilizing the fact that the rotation of the polarization plane of light reflected or transmitted from a magnetic film differs depending on the direction of magnetization.

本発明はか\る光磁気ディスクの改良に関するものであ
る。
The present invention relates to improvements in such magneto-optical disks.

〔従来の技術〕[Conventional technology]

光磁気ディスクは希土類−遷移金属系アモルファス合金
からなる垂直磁性膜を記録層とするものであって、これ
に君亥当する材料としてはテルビウム・鉄・コバルト(
Tb Fe Co)、ガドリニウム・コバルト(Gd 
Co)、テルビウム・鉄(Tb Fe)、ガドリニウム
・テルビウム・鉄(Gd Tb Fe)などがある。
Magneto-optical disks have a perpendicular magnetic film made of an amorphous rare earth-transition metal alloy as a recording layer, and the dominant materials for this are terbium, iron, and cobalt (
Tb Fe Co), gadolinium cobalt (Gd
Co), terbium iron (Tb Fe), and gadolinium terbium iron (Gd Tb Fe).

第6図は光磁気ディスクの構成を説明する断面図であっ
て、ポリメチルメタクリレート(略称PMMA)やポリ
カーボネート(略称PC)などの樹脂を加熱溶融し、予
め多数の案内溝を形成しであるスタンパと呼ばれる金型
を用いてモールド成形し、厚さが約1.2*nのディス
ク状の基板1が作られている。
FIG. 6 is a sectional view illustrating the structure of a magneto-optical disk, which is a stamper made by heating and melting a resin such as polymethyl methacrylate (PMMA) or polycarbonate (PC), and forming a large number of guide grooves in advance. A disk-shaped substrate 1 with a thickness of about 1.2*n is made by molding using a metal mold called .

そして、この上に下地膜2.記録層3.保護膜4と層形
成して光ディスクが作られている。
Then, on top of this, a base film 2. Recording layer 3. An optical disc is produced by forming a layer with the protective film 4.

ここで、下地膜2は基板1を通しての湿気の侵入や基板
の吸着ガス或いはモノマーなどの移行により記録層3の
酸化などによる劣化を防ぐもので、窒化珪素(SiJ*
)、窒化アルミ (AIN)などの薄膜が使われている
Here, the base film 2 prevents deterioration of the recording layer 3 due to oxidation due to the intrusion of moisture through the substrate 1 and the migration of gases or monomers adsorbed by the substrate, and is made of silicon nitride (SiJ*
), aluminum nitride (AIN), and other thin films are used.

また、保護膜4は記録N3への上方からの酸化を防ぐた
めに設けられているもので、上記のような誘電体薄膜や
金属薄膜が使用されている。
The protective film 4 is provided to prevent the recording N3 from being oxidized from above, and is made of a dielectric thin film or a metal thin film as described above.

また、基板1としてフォトエツチングにより案内溝を形
成したガラスを用いる場合もあるが、この場合は透湿や
吸着ガスによる劣化が少ないので、下地膜2の形成は省
略することができる・光磁気ディスクはこのように透明
基板1の上に記録層3が耐酸化構造をとって形成されて
いる・そして、光磁気ディスクへの情報の記録は垂直に
磁場を加えている状態で、基板1を通してレンズで集光
したレーザ光を記録層3に照射し、被照射部の温度が上
昇してキュリー温度の近傍にまで達することにより保磁
力が減少し、外部磁場により垂直磁化膜の磁化の方向が
磁場の方向に反転するのを利用して行われている。
Additionally, glass with guide grooves formed by photoetching may be used as the substrate 1, but in this case, there is less deterioration due to moisture permeation and adsorbed gas, so the formation of the base film 2 can be omitted. - Magneto-optical disk In this way, a recording layer 3 is formed on a transparent substrate 1 with an oxidation-resistant structure.In order to record information on a magneto-optical disk, a magnetic field is applied perpendicularly, and a lens is passed through the substrate 1. The recording layer 3 is irradiated with a laser beam focused at , and the temperature of the irradiated area rises to near the Curie temperature, causing the coercive force to decrease and the direction of magnetization of the perpendicularly magnetized film to change due to the external magnetic field. This is done by utilizing the reversal in the direction of.

また、情報の消去は記録位置の磁化の方向と逆の方向に
磁場を加えなからレーザ光を照射して加熱し、元どおり
の方向に磁化を反転させることにより行われている。
Furthermore, information is erased by heating the material by irradiating it with laser light without applying a magnetic field in the direction opposite to the direction of magnetization at the recording position, thereby reversing the magnetization to its original direction.

然しなから、既に記録した情報を消去し、この位置に他
の情報を記録するには磁気ディスクのような重ね書き(
0νer−write)は不可能であり、少な(とも情
報の消去に光磁気ディスクを一回転。
However, in order to erase the information that has already been recorded and record other information at this location, overwriting (such as with magnetic disks) is required.
0νer-write) is impossible, and it takes only one revolution of the magneto-optical disk to erase information.

磁場の反転に一回転、また情報の記録に一回転させるこ
とが必要である。
It takes one rotation to reverse the magnetic field and one rotation to record information.

このように磁気ディスクと違って重ね書きができない理
由は、磁気ヘッドを記録層に接近できないことが原因で
あって、情報の記録には信号に応じて垂直磁化膜の磁化
反転が可能な大きな高周波磁場の印加が必要であり、そ
のためにはコイルのインダクタンスが大き過ぎ、磁場の
高速反転ができないことによる。
The reason why overwriting is not possible unlike with magnetic disks is that the magnetic head cannot get close to the recording layer.In order to record information, a large high-frequency wave that can reverse the magnetization of the perpendicularly magnetized film according to the signal is used. It is necessary to apply a magnetic field, and the inductance of the coil is too large for this purpose, making it impossible to quickly reverse the magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように光磁気ディスクにおいては重ね書きが
できず、従来の情報の消去に少なくとも一回転、磁場の
反転に一回転、新情報の記録に一回転を必要とし、高速
処理ができないことが問題である。
As mentioned above, magneto-optical disks cannot be overwritten and require at least one rotation to erase conventional information, one rotation to reverse the magnetic field, and one rotation to record new information, which makes high-speed processing impossible. That's a problem.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は案内溝を備えた透明基板上に下地膜、記録
層、保護膜と順次層形成してなる光磁気ディスクにおい
て、この保護膜上に磁化方向が垂直で裔透磁率な磁性層
を設け、記録層に加わる外部磁場の磁力線分布の垂直成
分を高める手段を講じ、距離が離れていてもリングヘッ
ドのような高周波磁場で磁化反転が起こるようにするこ
とにより解決することができる。
The above problem occurs in a magneto-optical disk in which a base film, a recording layer, and a protective film are sequentially formed on a transparent substrate equipped with a guide groove. This problem can be solved by providing a means to increase the perpendicular component of the magnetic field line distribution of the external magnetic field applied to the recording layer, so that magnetization reversal can occur in a high-frequency magnetic field such as a ring head even at a distance.

〔作用〕[Effect]

第1図(A)、  (B)は本発明を説明する原理図で
あって、透明な基板1の上に下地膜2.記録層3.保護
膜4と層形成されている光磁気ディスクの上に磁性層5
を設ける場合に同図(B)に示すように磁性層5が水平
磁化膜であると、たとえ高透磁率の材料からなっていて
ケミ磁石6からの磁力線7は多少拡がっており、そのた
めに記録層3を通る磁力線7にはかなりの水平成分を含
まれている。
FIGS. 1A and 1B are principle diagrams explaining the present invention, in which a base film 2 is placed on a transparent substrate 1. Recording layer 3. A magnetic layer 5 is formed on the magneto-optical disk formed with a protective film 4.
If the magnetic layer 5 is a horizontally magnetized film as shown in FIG. The magnetic field lines 7 passing through the layer 3 contain a significant horizontal component.

一方、同図(A)に示すように磁性層5を垂直磁化膜で
形成すると、磁力線7は拡がらなくなり、その−ために
記録層3には磁力線7が垂直に入り磁束密度が増加する
On the other hand, when the magnetic layer 5 is formed of a perpendicularly magnetized film as shown in FIG. 2A, the lines of magnetic force 7 do not spread, and therefore the lines of force 7 perpendicularly enter the recording layer 3, increasing the magnetic flux density.

本発明はこのように垂直磁化膜からなる磁性層5を設け
、これにより電磁石の磁力線を集束することにより弱い
磁場の許でも、記録N3の磁化反転を可能とするもので
、そのためにリングヘッドのような高周波磁場の使用を
可能にしたものである。
In the present invention, the magnetic layer 5 made of a perpendicularly magnetized film is provided in this way, and by focusing the magnetic lines of force of the electromagnet, it is possible to reverse the magnetization of the recording N3 even in a weak magnetic field. This enabled the use of high-frequency magnetic fields such as

ここで、本発明にかへる磁性層5は鉄(Fe)。Here, the magnetic layer 5 according to the present invention is made of iron (Fe).

ニッケル(Ni)、コバルト(CO)またはこの合金例
えばFe Co、Fe Niなどの高透磁率材料からな
り、成膜条件と膜厚をコントロールすることにより膜面
に対し垂直磁化させて構成する。
It is made of a high magnetic permeability material such as nickel (Ni), cobalt (CO), or an alloy thereof, such as Fe Co or Fe Ni, and is magnetized perpendicular to the film surface by controlling the film formation conditions and film thickness.

すなわち、蒸着速度或いはスパッタ速度などの成膜速度
を遅くし、また膜厚を比較的厚く形成することにより垂
直磁化膜が形成されることを利用する。
That is, the perpendicularly magnetized film is formed by slowing down the film formation rate, such as the evaporation rate or sputtering rate, and by forming the film to be relatively thick.

第2図と第3図はかかる磁性N5についての断面図であ
って、第2図は外部磁場が無い場合の垂直磁化膜よりな
る記録層3の磁区構造を示しており、図に示すように磁
区(Domain ) 8の磁化は環流構造になり、外
部には磁極が生じていない。
2 and 3 are cross-sectional views of such magnetic N5, and FIG. 2 shows the magnetic domain structure of the recording layer 3 made of a perpendicularly magnetized film in the absence of an external magnetic field, as shown in the figure. The magnetization of the magnetic domain (Domain) 8 has a circular current structure, and no magnetic poles are generated on the outside.

然し、磁区の磁化方向を一定の方向(この例の場合は下
向き)に配向し得る大きさの外部磁場9を印加すると、
記録層3を構成する磁区8は第3図に示すように配向し
て上下面に分極が生じ、その内の磁区10に着目すると
一点破線で示すようなループ状の磁束分布11を生じて
おり、その結果、外部磁場9の磁束の水平成分と磁区1
0から発生する磁束の水平成分は相互に相殺し、一方、
垂直成分は図に示すように強め合う結果、第1図(A)
に示すように記録層2に印加される磁場の垂直成分は増
加し、これによりリングヘッドのような高周波磁場の使
用を可能にするものである。
However, if an external magnetic field 9 of a magnitude that can orient the magnetization direction of the magnetic domain in a certain direction (downward in this example) is applied,
The magnetic domains 8 constituting the recording layer 3 are oriented as shown in FIG. 3, and polarization occurs on the upper and lower surfaces. Focusing on the magnetic domains 10 among them, a loop-shaped magnetic flux distribution 11 as shown by the dotted line is generated. , as a result, the horizontal component of the magnetic flux of the external magnetic field 9 and the magnetic domain 1
The horizontal components of the magnetic flux generated from 0 cancel each other out, while
As shown in the figure, the vertical components strengthen each other, resulting in Figure 1 (A)
As shown in FIG. 2, the perpendicular component of the magnetic field applied to the recording layer 2 increases, thereby making it possible to use a high frequency magnetic field such as a ring head.

〔実施例〕〔Example〕

実施例1: PMMAよりなる厚さ1.2+nの基板1の上にスパッ
タ法を用い、下地膜2として5iJ4を、記録層3とし
てTb Pe Coを、保護膜4としてSi3Nmをそ
れぞれ1000人の厚さに形成した。
Example 1: Using a sputtering method on a substrate 1 made of PMMA with a thickness of 1.2+n, 5iJ4 was deposited as the base film 2, Tb Pe Co as the recording layer 3, and Si3Nm as the protective film 4 with a thickness of 1000 μm each. It was formed.

次に、保護膜4の上にスパッタ法を用い、組成比が80
 : 20のFe Ni合金からなる磁性層5を1人/
Sの成膜速度で5000人の厚さに形成して本発明に係
る光磁気ディスクを作った。
Next, using a sputtering method on the protective film 4, a composition ratio of 80
: Magnetic layer 5 made of 20 Fe Ni alloy
A magneto-optical disk according to the present invention was fabricated by forming the film to a thickness of 5000 mm at a film formation rate of S.

ここで、 このような条件で形成した磁性層5は第4図
に示すような磁化曲線を示し、垂直異方性をもつことを
現している。
Here, the magnetic layer 5 formed under these conditions exhibits a magnetization curve as shown in FIG. 4, indicating that it has perpendicular anisotropy.

次に、かかる光磁気ディスク12を第5図に示すように
リングへラド13  と光学ヘッド14と組み合わせた
複合ヘッドを用いて記録、再生、消去の実験を行った。
Next, recording, reproducing, and erasing experiments were conducted using the magneto-optical disk 12 using a composite head in which a ring head 13 and an optical head 14 were combined as shown in FIG.

先ず、リングヘッド13で0.2MHzの信号を与え、
4、抛−のレーザパワーで信号を記録し、0.81のパ
ワーで再生したところC/N(Carrier−1ev
el/No1se−Level) =50dBの値を得
た。
First, a 0.2 MHz signal is given with the ring head 13,
4. When a signal was recorded with a laser power of 0.81 and reproduced with a power of 0.81, the C/N (Carrier-1ev
A value of el/No1se-Level) = 50 dB was obtained.

次に0.5MHzの信号を与え、4.0m−のレーザパ
ワーで信号を重ね書きし、0.8mWのパワーで再生し
たところ0.5MHzの信号のC/Nは49〜50dB
の値を得ることができ、品質、ノイズレベルとも変化は
無かった。
Next, when a 0.5 MHz signal was applied, the signal was overwritten with a 4.0 m laser power, and the signal was reproduced with a 0.8 mW power, the C/N of the 0.5 MHz signal was 49 to 50 dB.
, and there was no change in quality or noise level.

実施例2: 基板1.下地膜2.記録層3.保護膜4とも実雄側1と
同様に形成した後、磁性層5をスパッタ法を用い、実施
例1と同様にFe N1(Fe、。Niz。)を成膜速
度10人/Sで2000人の膜厚に形成した。
Example 2: Substrate 1. Base film 2. Recording layer 3. After the protective film 4 was formed in the same manner as the actual side 1, the magnetic layer 5 was formed using the sputtering method, and FeN1 (Fe, .Niz.) was deposited at a deposition rate of 10 persons/s for 2000 persons in the same manner as in Example 1. It was formed to a thick film.

この条件で形成した磁性膜は磁化曲線から面内磁化膜で
あることを確認した。
It was confirmed from the magnetization curve that the magnetic film formed under these conditions was an in-plane magnetized film.

この光磁気ディスクを用い、実施例1と同様の試験を行
ったところ、0.5M)Izの再生信号中に0.2MH
zの消し残りの成分が約10dB程度認められた。
When the same test as in Example 1 was conducted using this magneto-optical disk, it was found that 0.2 MH
An unerased z component of about 10 dB was observed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば従来の光磁気ディスクに垂直異方性を有
する高透磁率の磁性層を設けることにより情報の重ね書
きが可能になる。
According to the present invention, information can be overwritten by providing a high permeability magnetic layer with perpendicular anisotropy on a conventional magneto-optical disk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明する原理図、 第2図は外部磁場がない場合の磁区構造図、第3図は外
部磁場がある場合の磁区構造図、第4図は本実施例のF
e Ni磁性層の磁化曲線、第5図は本発明に係る記録
・再生・消去を説明する斜視図、 第6図は光磁気ディスクの構成を示す断面図、である。 図において、 1は基板、        2は下地膜、3は記録層、
      4は保護膜、5は磁性層、       
7は磁力線、9は外部磁場、     11は磁束分布
、13はリングヘッド、    14は光学ヘッド、で
ある。 革2回     $38 i   j    14#:常へ・ンドネ6図
Figure 1 is a principle diagram explaining the present invention, Figure 2 is a diagram of the magnetic domain structure in the absence of an external magnetic field, Figure 3 is a diagram of the magnetic domain structure in the presence of an external magnetic field, and Figure 4 is the F of this embodiment.
e The magnetization curve of the Ni magnetic layer, FIG. 5 is a perspective view illustrating recording, reproducing, and erasing according to the present invention, and FIG. 6 is a sectional view showing the structure of a magneto-optical disk. In the figure, 1 is the substrate, 2 is the base film, 3 is the recording layer,
4 is a protective film, 5 is a magnetic layer,
7 is a magnetic field line, 9 is an external magnetic field, 11 is a magnetic flux distribution, 13 is a ring head, and 14 is an optical head. Leather 2 times $38 i j 14#: always to ndone 6 figure

Claims (1)

【特許請求の範囲】 案内溝を備えた透明基板上に下地膜、記録層、保護膜と
順次層形成してなる光磁気ディスクにおいて、 該保護膜上に基板面に対し垂直に磁化した高透磁率の磁
性層を設けたことを特徴とする光磁気ディスク。
[Claims] A magneto-optical disk in which a base film, a recording layer, and a protective film are sequentially formed on a transparent substrate provided with a guide groove, in which a highly transparent magnet magnetized perpendicularly to the substrate surface is provided on the protective film. A magneto-optical disk characterized by being provided with a magnetic layer having a high magnetic flux.
JP23059286A 1986-09-29 1986-09-29 Magneto-optical disk Pending JPS6383938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23059286A JPS6383938A (en) 1986-09-29 1986-09-29 Magneto-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23059286A JPS6383938A (en) 1986-09-29 1986-09-29 Magneto-optical disk

Publications (1)

Publication Number Publication Date
JPS6383938A true JPS6383938A (en) 1988-04-14

Family

ID=16910154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23059286A Pending JPS6383938A (en) 1986-09-29 1986-09-29 Magneto-optical disk

Country Status (1)

Country Link
JP (1) JPS6383938A (en)

Similar Documents

Publication Publication Date Title
US5623458A (en) Method for reproducing information data recorded on a magneto-optical device having plural magnetic layers
US5204193A (en) Recording magnetooptical recording medium
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
JPH06203417A (en) Magneto-optical recording medium and its recording method and recording and reproducing method
JPS63239637A (en) Magneto-optical recording medium and recording method thereof
JP2703587B2 (en) Magneto-optical recording medium and recording method
JP2762445B2 (en) Signal reproducing method for magneto-optical recording medium
JPH05198029A (en) Photomagnetic recording medium
JPH0237501A (en) Magnetic recording system and magnetic recording device
JPS6383938A (en) Magneto-optical disk
JPH06302029A (en) Magneto-optical recording medium and recording method therefor
JPH02156450A (en) Magneto-optical recorder
JP3126459B2 (en) Magneto-optical recording method and magneto-optical recording device
JPS61182651A (en) Photomagnetic recording medium
JPH0589536A (en) Magneto-optical recording medium
JPH04313833A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method using this medium
JP3084274B2 (en) Magneto-optical recording medium and reproducing method of magneto-optical recording medium
JP2981073B2 (en) Magneto-optical memory element
JP2857008B2 (en) Reproduction method of magneto-optical recording medium
JPH03119540A (en) Magneto-optical recording medium
JPS6139250A (en) Recording medium and its recording and reproducing method
JPH01217744A (en) Magneto-optical recording medium
JPS63302415A (en) Magnetic recording medium
JPS6029955A (en) Optical information recording medium
JPH0242664A (en) Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them