JPS6383582A - Condenser - Google Patents

Condenser

Info

Publication number
JPS6383582A
JPS6383582A JP22502286A JP22502286A JPS6383582A JP S6383582 A JPS6383582 A JP S6383582A JP 22502286 A JP22502286 A JP 22502286A JP 22502286 A JP22502286 A JP 22502286A JP S6383582 A JPS6383582 A JP S6383582A
Authority
JP
Japan
Prior art keywords
flow
steam
condenser
fluid
intermediate cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22502286A
Other languages
Japanese (ja)
Inventor
Shinichi Nomura
野村 眞一
Shunichi Araki
荒木 俊一
Mutsuo Kuragasaki
倉ケ崎 六夫
Takamasa Urabe
占部 隆政
Yoshio Shimada
島田 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22502286A priority Critical patent/JPS6383582A/en
Publication of JPS6383582A publication Critical patent/JPS6383582A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the flow passageway resistance of the internal structural member of an intermediate cylinder, in which a pressure loss is large, remarkably through the passageway of the exhaust steam of a turbine, by a method wherein two pieces of columns are arranged so as to be contacted with each other in order to constitute the configuration of the section of an internal supporting structure along the flow direction of the steam so as to have the shape of aerofoil substantially. CONSTITUTION:Steam S, which has performed an expansion work in a turbine, flows into the cylinder 1 of a condenser through an intermediate cylinder 8 and is condensed into condensed water CW by effecting heat exchange between cooling tubes 3 filled with cooling water. Most of the pressure of the steam S is lost in the intermediate cylinder. In order to reduce the pressure loss and form the configuration of a section along the flow of fluid (steam) S so as to have the shape of an aerofoil substantially, the structure 9, arranged orthogonally to the flow of fluid, among the internal supporting structures 9, 9' of the intermediate cylinder, is constituted so that two pieces of columns are arranged along the flow of the fluid so as to be contacted with each other. When the columns are arranged so as to be contacted with each other and the configuration of the section along the flow of the fluid is formed so as to have the shape of an aerofoil substantially, the flow passageway resistance thereof may be reduced remarkably at all times compared with the case, in which one piece of the column is arranged.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は復水器に適用され、蒸気の通路で、圧力損失の
大きい中間胴の内部構造部材の流路抵抗を減少させる技
術分野で利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applied to condensers, and is used in the technical field of reducing the flow path resistance of internal structural members of intermediate shells that have a large pressure loss in steam passages. .

従来の技術 復水器は、外圧を受ける構造物で、大形復水器は、通常
箱形形状としている為、内部に支持部材h(、ス亜プ本
スh(答の古ル諏廿l十語面を乏什h(由き円筒のパイ
プを使用している。
Conventional technology Condensers are structures that receive external pressure, and large condensers are usually box-shaped, so there are support members (h), sprockets (h) inside. A cylindrical pipe is used.

発明が解決しようとする問題点 復水器の蒸気入口部(以後中間胴と呼称する)は、ター
ビンを出た高速蒸気の通路となっている。この通路には
中間胴の補強部材に加えタービン建家縮小及び有効利用
をはかるため抽気給水加熱器が設置される事が多く、こ
の部分でのタービン排気蒸気の圧力損失が大きく性能上
問題となっている。
Problems to be Solved by the Invention The steam inlet section of the condenser (hereinafter referred to as the intermediate shell) serves as a passage for high-speed steam exiting the turbine. In addition to reinforcing members for the intermediate shell, a bleed water feed water heater is often installed in this passage in order to reduce the size of the turbine building and use it more effectively, and the pressure loss of the turbine exhaust steam in this area is large, causing performance problems. ing.

また内部構造物の形状及び配置によりタービン排気蒸気
の圧力損失に差違が生じる。
Furthermore, the pressure loss of turbine exhaust steam varies depending on the shape and arrangement of the internal structures.

プラント性能を向上させるためには、内部構造物による
圧力損失を極力少なくすることが必要である。
In order to improve plant performance, it is necessary to minimize pressure loss due to internal structures.

さらに、プラントが大型化するに従い、タービン建家の
スペース節約の為に中間胴に設置される抽気給水加熱器
は従来1〜2本であったが、近年では2段合計4本とな
ってきておりこの部分の圧力損失をいかに小さくするか
がプラント効率の向上の一つのポイントとなっている。
Furthermore, as plants become larger, the number of bleed feed water heaters installed in the intermediate shell used to be one or two in order to save space in the turbine building, but in recent years the number has increased to four in total in two stages. One of the keys to improving plant efficiency is how to reduce the pressure loss in the cage.

問題点を解決するための手段 本発明は、上述の問題点を解決するために、次のような
手段を採っている。すなわち、復水器の中間胴部での蒸
気の圧力損失を減少させるために、その内部支持構造物
の流れ方向に沿う横断面形状を略流線形状に構成した復
水器とする。
Means for Solving the Problems The present invention takes the following measures in order to solve the above-mentioned problems. That is, in order to reduce pressure loss of steam in the intermediate body of the condenser, the condenser is configured such that the cross-sectional shape of the internal support structure along the flow direction is substantially streamlined.

作用 上述の略流線形状の横断面形状を、2本の円柱を互いに
接して配置した構成として実現した場合に、流路抵抗C
9は1本ごとに円柱を接して配置しある。
Effect When the above-mentioned substantially streamlined cross-sectional shape is realized as a configuration in which two cylinders are arranged in contact with each other, the flow path resistance C
9 is arranged so that each cylinder is in contact with the other.

ΔP=C9×(γV’/2/g ) 上式で判る様に圧力損失はC9に比例して増減する。こ
こでΔP:圧力損失、Cp:抵抗係数、γ:流体の比重
量、■=流速、g:重力の加速度。
ΔP=C9×(γV'/2/g) As can be seen from the above equation, the pressure loss increases or decreases in proportion to C9. Here, ΔP: pressure loss, Cp: drag coefficient, γ: specific weight of fluid, ■=flow velocity, g: acceleration of gravity.

上気の手段によれば、したがって、蒸気の圧力損失を減
少させることができる。
By means of upper air, the pressure loss of the steam can therefore be reduced.

実施例 次に、本発明の実施例について述べる。Example Next, examples of the present invention will be described.

復水器の構造を第1a、  lb、  lc、  ld
図に示す。
The structure of the condenser is 1a, lb, lc, ld
As shown in the figure.

タービン膨張仕事をした蒸気Sは中間胴部8を通って復
水器胴1に流入し、冷却水で満たされた冷却管3と熱交
換することにより、凝縮して復水CWとなる。蒸気Sは
大半は中間胴部で圧力が損失する。これを減少させる目
的で、中間胴部の内部奏棒支持構造物9.9′のうち流
体に対し直角に置かれた構造物9′を、流体(蒸気)S
の流れに沿う横断面形状を略流線形状とするため、流れ
に沿って2本の円柱を互いに接して並べた構造とした。
The steam S that has undergone turbine expansion work flows into the condenser shell 1 through the intermediate shell 8 and condenses into condensate CW by exchanging heat with the cooling pipe 3 filled with cooling water. Most of the pressure of the steam S is lost in the intermediate barrel. In order to reduce this, the structure 9' of the internal playing rod support structure 9.9' of the intermediate body, which is placed at right angles to the fluid, is connected to the fluid (steam) S.
In order to have a substantially streamlined cross-sectional shape along the flow, two cylinders were arranged in contact with each other along the flow.

この様子を第1a図のA部の拡大斜視図である第1C図
に支持構造物9′として示した。
This situation is shown as a support structure 9' in FIG. 1C, which is an enlarged perspective view of section A in FIG. 1a.

なお、符号2.2′は管板、4.4′は冷却水室、5は
復水溜まり、6は冷却管支持板、7.7′は水室側、C
1は復水、Wは冷却水を示す。
In addition, the code 2.2' is the tube plate, 4.4' is the cooling water chamber, 5 is the condensate reservoir, 6 is the cooling pipe support plate, 7.7' is the water chamber side, C
1 indicates condensate water, and W indicates cooling water.

この効果を第4a図ないし第4a図、第4b図および第
2図を参照して説明すると次のとおりである。
This effect will be explained below with reference to FIGS. 4a to 4a, 4b, and 2.

第4a図の縦軸は流路抵抗(C0)を、横軸は円柱間距
離/円柱直径(x/ d)を示す。曲線aは第4b図に
示すように円柱すなわち支持構造物9′が1本ずつばら
ばらでその直径がdで距離がXである場合を示す。また
曲線すは第2図に示すように直径dの円柱(支持構造物
9′)が2本ずつ接して並べられ隣接する組の円柱に対
する距離がXである場合を示す。なおこのデータはd=
 100mmの時のデータである。
In FIG. 4a, the vertical axis shows the flow path resistance (C0), and the horizontal axis shows the distance between cylinders/cylinder diameter (x/d). Curve a shows the case where the columns or supporting structures 9' are separated one by one and have a diameter of d and a distance of X, as shown in FIG. 4b. The curved line shows the case where two cylinders (supporting structures 9') each having a diameter of d are arranged in contact with each other and the distance between adjacent cylinders is X, as shown in FIG. Note that this data is d=
This is data when the distance is 100mm.

従って、この曲線a1bの比較でわかるように、2本の
円柱(支持構造物)を2水接して並べて流れに沿う横断
面形状を略流線形状とした場合(曲線b)はx/dの値
如何に拘わらず、常に円柱1本の場合(曲線a)に比べ
て流路抵抗を者しく低めることができる。
Therefore, as can be seen from the comparison of curve a1b, when two cylinders (support structures) are arranged in tandem with each other and the cross-sectional shape along the flow is approximately streamlined (curve b), the x/d Regardless of the value, the flow path resistance can always be significantly lowered than in the case of one cylinder (curve a).

この支持構造物9′の配置間隔は従来と同じで十分に流
路抵抗が減少する。またこの支持構造物9′が一本の時
と同じ強度程度であれば良いので、支持構造物の外径を
小さくして2本接触した形状のものとすれば更に流路抵
抗が減少する。
The spacing between the support structures 9' is the same as in the conventional case, and the flow path resistance is sufficiently reduced. Further, since it is sufficient that the strength is the same as when there is only one support structure 9', the flow path resistance can be further reduced by reducing the outer diameter of the support structure and forming two of them in contact with each other.

また、第3図に示した第2実施例は上記2本の円柱の代
わりに、ラインパイプ(楕円状断面のパイプ)を用いた
もので、上記と同様な効果を発揮する。
Further, the second embodiment shown in FIG. 3 uses a line pipe (pipe with an elliptical cross section) instead of the two cylinders described above, and exhibits the same effect as above.

第5a図および第5b図に示す第3の実施例は、中間胴
部8の内部に油気給水加熱器IOが設置されている場合
を示す。この抽気給水加熱器10で蒸気Sは大半の圧力
を損失する。これを減少させる目的で抽気給水加熱器1
0に隣接する中間胴部の内部支持構造物9.9′、9″
のうち流体に対し直角に置かれた9′、9″について第
5a図及び第5b図に示す如く流れにそって2本の組み
合わせ構造とする。
A third embodiment shown in FIGS. 5a and 5b shows a case where an oil/air water heater IO is installed inside the intermediate body 8. In this bleed water heater 10, the steam S loses most of its pressure. In order to reduce this, the bleed air feed water heater 1
Internal support structure of the intermediate body adjacent to 0 9.9', 9''
Of these, 9' and 9'' placed at right angles to the fluid have a combination structure of two along the flow as shown in FIGS. 5a and 5b.

発明の効果 本発明によると、タービン排気蒸気の通路で、圧力損失
の大きい中間胴の内部構造材の流路抵抗を従来形式に比
べ、大幅に減少させる事が可能となり、その結果、プラ
ント効率が向上する。
Effects of the Invention According to the present invention, it is possible to significantly reduce the flow path resistance of the internal structural material of the intermediate shell, which has a large pressure loss, in the passage of turbine exhaust steam, compared to the conventional type, and as a result, plant efficiency is improved. improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例である復水器の構造を示
し、第1a図はこの復水器の正面図、第lb図はその側
面図、第1C図は第1a図のA部拡大斜視図、第1d図
は第1a図のId−Id線の断面図、第2図はこの第1
実施例での構造物の配置を示す略図、第3図は本発明の
第2実施例で、2本の円柱の代わりにラインパイプを用
いた例の略図、第4a図は円柱の流路抵抗を示す図表、
第4b図は円柱1本の場合の流れを示す略図、第5a図
は本発明の第3の実施例である復水器の正面図、第5b
図はその側面図である。 l・・復水器胴、2.2′ ・・管板、3・・冷却管、
4.4′ ・・冷却水室、5・・復水溜り、6・・冷却
管支持板、7.7′ ・・氷室側、8・・中間胴部、9
.9’ 、9″ ・・支持構造物、10・・抽気給水加
熱器、S・・蒸気、W・・冷却水第2図 第3図 第4α図 )Pd 第4b図
Fig. 1 shows the structure of a condenser which is the first embodiment of the present invention, Fig. 1a is a front view of this condenser, Fig. lb is a side view thereof, and Fig. 1C is the same as Fig. 1a. An enlarged perspective view of part A, FIG. 1d is a sectional view taken along the line Id-Id in FIG. 1a, and FIG.
Figure 3 is a schematic diagram showing the arrangement of structures in the embodiment. Figure 3 is a schematic diagram of the second embodiment of the present invention, in which line pipes are used instead of two cylinders. Figure 4a is a diagram showing the flow path resistance of the cylinders. A diagram showing the
Fig. 4b is a schematic diagram showing the flow in the case of one cylinder; Fig. 5a is a front view of a condenser according to the third embodiment of the present invention; Fig. 5b
The figure is a side view thereof. l... Condenser body, 2.2'... Tube plate, 3... Cooling pipe,
4.4'... Cooling water chamber, 5... Condensate reservoir, 6... Cooling pipe support plate, 7.7'... Ice chamber side, 8... Intermediate body, 9
.. 9', 9''...Support structure, 10...Bleed air feed water heater, S...Steam, W...Cooling water Fig. 2 Fig. 3 Fig. 4α) Pd Fig. 4b

Claims (1)

【特許請求の範囲】[Claims] 中央部に復水器胴を形成し、該復水器胴内に、両端を管
板に固定した多数の冷却管を配設し前記管板の両外側の
両外方部に一対の冷却水室を前記復水器胴に結合した復
水器において、上記入口部を形成する中間胴部の内部支
持構造物の流れ方向に沿う横断面形状を略流線形状に構
成したことを特徴とする復水器。
A condenser body is formed in the center, and a large number of cooling pipes with both ends fixed to a tube plate are disposed within the condenser body, and a pair of cooling water pipes are provided on both outer sides of the tube plate. A condenser having a chamber coupled to the condenser body is characterized in that the cross-sectional shape along the flow direction of the internal support structure of the intermediate body forming the inlet portion is configured to be substantially streamlined. condenser.
JP22502286A 1986-09-25 1986-09-25 Condenser Pending JPS6383582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22502286A JPS6383582A (en) 1986-09-25 1986-09-25 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22502286A JPS6383582A (en) 1986-09-25 1986-09-25 Condenser

Publications (1)

Publication Number Publication Date
JPS6383582A true JPS6383582A (en) 1988-04-14

Family

ID=16822842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22502286A Pending JPS6383582A (en) 1986-09-25 1986-09-25 Condenser

Country Status (1)

Country Link
JP (1) JPS6383582A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424455C (en) * 2005-11-11 2008-10-08 哈尔滨汽轮机厂有限责任公司 Mono-casing condensor of 600MW steam electric generating set
JP2014219160A (en) * 2013-05-09 2014-11-20 株式会社東芝 Direct contact type condenser
US11506438B2 (en) 2018-08-03 2022-11-22 Hoshizaki America, Inc. Ice machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424455C (en) * 2005-11-11 2008-10-08 哈尔滨汽轮机厂有限责任公司 Mono-casing condensor of 600MW steam electric generating set
JP2014219160A (en) * 2013-05-09 2014-11-20 株式会社東芝 Direct contact type condenser
US11506438B2 (en) 2018-08-03 2022-11-22 Hoshizaki America, Inc. Ice machine
US11953250B2 (en) 2018-08-03 2024-04-09 Hoshizaki America, Inc. Ice machine

Similar Documents

Publication Publication Date Title
JP2895432B2 (en) Heat exchange tube with tubular assembly inside
CN103261829B (en) Shell-and-tube heat exchanger
CN110822962B (en) Design method for fin distance of loop heat pipe
US9919584B2 (en) Evaporator
EP3848664A1 (en) Compact gas-gas heat exchange tube and manufacturing and use methods therefor
JPS6383582A (en) Condenser
CN111238273B (en) Rod-fin loop heat pipe with variable distance
CN215063982U (en) Heat absorbing sheet with flow guide effect
US4679529A (en) Steam generator feed water heater
CN112254564A (en) Gas-liquid two-phase flow heat exchange tube with tip inclined
CN109654916B (en) Vapor-liquid two-phase flow heat exchange tube with fins inclined towards center
CN102012180B (en) Rectangular all-welded tubular heat supply network heater
CN216482480U (en) Novel heat exchanger tube bundle
CN215725306U (en) Special-shaped spiral water cooler
Duncan Heat exchanger design considerations for transonic wind tunnels
JPH0258557B2 (en)
CN207487492U (en) The fixed structure of fixed tube sheet type heat exchanger single segmental baffle
KR19980060341A (en) Heat exchanger structure
JP3300083B2 (en) Water tube evaporator with vertical drum
JPH07269803A (en) Exhaust gas boiler
JPS58203392A (en) Condenser
CN1187378A (en) Method and device for vacuum deoxidation of boiler water
JPH04122983U (en) Vibration suppression structure of heat exchanger heat transfer tubes
CN112197619A (en) Tubular heat exchanger with high heat exchange efficiency
JPH04110595A (en) Condenser