JPS6383282A - Method for supplying copper ion to chemical copper plating solution - Google Patents

Method for supplying copper ion to chemical copper plating solution

Info

Publication number
JPS6383282A
JPS6383282A JP22636586A JP22636586A JPS6383282A JP S6383282 A JPS6383282 A JP S6383282A JP 22636586 A JP22636586 A JP 22636586A JP 22636586 A JP22636586 A JP 22636586A JP S6383282 A JPS6383282 A JP S6383282A
Authority
JP
Japan
Prior art keywords
plating
tank
soln
copper
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22636586A
Other languages
Japanese (ja)
Inventor
Masayuki Takei
武居 政幸
Hatsuji Sugiyama
杉山 初次
Teruaki Okada
岡田 晃明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP22636586A priority Critical patent/JPS6383282A/en
Publication of JPS6383282A publication Critical patent/JPS6383282A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To prolong the service life of a chemical copper plating soln. and to reduce the cost by drawing part of the plating soln. from a plating tank, dissolving CuO in the drawn plating soln., adding a pH adjusting agent and a bivalent Cu ion reducing agent and returning the resulting soln. to the plating tank. CONSTITUTION:A plating soln. is continuously drawn from a plating tank 1 by a fixed quantity, stored once in a storage tank 2 and poured into a dissolution tank 3. In the tank 3, CuO is dissolved in the plating soln. to produce a bivalent Cu ion supplying soln. The dissolution temp. is regulated to about 40-50 deg.C which is below the plating temp. and the amount of Cu ions added is made equal to or smaller than the amount of a free complexing agent by mol. The bivalent Cu ion supplying soln. is sent to a mixer 5 through a supply tank 4, a pH adjusting soln. and a bivalent Cu ion reducing agent are added to the soln. according to consumption and they are well mixed. The resulting soln. is returned to the plating tank 1. Thus, the abnormal deposition of Cu on the side wall of the tank 1 and the decomposition of the plating soln. are prevented and Cu ions are smoothly supplied.

Description

【発明の詳細な説明】 本発明の対象とする化学銅めっき液は、2価銅イオン、
2価銅イオンの錯化剤、2価銅イオンの還元剤、pH調
整剤及び有機添加剤を組成とするものであり、その代表
例が前記したEDTA浴である。この他にも、ロッシェ
ル塩浴、アミン類浴、グルコン酸塩浴、グルコペプトン
酸塩浴などが知られている。
[Detailed Description of the Invention] The chemical copper plating solution targeted by the present invention includes divalent copper ions,
The composition includes a complexing agent for divalent copper ions, a reducing agent for divalent copper ions, a pH adjuster, and an organic additive, and a representative example thereof is the above-mentioned EDTA bath. In addition, Rochelle salt baths, amine baths, gluconate baths, glucopeptonate baths, and the like are known.

EDTA浴の場合、めっき皮膜の析出反応は次の通り生
ずる((L)はEDTAとのキレート形成を示す): Cu” (L) + 2 HCHO+ 40H−→Cu
’ + 2HCOO″″+H3↑+2H20+(L) こうして、例えばプリント回路基板のようなめつき液に
浸漬された被めっき材の所望の部位に銅皮膜が形成され
る。
In the case of an EDTA bath, the precipitation reaction of the plated film occurs as follows ((L) indicates chelate formation with EDTA): Cu" (L) + 2 HCHO+ 40H-→Cu
'+2HCOO''''+H3↑+2H20+(L) In this way, a copper film is formed at a desired portion of the material to be plated, such as a printed circuit board, which is immersed in the plating solution.

消耗する銅イオンを補給する為に、本発明に従えば、第
1図に示すように、めつき槽1からめつき液が、好まし
くは一定量連続的に、抜出される0抜出されためつき液
は好ましくは一旦貯液槽2に貯められた後溶解槽3に移
される。溶解槽3には、エアー攪拌手段及び(或いは)
機械的攪拌手段を装備することが出来る。更に、溶解槽
3には、液温調節の為の冷却ジャケットが装備される0
2価銅イオン補給源として、本発明に従えば、酸化銅(
CuO)が溶解槽に添加される。こうして生成する2価
銅イオン補給液は、補給槽4を経由してミキサ5に移行
される。
In order to replenish the depleted copper ions, according to the present invention, as shown in FIG. The liquid is preferably once stored in the liquid storage tank 2 and then transferred to the dissolution tank 3. The dissolution tank 3 includes an air stirring means and/or
Mechanical stirring means may be provided. Furthermore, the melting tank 3 is equipped with a cooling jacket for adjusting the liquid temperature.
According to the present invention, copper oxide (
CuO) is added to the dissolution bath. The divalent copper ion replenishment liquid thus generated is transferred to the mixer 5 via the replenishment tank 4.

ミキサ5には、めつき槽1からの別途の循回系が存在し
、ここに2価銅イオン補給液と消費量に見合う pH調
節液及び2価銅イオンの還元剤が添加され、十分なる混
合後、これら液がめつき槽に戻して循回される。EDT
Aは建浴段階で加えれば後は基板と一緒に持ち出される
程度であシ、はとんど減らない。
The mixer 5 has a separate circulation system from the plating tank 1, into which a divalent copper ion replenishment solution, a pH adjustment solution corresponding to the consumption amount, and a divalent copper ion reducing agent are added to ensure sufficient After mixing, these liquids are circulated back to the plating tank. E.D.T.
If A is added at the bath preparation stage, it will be taken out with the substrate afterwards, and the amount will hardly decrease.

補給される酸化銅は、銅粉末を空気中で加熱したシ、水
酸化銅、炭酸銅、硝酸銅等を加熱分解することにより、
また電気銅を硫酸ナトリウム浴で電解することにより工
業的に製造されうる。補給源酸化銅は、安価であること
、高純度であることそして易溶性であることが要求され
、これら要件を満たす新たな酸化銅製造方法として、オ
ートクレーブを用いてアンモニア水溶液或いはアンモニ
ア水溶液及び水酸化ナトリウムの水溶液と金属銅とを接
触反応させる方法が提唱されておシ、本発明目的にきわ
めて好適な酸化銅を入手することが出来る。
The supplied copper oxide is produced by heating copper powder in the air, or by thermally decomposing copper hydroxide, copper carbonate, copper nitrate, etc.
It can also be produced industrially by electrolyzing electrolytic copper in a sodium sulfate bath. Replenishment source copper oxide is required to be inexpensive, highly pure, and easily soluble.As a new copper oxide production method that meets these requirements, an ammonia aqueous solution or an ammonia aqueous solution and hydroxide are produced using an autoclave. A method has been proposed in which an aqueous sodium solution and metallic copper undergo a contact reaction, and it is possible to obtain copper oxide which is extremely suitable for the purpose of the present invention.

溶解槽におけるめっき液温はめっき時温度より十分低温
とすることが好ましい0酸化銅を補給しようとするめつ
き液には、EDTA浴の場合を例にとると Cu2+、
HCHO及びNaOHが存在するため、めっき液温度が
めつき時温度と同等であると、銅イオン補給と同時にめ
っき皮膜析出反応が溶解槽内において生じやすい。めっ
き時温度は最適のめつき反応を生せしめる為に高温、例
えばEDTA浴では70℃前後に維持されている。めっ
き液の温度を下げる程、反応が起こシにくくなシ、こう
した不慮の銅析出を防止することが出来る。他方、温度
を下げる程酸化銅の溶解度が減少する。EDTA浴を代
表とする化学銅めっき浴において、めっき液の温度を4
0〜50℃に管理することにより銅の析出反応を防止し
つつ充分なる酸化銅溶解速度が保証されることが判明し
た。
It is preferable that the temperature of the plating solution in the dissolution tank is sufficiently lower than the temperature during plating.For example, in the case of an EDTA bath, Cu2+,
Due to the presence of HCHO and NaOH, if the plating solution temperature is equivalent to the temperature during plating, a plating film precipitation reaction is likely to occur in the dissolution tank at the same time as copper ion replenishment. The temperature during plating is maintained at a high temperature, for example, around 70° C. in an EDTA bath, in order to produce an optimal plating reaction. The lower the temperature of the plating solution, the less likely the reaction will occur, and such accidental copper precipitation can be prevented. On the other hand, the solubility of copper oxide decreases as the temperature decreases. In a chemical copper plating bath, typically an EDTA bath, the temperature of the plating solution is
It has been found that by controlling the temperature between 0 and 50°C, a sufficient copper oxide dissolution rate can be ensured while preventing the copper precipitation reaction.

補給する銅イオンはフリーの錯化剤と等モルとすること
が最適条件であシ、これを超えると補給した酸化銅は溶
解せず、沈降するか或いは攪拌により液中に物理的に浮
遊した状態となる0この未溶解酸化銅は、槽、攪拌機の
摩耗等装置に悪影響を与え、ミキサーへの補給液とする
には固−液分離の必要性を生せしめる。例え分離機を設
けたとしても、分離機の目詰シを生せしめる。従って、
未溶解酸化銅をなるたけ低下させる為補給する銅イオン
の添加量はフリーの錯化剤と等モルまでとされる。反面
、補給銅イオン量が少ないと、めっき槽での本来のめつ
き反応に支障を生じるので、銅イオン添加量は錯化剤モ
ル量の80チ以上は必要である。即ち、銅イオンの補給
効率と溶解性の観点から、フリーの錯化剤のモル量の8
0〜100チに相当する銅イオンを酸化銅の形で補給す
ることが好ましい。こうして添加された酸化銅は全量が
、フリーの錯化剤とキレートをつくシ、めっき皮膜析出
の為の銅イオンと々シ、しかも消耗した銅イオンの補給
を保証する。
The optimal condition is that the amount of copper ions to be replenished is equimolar to that of the free complexing agent; if this is exceeded, the replenished copper oxide will not dissolve and will either settle or become physically suspended in the liquid due to stirring. This undissolved copper oxide has an adverse effect on equipment such as wear of the tank and agitator, and requires solid-liquid separation in order to be used as a replenishment liquid for the mixer. Even if a separator is provided, the separator will become clogged. Therefore,
In order to reduce the amount of undissolved copper oxide as much as possible, the amount of copper ions added is set to be equal to the amount of the free complexing agent in moles. On the other hand, if the amount of supplementary copper ions is small, it will interfere with the original plating reaction in the plating bath, so the amount of copper ions added must be at least 80 times the mole amount of the complexing agent. That is, from the viewpoint of copper ion replenishment efficiency and solubility, the molar amount of free complexing agent is 8.
Preferably, copper ions corresponding to 0 to 100 Ti are supplied in the form of copper oxide. The entire amount of copper oxide added in this way chelates with the free complexing agent, thereby ensuring that the copper ions for depositing the plating film are replenished, and that the depleted copper ions are replenished.

めつき槽外の溶解槽において酸化銅をその溶解に最適の
条件の下でめっき液に溶解して2価銅イオン補給液とし
、その後消費された成分を添加混合した上でめっき槽に
戻すことが本発明の重要な点である。
In a dissolution tank outside the plating tank, copper oxide is dissolved in the plating solution under optimal conditions for dissolving it to make a divalent copper ion replenishment solution, and then the consumed components are added and mixed before being returned to the plating tank. This is an important point of the present invention.

実施例1及び比較例1 第1図に示したフローに従い、E、DTA浴を用いて一
定量のめつき液を抜出し、溶解槽において温度45±1
℃で酸化銅をフリーの錯化剤と等モル補給した。その後
、この補給液をミキサーに送シ、pH調整液及び2価銅
イオン還元剤を加え、めっき槽に戻した(本発明)0 他方、めっき槽からめつき液をミキサーに抜出し、そこ
で硫酸銅、pH調整液及び2価銅イオンの還元剤を一緒
に添加混合し、めっき液に戻した(従来法)0 1回のサンプルめっき厚25〜30μmとした場合、本
発明は従来法に比較して槽壁への銅の異常析出や液の分
解もなく、約2倍のめつき液の寿命延長が可能となった
Example 1 and Comparative Example 1 According to the flow shown in FIG.
Copper oxide was supplemented equimolarly with free complexing agent at °C. Thereafter, this replenishment solution was sent to a mixer, a pH adjustment solution and a divalent copper ion reducing agent were added thereto, and returned to the plating tank (this invention).On the other hand, the plating solution was extracted from the plating tank to a mixer, where copper sulfate, copper sulfate, A pH adjustment solution and a divalent copper ion reducing agent were added and mixed together and returned to the plating solution (conventional method).0 When the sample plating thickness was 25 to 30 μm at one time, the present invention There is no abnormal precipitation of copper on the tank walls or decomposition of the solution, making it possible to extend the life of the plating solution by about twice as much.

実施例2 めっき液の連続使用と生成めっき膜との関係を評価する
為と一カ試験を行った。ここでもEDTA浴を使用した
。銅イオンを酸化銅で供給した場合、どの位のめつき寿
命があるかを判定するために、めっき浴中の8042−
 濃度を一定(建浴時)に保持し、反応副生成物たるH
COONa  濃度のみを増加させて、めっき試験を行
った。T(COONa濃度の増加には、その都度試薬を
添加し、めっき浴の使用回数に見立てた。結果を第2及
び3図に示す。
Example 2 A test was conducted to evaluate the relationship between the continuous use of a plating solution and the formed plating film. Again, an EDTA bath was used. In order to determine how long the plating life is when copper ions are supplied as copper oxide, 8042-
By keeping the concentration constant (at the time of bath preparation), the reaction by-product H
Plating tests were conducted by increasing only the COONa concentration. To increase the T(COONa concentration, a reagent was added each time, and the number of times the plating bath was used was measured. The results are shown in FIGS. 2 and 3.

第2及び3図には、生成皮膜の引張強度と伸びの評価結
果がそれぞれ示しである。試験ターンとは、同一のめつ
き浴について、1回のめつき操作(めっき厚25 μm
)を行なうと1ターンとしてめっき回数を数えたもので
ある。銅めっきを印刷回路板に行なう場合、特にそのス
ルーホーにへの皮膜の性状が重要である0基板の変形に
追従しうる伸びとそのような変形を抑制する引張強度の
双方が高いことが好ましいが、実際的には伸びの方がめ
つき信頼性に大きく寄与する。従って、ここでは、引張
強度が30KQ/−以上で伸びが所定水準(5〜10%
)に維持されるう限シ、めっき液の再使用が可能と判定
することにした。
FIGS. 2 and 3 show the evaluation results of the tensile strength and elongation of the resulting film, respectively. A test turn is one plating operation (plating thickness 25 μm) using the same plating bath.
), the number of times of plating is counted as one turn. When copper plating is applied to a printed circuit board, the properties of the film especially on the through-holes are important.It is preferable that both the elongation that can follow the deformation of the board and the tensile strength that suppresses such deformation be high. In practice, elongation contributes more to plating reliability. Therefore, here, the tensile strength is 30KQ/- or more and the elongation is at a predetermined level (5 to 10%).
), it was decided that the plating solution could be reused as long as it was maintained.

従来法ではせいぜい6タ丁ンまでしか使用可能でなかっ
たが、本発明では12〜14ターンまでめっき液の寿命
が延長しうることか第2及び3図から確認しうる。
It can be seen from Figures 2 and 3 that the life of the plating solution can be extended up to 12 to 14 turns with the present invention, whereas the conventional method can only be used for up to 6 turns.

発明の効果 本発明により、化学銅めっき液の寿命が従来の約2倍と
なシそして槽壁への銅析出や液分解が有効に防止され、
無電解めっき工程の大巾なコスト切下げと生産性の向上
が実現され、プリント回路板等エレクトロニクスデバイ
スのコストダウンに寄与する0
Effects of the Invention According to the present invention, the life of the chemical copper plating solution is approximately twice that of the conventional one, and copper precipitation on the tank wall and solution decomposition are effectively prevented.
Significant cost reductions and productivity improvements in the electroless plating process have been achieved, contributing to cost reductions in electronic devices such as printed circuit boards.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好ましい具体例のフローシート、第2
図は実施例における引張強度と試験ターン数との関係を
示すグラフ、そして第3図は同じく伸びと試験ターン数
の関係を示すグラフである。 1:めつき槽  2:抜出し液貯液槽 3:溶解槽  4;補給槽  5:ミキサ第1図 第2図 試、!i灸ターン数− 第3図 手続補正書 昭和62年9月8日 特許庁長官 小 川 邦 夫 殿 事件の表示 昭和61年 特願第226365  号発
明の名称  化学銅めっき液への銅イオン補給方法補正
をする者 事件との関係           特許出願人名称 
日本鉱業株式会社
FIG. 1 is a flow sheet of a preferred embodiment of the present invention;
The figure is a graph showing the relationship between tensile strength and the number of test turns in Examples, and FIG. 3 is a graph showing the relationship between elongation and the number of test turns. 1: Plating tank 2: Extracted liquid storage tank 3: Dissolution tank 4: Replenishment tank 5: Mixer Figure 1 Figure 2 Test,! Number of moxibustion turns - Figure 3 Procedural amendment September 8, 1985 Kunio Ogawa, Commissioner of the Patent Office Display of the case 1985 Patent application No. 226365 Title of the invention Method for replenishing copper ions to chemical copper plating solution Relationship with the case of the person making the amendment Name of the patent applicant
Japan Mining Co., Ltd.

Claims (1)

【特許請求の範囲】 1)化学銅めつき液への銅イオン補給方法であつて、め
つき槽から前記めつき液の一部を抜出し、溶解槽におい
て酸化銅(CuO)を該めつき液に溶解して2価銅イオ
ン補給液を生成し、該2価銅イオン補給液をpH調整剤
及び2価銅イオン還元剤を加えた後めつき槽に戻して循
回することを特徴とする化学銅めつき液への銅イオン補
給方法。 2)溶解槽における溶解温度をめつき時温度より低くす
る特許請求の範囲第1項記載の方法。 3)溶解槽における銅イオン添加量をフリーの錯化剤と
等モルまでとする特許請求の範囲第1項又は第2項記載
の方法。 4)2価銅イオン補給液をミキサーに導入し、該ミキサ
ーにてめつき槽から別途抜出されためつき液の一部並び
にpH調整剤及び2価銅イオン還元剤と混合した後めつ
き槽に戻す特許請求の範囲第1〜3項のうちのいずれか
一項記載の方法。
[Claims] 1) A method for replenishing copper ions to a chemical copper plating solution, wherein a part of the plating solution is extracted from a plating tank, and copper oxide (CuO) is added to the plating solution in a dissolving tank. A divalent copper ion replenishing solution is produced by dissolving the divalent copper ion replenishing solution, and after adding a pH adjuster and a divalent copper ion reducing agent, the divalent copper ion replenishing solution is returned to the plating tank and circulated. How to replenish copper ions to chemical copper plating solution. 2) The method according to claim 1, wherein the melting temperature in the melting tank is lower than the plating temperature. 3) The method according to claim 1 or 2, wherein the amount of copper ions added in the dissolution tank is up to equimolar with the free complexing agent. 4) The divalent copper ion replenishing solution is introduced into the mixer, and mixed with a part of the plating solution separately extracted from the plating tank, a pH adjuster, and a divalent copper ion reducing agent in the mixer, and then mixed with the plating tank. A method according to any one of claims 1 to 3 reverting to.
JP22636586A 1986-09-26 1986-09-26 Method for supplying copper ion to chemical copper plating solution Pending JPS6383282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22636586A JPS6383282A (en) 1986-09-26 1986-09-26 Method for supplying copper ion to chemical copper plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22636586A JPS6383282A (en) 1986-09-26 1986-09-26 Method for supplying copper ion to chemical copper plating solution

Publications (1)

Publication Number Publication Date
JPS6383282A true JPS6383282A (en) 1988-04-13

Family

ID=16844000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22636586A Pending JPS6383282A (en) 1986-09-26 1986-09-26 Method for supplying copper ion to chemical copper plating solution

Country Status (1)

Country Link
JP (1) JPS6383282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033765A1 (en) * 2001-10-17 2003-04-24 Ebara Corporation Plating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033765A1 (en) * 2001-10-17 2003-04-24 Ebara Corporation Plating apparatus
US7297210B2 (en) 2001-10-17 2007-11-20 Ebara Corporation Plating apparatus

Similar Documents

Publication Publication Date Title
JP5380113B2 (en) Plating bath and method for depositing a metal layer on a substrate
JP4559019B2 (en) Plating bath and method for depositing a metal layer on a substrate
Dimitrijević et al. Non-cyanide electrolytes for gold plating–a review
JP2003183875A (en) Plating bath and method for depositing metal layer on substrate
EP1300486A1 (en) Plating bath and method for depositing a metal layer on a substrate
JP2003113491A (en) Plating bath and method for depositing metal layer on substrate
TWI400366B (en) Electrolytic tin plating solution and electrolytic tin plating method
JP2002249879A (en) Electroless copper plating solution, electroless copper plating method and production method for wiring board
JP2006249485A (en) Gold sulfite salt aqueous solution for gold plating
US4715935A (en) Palladium and palladium alloy plating
EP1420891B1 (en) Electroless nickel plating solution and process for its use
US5935306A (en) Electroless gold plating bath
JPH0218388B2 (en)
JP3968269B2 (en) Electroless copper plating solution, its management method, and electroless copper plating apparatus
JP5623668B1 (en) Non-cyanide gold salt for gold plating
JPS6383282A (en) Method for supplying copper ion to chemical copper plating solution
TW577936B (en) Electroless copper plating machine thereof, and multi-layer printed wiring board
US3753818A (en) Ammoniacal etching solution and method utilizing same
JPH11269658A (en) Electroless palladium plating liquid
JP2006265648A (en) Electroless gold plating liquid repreparation method, electroless gold plating method and gold ion-containing liquid
JP2015168844A (en) Method for manufacturing non-cyanide gold salt for gold plating
JP2018066060A (en) Electroless nickel plating bath
US3919100A (en) Alkaline etchant compositions
JPH1112753A (en) Electroless gold plating method
JPH0763602B2 (en) Vertical multi-stage stirring tank and method for supplying copper to chemical copper plating solution using the stirring tank