JPS638233B2 - - Google Patents

Info

Publication number
JPS638233B2
JPS638233B2 JP59214900A JP21490084A JPS638233B2 JP S638233 B2 JPS638233 B2 JP S638233B2 JP 59214900 A JP59214900 A JP 59214900A JP 21490084 A JP21490084 A JP 21490084A JP S638233 B2 JPS638233 B2 JP S638233B2
Authority
JP
Japan
Prior art keywords
oil
amino
viscosity
modified silicone
sticking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59214900A
Other languages
Japanese (ja)
Other versions
JPS6197471A (en
Inventor
Shinichi Inaba
Sei Yoshimoto
Etsuya Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP59214900A priority Critical patent/JPS6197471A/en
Publication of JPS6197471A publication Critical patent/JPS6197471A/en
Publication of JPS638233B2 publication Critical patent/JPS638233B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は溶融紡糸法によるポリウレタン弾性繊
維の製造方法に関するものである。更に詳しくは
ポリウレタン弾性繊維の溶融紡糸時に、油剤を繊
維に付与してボビン糸の膠着を防止する方法に関
するものである。 (従来の技術) ポリウレタン弾性繊維を得る方法としては、従
来から溶融紡糸法、乾式紡糸法、湿式紡糸法等が
一般に行なわれているが、いずれの方法にしろ紡
糸時に繊維をボビンに巻取つた際、繊維同士が膠
着し、その為このボビンを解舒する際、大きな張
力あるいは張力むらが発生し、後次工程の糸切の
発生の主因となつていた。この膠着を防止する方
法は、従来から多くの提案がなされている。例え
ば古くは、タルク、シリカ、コロイダルアルミナ
等の鉱物性固体微粒子の水性又は油性スラリーを
繊維に付与する方法が提案されている。これらの
方法は確かに、ボビン糸の膠着防止には有効であ
るが、固体微粒子を水又は油に均一に分散維持す
るのが困難なため、糸の均一な膠着防止が難し
く、ボビン糸の解舒時の張力むらが大きいこと、
又後次工程において固体微粒子が糸道に脱落した
り、張力変動が大きかつたりすること、糸の接触
部分が固体微粒子により摩耗すること等の欠点が
ある。鉱物性の固体微粒子を避け、高級脂肪酸の
金属塩粉末を水あるいは鉱物油中心の油剤に分散
させたり(特公昭41−286号公報、特公昭40−
5557号公報)、高級脂肪族カルボン酸、高級脂肪
族アルコール、パラフイン、ポリエチレン等の常
温固体ワツクスを鉱物油中心の油剤に分散溶解さ
せる方法(特公昭43−272号公報、特公昭43−
9955号公報、特公昭44−8907号公報)も提案され
ている。しかしこれらの方法は、分散固型分が柔
らかいおかげで、糸接触部の摩耗斑が無くなる
が、やはり分散溶解が不安定であることはまぬが
れず、糸への付着むら、固型分のスカムとなつて
の糸道への脱落等を完全に避けることは困難であ
る。常温液体で、膠着防止性が良好なものとして
は、ポリアルキレンオキサイド変性のシリコーン
オイルが最も良く知られている(特公昭45−
40719号公報、特開昭48−19893号公報、特開昭57
−128270号公報)。特にその付加するポリアルキ
レンオキサイドの分子量が大きいほど膠着防止性
能は大きいが、粘度が逆に高くなり、そのままで
は糸の摩擦抵抗が高くて使用できないので低粘度
の鉱物油、シリコーンオイル等のベースオイルに
溶解する必要がある。しかし、高分子量ポリアル
キレンオキサイド変性シリコーンオイルはこれら
ベースオイルへの溶解性が極端に低く、高級アル
コールやその脂肪酸エステルのような相溶剤を用
いてもその溶解量に限度があり、結果的には限ら
れた膠着防止性能しか得られず、又これら相溶剤
はポリウレタン弾性糸の糸質を劣化させることも
多かつた。 更に指摘しなければならないのは、ポリウレタ
ン弾性糸の紡糸におけるボビン糸の膠着は、ポリ
ウレタンのゴム状の性質からくる単なる粘着によ
つているのではなく、化学的結合にもよつている
と思われることである。即ち紡糸後、一担ボビン
に巻取られたフイラメントの表面には、数日間は
ウレタンポリマーの反応性のイソシアネート末端
基が存在し、フイラメント同志の接触する界面に
おいてアロハネート結合その他の化学結合を互い
のフイラメントの間で形成し、その膠着をより強
固なものにしていると考えられている。この現象
は特に溶融紡糸によりポリウレタン弾性繊維を製
造する際に顕著にあらわれる。このイソシアネー
ト末端基の化学的結合による膠着の防止法として
は、既にモノアミンを溶解した鉱物油を紡糸時に
付与し、そのモノアミンにより、イソシアネート
末端基を失活させる方法が提案されており、(特
公昭46−16312号公報)、更には本発明者等による
適当なジアミンを配合した油剤なども提案されて
いる(特開昭58−132170号公報)。 しかしながら、これらアミン類の効果はあくま
で、フイラメントの反応基の失活効果に留まり、
ポリウレタンのゴム状物質の粘着からくる膠着に
は効果はなく、ポリアルキレンオキサイド変性シ
リコーンも前述した様に、膠着防止性に限界があ
る為、特に溶融紡糸時においてポリマー粘度が低
く、ボビンに巻取つた瞬間においてフイラメント
がまだ柔らかい場合、あるいは繊維のデニールが
20デニール以下と細い場合にはボビン糸の膠着防
止が依然不充分なことも多かつた。 (発明が解決しようとする問題点) 本発明は、溶融紡糸法によりポリウレタン弾性
繊維を製造するに際し、ボビン糸の膠着、膠着む
ら、糸道へのスカム脱落、それにともなう糸切等
の問題点を解決しようとするものである。 (問題点を解決するための手段) 上記問題点を解決するため、本発明は溶融紡糸
法によりポリウレタン弾性繊維を製造するに際
し、鉱物油及び/又はポリジオルガノシロキサン
にアミノ変性シリコーンを配合してなる、粘度が
100センチストークス(30℃)以下の配合油をポ
リウレタン弾性繊維に付与した後捲取ることを特
徴とする。 ここでいう鉱物油は、配合油全体としての粘度
が100センチストークス(以下CSと表記)(30℃)
以下である限り、任意のものを選んでよいが、通
常は4〜25CS程度の低粘度のものが他の油剤成
分との溶解し易さ、繊維の摩擦低減の観点から望
ましい。ポリジオルガノシロキサンはポリジメチ
ルシロキサンが汎用品であることから最も望まし
いが、このメチル基の一部は他のアルキル基、フ
エニル基等の一価の有機基で置換されていてもよ
い。粘度は鉱物油の場合と同様に配合油全体の粘
度が100CS(30℃)以下であれば任意でよいが、
通常は5〜20CS程度の低粘度タイプのものが鉱
物油の場合と同じ理由で望ましい。但し、シリコ
ーンオイルは一般に高粘度の方が離型性が高いの
で、一部分だけ高粘度タイプのものを使用するこ
とも、多少膠着防止性を期待できる。鉱物油とポ
リジオルガノシロキサンの混合比(それぞれの単
独も含む)は、両者の混合物に配合するアミノ変
性シリコーンのアミノ基含量、粘度、配合割合等
に依存する。即ちアミノ変性シリコーンのこれら
条件によつては鉱物油やポリジオルガノシロキサ
ンに溶解し難く一部分離白濁するものがある。ア
ミノ変性シリコーンの溶解性の悪い配合油は、膠
着むら、糸道へのスカムの脱落等のトラブルを起
し易い。本発明では、アミノ変性シリコーンが鉱
物油、ポリジオルガノシロキサン、又はその混合
物に完全に溶解していることが必要である。アミ
ノ変性シリコーンを完全溶解する為に、配合油中
にアルコール、エステル等の相溶剤を一部加える
ことは、本発明の範囲をはずれるものではない
が、これら相溶剤はポリウレタン繊維の糸質劣化
や膠着防止性の低下を招くことが多いため、配合
油全体の10%以下に抑えることが望ましく、もち
ろん一切加えず、適切な鉱物油とポリジオルガノ
シロキサンの混合物(それぞれの単独を含む)の
みでアミノ変性シリコーンを完全溶解することが
最も望ましい。 本発明でいうアミノ変性シリコーンとは、普通
ポリジメチルシロキサンの分子鎖にアミノ基が付
加したものをいうが、メチル基が他のアルキル
基、アリル基に置換してももちろん有効である。
アミノ基の付加位置により、側鎖タイプと片末端
タイプがあり、アミノ基自身もモノアミン、ジア
ミンなどがあるが、いずれも有効である。粘度、
アミノ基含量については、どのようなものでも大
なり小なり、膠着防止性能を示し、配合油全体の
粘度が100CS(30℃)以下であればよく、一般に
はボビン糸の膠着防止性能は、アミノ変性シリコ
ーンのアミノ基含量が多い程良好で粘度も極端に
差がある場合は高粘度の方がやや良好である。但
し溶融紡糸においては、紡糸直後の繊維は極めて
柔らかく、その時付与する配合油の粘度が100CS
以上であると、オイリングローラー又はガイドノ
ズルあるいはその他の糸接触部分において、油剤
の粘性の為高摩擦となりルーズフイラメントや糸
切が発生し易くなり、好ましくない。最も望まし
くは配合油の粘度が20CS以下が良い。 アミノ変性シリコーン中のアミノ基含量は極め
て少量でも膠着防止に有効であるが、その効果を
確実にさせる為には、アミノ変性シリコーンの配
合油全体に占める比率(配合比)を0.1重量%以
上、アミノ変性シリコーンのアミノ当量(注1)
を10000以下にすることが望ましい。一方、アミ
ノ変性シリコーンの配合比が多い程、且つアミノ
当量が小さい程、アミノ変性シリコーンの鉱物
油、ポリジオルガノシロキサンへの溶解が困難に
なつてくるので、アミノ変性シリコーンは配合比
で20重量%以下、アミノ当量で300以上が望まし
い。 なお、本発明において使用する油剤は鉱物油、
ポリジオルガノシロキサン、アミノ変性シリコー
ンより成つているが、これ以外の膠着防止成分、
例えば、従来からあるタルク、シリカ、コロイダ
ルアルミナ等の鉱物性固体微粒子、あるいは高級
脂肪酸の金属塩粉末あるいは高級脂肪族カルボン
酸、高級脂肪族アルコール、パラフイン、ポリエ
チレン等の常温固体ワツクス、あるいは高分子量
のポリアルキレンオキサイド変性シリコーンオイ
ルあるいはアミン類等を更に追加配合してもよ
く、アミノ基と反応性のものでない限り、それら
を追加配合することは膠着防止効果をその分増大
させる。しかしアミノ変性シリコーンの効果自体
が絶大である為、このような追加配合をすること
は余り必要性を認められず、逆に糸道部の摩耗、
スカムの脱落、膠着むら等のトラブルが予想され
るので、一般的にはすすめられない。また、本発
明はポリウレタン弾性繊維の溶融防止法に関する
ものではあるが、本発明の油剤の他の紡糸法への
適用の有効性を否定しているものではもちろん無
い。アミノ基含量は、本発明においてはアミノ当
量で定量的に表現され、アミノ当量が小さいほど
アミノ基含量が大きいとという関係となつてい
る。 アミノ当量の定義:アミノ当量=
試料重量/アミノ基モル数 アミノ当量の測定法:フラスコに試料約1gをと
り撹拌する。イソプロピル
アルコールを25ml加え、よ
く撹拌・溶解し、0.1N塩
酸にて指示薬ブロムフエノ
ールブルーを用いて適定中
和する。アミノ当量は下式
で計算される。 アミノ当量=104×(試料重量g)/(0.1N塩酸
の力価)×(0.1N塩酸の消費量ml) 本発明における配合油は、ベース油剤としての
鉱物油又はポリジオルガノシロキサン又はその混
合物にアミノ変性シリコーンを充分に溶解分散さ
せたもので、もちろん鉱物油、ポリジオルガノシ
ロキサン自身も多少のボビン糸膠着防止性能はあ
るが、膠着防止性能の大部分はアミノ変性シリコ
ーンにあり、鉱物油、ポリジオルガノシロキサン
はアミノ変性シリコーンの効果を充分に発揮でき
るようにしているに過ぎない。アミノ変性シリコ
ーンが、どのような作用で膠着防止性を発揮する
かは明らかではないが、本発明者らの推定によれ
ば、アミノ変性シリコーンのアミノ基が溶融紡糸
直後で、まだポリウレタン繊維の表面に多数残存
しているイソシアネート基と強固に結合し、ある
いは結合までしなくとも繊維表面に強固に吸着
し、アミノ基とつながつているシリコーンの分子
鎖が繊維表面を強く覆つたと考えられる。シリコ
ーンは本来は良好な離型性をもつているが、それ
が従来繊維表面へ充分に結合あるいは吸着されな
かつたため、本来の機能が発揮されなかつたので
あるが、シリコーン分子鎖に付いたアミノ基のお
かげで、本来の機能が充分に発揮されたと推定さ
れる。 (実施例) 以下、実施例によつて本発明を示す。 実施例 1 分子量1200のポリテトラメチレングリコール
69.4部、1,4ビス(β―ヒドロキシエトキシ)
ベンゼン6.2部、4,4―ジフエニルメタンジイ
ソシアネート24.4部から重合したポリウレタン弾
性体を206℃で溶融し、スクリユー型押出機によ
り、ノズルより押出し、紡速500m/分でボビン
に巻取り20デニールのモノフイラメントを得た。
巻取る直前にガイドノズル給油により、以下の如
き組成の油剤をフイラメント重量に対し約10%付
与した。
(Industrial Application Field) The present invention relates to a method for producing polyurethane elastic fibers by a melt spinning method. More specifically, the present invention relates to a method for preventing bobbin threads from sticking by applying an oil to the fibers during melt spinning of polyurethane elastic fibers. (Prior art) Melt spinning, dry spinning, wet spinning, etc. have been commonly used to obtain polyurethane elastic fibers, but in any of these methods, the fibers are wound around a bobbin during spinning. At this time, the fibers stick to each other, and therefore, when the bobbin is unwound, a large tension or uneven tension occurs, which is the main cause of thread breakage in the subsequent process. Many proposals have been made for methods of preventing this stalemate. For example, a method has long been proposed in which an aqueous or oil-based slurry of mineral solid fine particles such as talc, silica, and colloidal alumina is applied to fibers. Although these methods are certainly effective in preventing bobbin thread from sticking together, it is difficult to maintain uniform dispersion of solid particles in water or oil, making it difficult to prevent threads from sticking uniformly and making it difficult to unravel bobbin thread. Large tension unevenness during sowing;
Further, there are disadvantages such as solid fine particles falling into the yarn path in subsequent steps, large tension fluctuations, and abrasion of the contact portion of the yarn due to the solid fine particles. Avoiding mineral solid particles, metal salt powder of higher fatty acids is dispersed in water or oil based on mineral oil (Japanese Patent Publication No. 41-286, Japanese Patent Publication No. 40-1986)
5557), a method of dispersing and dissolving room-temperature solid waxes such as higher aliphatic carboxylic acids, higher aliphatic alcohols, paraffin, and polyethylene in an oil agent mainly composed of mineral oil (Japanese Patent Publication No. 1972-272, Japanese Patent Publication No. 1973-
9955, Japanese Patent Publication No. 44-8907) have also been proposed. However, these methods eliminate wear spots at the thread contact area due to the softness of the dispersed solids, but the dispersion and dissolution are still unstable, resulting in uneven adhesion to the threads and scum of the solids. It is difficult to completely avoid falling into the thread path. Polyalkylene oxide-modified silicone oil is the most well-known material that is liquid at room temperature and has good anti-stick properties.
Publication No. 40719, Japanese Patent Application Publication No. 1989-19893, Japanese Patent Application Publication No. 1989-1989
-128270). In particular, the higher the molecular weight of the added polyalkylene oxide, the greater the anti-sticking performance, but the viscosity increases, and the frictional resistance of the thread is so high that it cannot be used as it is, so base oils such as low-viscosity mineral oil and silicone oil are used. Needs to be dissolved. However, the solubility of high molecular weight polyalkylene oxide-modified silicone oils in these base oils is extremely low, and even if a compatibilizer such as a higher alcohol or its fatty acid ester is used, there is a limit to the amount of solubility, and as a result, the solubility is limited. In addition, these compatibilizers often deteriorated the quality of the polyurethane elastic yarn. Furthermore, it must be pointed out that the sticking of the bobbin yarn during spinning of polyurethane elastic yarn is not due to mere adhesion due to the rubber-like properties of polyurethane, but seems to be due to chemical bonding. That's true. That is, after spinning, the reactive isocyanate end groups of the urethane polymer exist on the surface of the filament wound onto a single-carrying bobbin for several days, and the allophanate bonds and other chemical bonds are formed at the interface where the filaments come into contact with each other. It is thought that it forms between filaments and makes their adhesion stronger. This phenomenon is particularly noticeable when polyurethane elastic fibers are produced by melt spinning. As a method for preventing sticking caused by chemical bonding of isocyanate terminal groups, a method has been proposed in which mineral oil in which monoamines have already been dissolved is applied during spinning, and the monoamines deactivate the isocyanate terminal groups. 46-16312), and oil agents containing appropriate diamines have also been proposed by the present inventors (Japanese Unexamined Patent Publication No. 132170/1982). However, the effect of these amines is limited to deactivating the reactive groups of the filament.
Polyurethane has no effect on sticking caused by the adhesion of the rubbery substance, and as mentioned above, polyalkylene oxide modified silicone also has a limited anti-sticking property, so the polymer viscosity is low especially during melt spinning, making it difficult to wind up on a bobbin. If the filament is still soft at the moment of weaving, or the denier of the fiber is
When the bobbin thread is as thin as 20 deniers or less, prevention of sticking of the bobbin thread is still insufficient in many cases. (Problems to be Solved by the Invention) The present invention solves problems such as sticking of bobbin thread, uneven sticking, scum falling into the thread path, and thread breakage accompanying this, when producing polyurethane elastic fibers by the melt spinning method. This is what we are trying to solve. (Means for Solving the Problems) In order to solve the above problems, the present invention involves blending amino-modified silicone with mineral oil and/or polydiorganosiloxane when producing polyurethane elastic fibers by a melt spinning method. , the viscosity is
It is characterized by applying a blended oil of 100 centistokes (30°C) or less to polyurethane elastic fibers and then rolling them up. The mineral oil referred to here has a viscosity of 100 centistokes (hereinafter referred to as CS) (30℃) as a whole blended oil.
Any material may be selected as long as it is within the following range, but a material with a low viscosity of about 4 to 25 CS is usually desirable from the viewpoint of ease of dissolution with other oil components and reduction of fiber friction. Polydiorganosiloxane is most desirable because polydimethylsiloxane is a commonly used product, but some of the methyl groups may be substituted with other monovalent organic groups such as alkyl groups and phenyl groups. As with mineral oil, the viscosity can be any value as long as the viscosity of the entire blended oil is 100CS (30℃) or less, but
Usually, a low viscosity type of about 5 to 20 CS is preferable for the same reason as mineral oil. However, since higher viscosity silicone oil generally has higher mold release properties, using a high viscosity type silicone oil in only a portion can also be expected to have some anti-sticking properties. The mixing ratio of mineral oil and polydiorganosiloxane (including each alone) depends on the amino group content, viscosity, blending ratio, etc. of the amino-modified silicone blended into the mixture of the two. That is, depending on these conditions, amino-modified silicones may be difficult to dissolve in mineral oil or polydiorganosiloxane, resulting in some separation and cloudiness. Compound oils with poor solubility for amino-modified silicones tend to cause problems such as uneven adhesion and scum falling off into the yarn path. The present invention requires that the amino-modified silicone be completely dissolved in the mineral oil, polydiorganosiloxane, or mixture thereof. In order to completely dissolve the amino-modified silicone, it is within the scope of the present invention to add a portion of a compatibilizer such as alcohol or ester to the blended oil, but these compatibilizers may cause deterioration of the thread quality of polyurethane fibers or Since this often leads to a decrease in anti-stick properties, it is desirable to keep the amount to less than 10% of the total blended oil. It is most desirable to completely dissolve the modified silicone. The amino-modified silicone used in the present invention generally refers to polydimethylsiloxane with an amino group added to its molecular chain, but it is of course also effective to substitute the methyl group with another alkyl group or allyl group.
Depending on the position of the amino group, there are side chain types and single terminal types, and the amino group itself can be monoamine, diamine, etc., but both are effective. viscosity,
As for the amino group content, it shows anti-sticking properties to a greater or lesser extent, and it is sufficient as long as the viscosity of the entire compounded oil is 100CS (30℃) or less.In general, the anti-sticking properties of bobbin thread are The higher the amino group content of the modified silicone, the better; if there is an extreme difference in viscosity, the higher the viscosity, the better. However, in melt spinning, the fibers immediately after spinning are extremely soft, and the viscosity of the blended oil applied at that time is 100CS.
If this is the case, the viscosity of the oil will cause high friction in the oiling roller, guide nozzle, or other thread contacting parts, making loose filaments and thread breakage likely to occur, which is undesirable. Most preferably, the viscosity of the blended oil is 20CS or less. Even a very small amount of amino group content in amino-modified silicone is effective in preventing adhesion, but in order to ensure this effect, the proportion (compounding ratio) of amino-modified silicone in the total blended oil must be at least 0.1% by weight. Amino equivalent of amino-modified silicone (Note 1)
It is desirable to keep it below 10000. On the other hand, the higher the blending ratio of amino-modified silicone and the lower the amino equivalent, the more difficult it becomes to dissolve the amino-modified silicone in mineral oil and polydiorganosiloxane, so the blending ratio of amino-modified silicone is 20% by weight. Below, an amino equivalent of 300 or more is desirable. Note that the oil agent used in the present invention is mineral oil,
It consists of polydiorganosiloxane and amino-modified silicone, but it also contains other anti-stick ingredients.
For example, conventional mineral solid particles such as talc, silica, and colloidal alumina, metal salt powders of higher fatty acids, room temperature solid waxes such as higher aliphatic carboxylic acids, higher aliphatic alcohols, paraffin, and polyethylene, or high molecular weight Polyalkylene oxide-modified silicone oil or amines may be additionally blended, and as long as they are not reactive with amino groups, the additional blending will increase the anti-sticking effect accordingly. However, because the effects of amino-modified silicone are so great, it is not really necessary to add such additional ingredients, and on the contrary, it can cause wear and tear in the thread guide area.
It is generally not recommended because problems such as scum falling off and uneven adhesion are expected. Further, although the present invention relates to a method for preventing melting of polyurethane elastic fibers, it does not necessarily deny the effectiveness of applying the oil agent of the present invention to other spinning methods. In the present invention, the amino group content is expressed quantitatively by amino equivalent, and the relationship is such that the smaller the amino equivalent, the larger the amino group content. Definition of amino equivalent: Amino equivalent =
Sample weight/number of moles of amino groups Measuring method of amino equivalent: Take about 1 g of sample in a flask and stir. Add 25 ml of isopropyl alcohol, stir well to dissolve, and neutralize appropriately with 0.1N hydrochloric acid using the indicator bromophenol blue. The amino equivalent is calculated using the formula below. Amino equivalent = 10 4 × (sample weight g) / (potency of 0.1N hydrochloric acid) × (consumption amount of 0.1N hydrochloric acid ml) The blended oil in the present invention is mineral oil or polydiorganosiloxane or a mixture thereof as a base oil agent. Of course, mineral oil and polydiorganosiloxane themselves have some ability to prevent sticking of bobbin thread, but most of the anti-sticking performance lies in the amino-modified silicone; The polydiorganosiloxane merely enables the amino-modified silicone to fully exhibit its effects. It is not clear how amino-modified silicone exerts its anti-sticking properties, but according to the inventors' estimation, the amino groups of amino-modified silicone are still present on the surface of polyurethane fibers immediately after melt-spinning. It is thought that the silicone is strongly bonded to the isocyanate groups remaining in large numbers in the silicone, or even without bonding, it is strongly adsorbed to the fiber surface, and the silicone molecular chains connected to the amino groups strongly cover the fiber surface. Silicone originally has good mold releasability, but in the past, it was not sufficiently bonded or adsorbed to the fiber surface, so it could not perform its original function. It is presumed that, thanks to this, its original function was fully demonstrated. (Examples) Hereinafter, the present invention will be illustrated by examples. Example 1 Polytetramethylene glycol with a molecular weight of 1200
69.4 parts, 1,4 bis(β-hydroxyethoxy)
A polyurethane elastomer polymerized from 6.2 parts of benzene and 24.4 parts of 4,4-diphenylmethane diisocyanate was melted at 206°C, extruded through a nozzle using a screw extruder, wound around a bobbin at a spinning speed of 500 m/min, and made into a 20-denier material. A monofilament was obtained.
Immediately before winding, an oil having the following composition was applied to the filament in an amount of about 10% by weight using a guide nozzle.

【表】【table】

【表】 各油剤の配合比率はいずれも重量比である。配
合油剤の粘度はいずれも100CS以下であつた。各
油剤の紡糸結果は表1の通りとなつた。
[Table] The compounding ratio of each oil agent is a weight ratio. The viscosity of all the blended oils was 100CS or less. The spinning results for each oil agent are shown in Table 1.

【表】 油剤A〜Hはすべて低粘度鉱物油又は低粘度シ
リコーン油をベースオイルとしているため、配合
油剤粘度は100CS以下となり、紡糸時のルーズフ
イラメント、糸切れは無かつた。比較例Gは固体
微粒子のステアリン酸マグネシウムを分散させた
油剤で、膠着防止効果は優れているが、油剤中の
分散が不安定な為、糸道へスカムとなつて脱落し
た。比較例Fはポリアルキレンオキササイド変性
シリコーンとジアミンを配合した油剤で、糸道へ
のスカム脱落はないが、膠着防止効果はやや劣つ
た。油剤Hは鉱物油とポリジメチルシロキサンの
みの油剤で膠着防止効果は極めて弱かつた。油剤
A〜Eは本発明による油剤で、鉱物油とポリジメ
チルシロキサンの混合比やアミノ変性シリコーン
の種類・配合量はそれぞれ違うが、いずれもベー
スオイルのみの油剤Hよりはもちろんのこと、従
来最も膠着防止性が良いといわれていたタイプの
油剤F、Gよりも良好な膠着防止性能を示し、後
次工程でも糸切は少なく、良好な操業性を示し
た。 実施例 2 実施例1と同じ紡糸条件で、配合油剤の粘度を
変えた結果を下表に示す。油剤は鉱物油とポリジ
メチルシロキサンの混合物95部にアミノ当量
9000、粘度90CSのアミノ変性シリコーン5部を
配合したもので、粘度調整は鉱物油とポリジメチ
ルシロキサンの混合物の粘度を変えることによつ
て行なつた。
[Table] Since oils A to H all use low-viscosity mineral oil or low-viscosity silicone oil as the base oil, the viscosity of the blended oils was 100CS or less, and there were no loose filaments or yarn breakage during spinning. Comparative Example G is an oil agent in which fine solid particles of magnesium stearate are dispersed, and although it has an excellent anti-sticking effect, the dispersion in the oil agent is unstable, so it falls off as scum on the thread path. Comparative Example F was an oil containing a polyalkylene oxaside-modified silicone and a diamine, and although there was no scum falling into the yarn path, the anti-sticking effect was slightly inferior. Oil agent H was an oil agent containing only mineral oil and polydimethylsiloxane and had an extremely weak anti-sticking effect. Oils A to E are oils according to the present invention, and although the mixing ratio of mineral oil and polydimethylsiloxane and the type and amount of amino-modified silicone are different, all of them are not only better than Oil H, which is made only of base oil, but also have the highest stickiness ever. It exhibited better anti-sticking performance than oils F and G, which were said to have good anti-sticking properties, and showed good operability with fewer thread breakages in subsequent processes. Example 2 The table below shows the results obtained by changing the viscosity of the blended oil under the same spinning conditions as in Example 1. The oil agent is a mixture of mineral oil and polydimethylsiloxane (95 parts) and an amino equivalent.
9000 and 5 parts of amino-modified silicone with a viscosity of 90CS.The viscosity was adjusted by changing the viscosity of the mixture of mineral oil and polydimethylsiloxane.

【表】 表2に示されるように、配合油剤粘度が100CS
以下の場合は膠着防止性も良好で、紡糸時の糸切
やルーズフイラメントの発生はみられなかつた
が、配合油剤粘度が100CSを越えると、紡糸時に
上述したトラブルが多発し、完全なウレタン弾性
糸のボビンが得られなかつた。 (発明の効果) 以上述べた様に、本発明のポリウレタン弾性繊
維製造法によれば、ボビン糸膠着は極めて少な
く、紡糸時の糸切、ルーズフイラメントの発生、
スカム脱落等が無く、後次工程でも糸切の少ない
ボビン糸を得ることが出来る。
[Table] As shown in Table 2, the blended oil viscosity is 100CS.
In the following cases, the anti-sticking properties were good, and no thread breakage or loose filaments were observed during spinning.However, when the blended oil viscosity exceeds 100CS, the above-mentioned troubles occur frequently during spinning, and complete urethane elasticity is not observed. I couldn't get a bobbin for thread. (Effects of the Invention) As described above, according to the polyurethane elastic fiber production method of the present invention, bobbin thread sticking is extremely low, and thread breakage and loose filament during spinning are prevented.
There is no scum falling off, etc., and bobbin thread with less thread breakage can be obtained in the subsequent process.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融紡糸法によりポリウレタン弾性繊維を製
造するに際し、鉱物油及び/又はポリジオルガノ
シロキサンにアミノ変性シリコーンを配合してな
る粘度が100センチストークス(30℃)以下の配
合油を、ポリウレタン弾性繊維に付与した後捲取
ることを特徴とするポリウレタン弾性繊維の製造
法。
1 When producing polyurethane elastic fibers by the melt spinning method, a blended oil with a viscosity of 100 centistokes (30°C) or less, which is made by blending amino-modified silicone with mineral oil and/or polydiorganosiloxane, is applied to the polyurethane elastic fibers. A method for producing polyurethane elastic fiber, which is characterized in that it is rolled up after being rolled up.
JP59214900A 1984-10-12 1984-10-12 Production of polyurethane elastic fiber Granted JPS6197471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59214900A JPS6197471A (en) 1984-10-12 1984-10-12 Production of polyurethane elastic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214900A JPS6197471A (en) 1984-10-12 1984-10-12 Production of polyurethane elastic fiber

Publications (2)

Publication Number Publication Date
JPS6197471A JPS6197471A (en) 1986-05-15
JPS638233B2 true JPS638233B2 (en) 1988-02-22

Family

ID=16663419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214900A Granted JPS6197471A (en) 1984-10-12 1984-10-12 Production of polyurethane elastic fiber

Country Status (1)

Country Link
JP (1) JPS6197471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148233U (en) * 1988-03-31 1989-10-13

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19805104A1 (en) * 1998-02-09 1999-08-12 Bayer Ag Coating agent for fibers
DE19805153A1 (en) * 1998-02-09 1999-08-12 Bayer Ag Biodegradable coating agents
JP5574648B2 (en) * 2009-09-11 2014-08-20 松本油脂製薬株式会社 Elastic fiber treatment agent and elastic fiber
JP5590755B1 (en) * 2014-05-13 2014-09-17 竹本油脂株式会社 Treatment agent for polyurethane elastic fiber, method for treating polyurethane elastic fiber, and polyurethane elastic fiber
JP5632982B2 (en) * 2014-06-27 2014-11-26 松本油脂製薬株式会社 Elastic fiber treatment agent and elastic fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148233U (en) * 1988-03-31 1989-10-13

Also Published As

Publication number Publication date
JPS6197471A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
KR20060116241A (en) Polyurethane elastic fiber and method for production thereof
JPS638233B2 (en)
DE1279890B (en) Use of non-aqueous smelting agents
JP2935604B2 (en) Oil agent for urethane elastic yarn
JPH0351374A (en) Oil for polyurethane elastic yarn
JP2902719B2 (en) Method for producing polyurethane elastic yarn
JPS63175172A (en) Production of polyurethane elastic fiber
JP4407129B2 (en) Cut fiber for concrete reinforcement
JPH01282387A (en) Production of elastic polyurethane yarn
JP3162926B2 (en) Method for producing urethane elastic fiber
JP3174403B2 (en) Oil agent for polyurethane fiber
JPH03294523A (en) Production of polyurethane conjugate fiber
JP3336146B2 (en) Method for producing urethane elastic fiber
JP4223356B2 (en) Elastic fiber treatment agent and elastic fiber
JPS6114245B2 (en)
JPS6044425B2 (en) Oil agent for polyurethane elastic fibers
JPH07150421A (en) Production of polyurethane elastic fiber
JP2960224B2 (en) Oil agent for polyurethane fiber
JP3162921B2 (en) Method for producing urethane composite fiber
JPH0340867A (en) Lubricant composition for high-speed yarn making and high-speed yarn-making method using same lubricant composition
JPH07189041A (en) Application of finishing oil
JP2000265366A (en) Production of polyamide-based fiber
JP2008095253A (en) Wound body of polyurethane elastic yarn and method for producing the same
JP2005325497A (en) Treating agent of elastic fiber and elastic fiber
JPH0615745B2 (en) Oil agent for elastic yarn

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term