JPS6381472A - 感光体 - Google Patents

感光体

Info

Publication number
JPS6381472A
JPS6381472A JP22937886A JP22937886A JPS6381472A JP S6381472 A JPS6381472 A JP S6381472A JP 22937886 A JP22937886 A JP 22937886A JP 22937886 A JP22937886 A JP 22937886A JP S6381472 A JPS6381472 A JP S6381472A
Authority
JP
Japan
Prior art keywords
atoms
film
gas
layer
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22937886A
Other languages
English (en)
Inventor
Shuji Iino
修司 飯野
Mochikiyo Osawa
大澤 以清
Hideo Yasutomi
英雄 保富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP22937886A priority Critical patent/JPS6381472A/ja
Priority to EP87113882A priority patent/EP0261653A3/en
Priority to US07/101,286 priority patent/US4868076A/en
Publication of JPS6381472A publication Critical patent/JPS6381472A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 崖朶上Ω利■分野 本発明は、電荷発生層と電荷輸送層とを有する感光体に
関する。
従来技術 カールソン法の発明以来、電子写真の応用分野は著しい
発展を続け、電子写真用感光体にも様々な材料が開発さ
れ実用化きれてきた。
従来用いられて来た電子写真感光体材料の主なものとし
ては、非晶質セレン、セレン砒素、セレンテルル、硫化
カドミウム、酸化亜鉛、アモルファスシリコン等の無機
物質、ポリビニルカルバゾール、金属フタロシアニン、
ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料、トリフ
ェニルメタン化合物、トリフェニルアミン化合物、ヒド
ラゾン化合物、スチリル化合物、ピラゾリン化合物、オ
キサゾール化合物、オキサジアゾール化合物、等の有機
物質が挙げられる。また、その構成形態としては、これ
らの物質を単体で用いる単層型構成、結着材中に分散き
せて用いるバインダー型構成、機能別に電荷発生層と電
荷輸送層とを設ける積層型構成等が挙げられる。
しかしながら、従来用いられて来た電子写真感光体材料
にはそれぞれ欠点があった。その一つとして人体への有
害性が挙げられるが、前述したアモルファスシリコンを
除く無機物質においては、何れも好ましくない性質を持
つものであった。また、電子写真感光体が実際に複写機
内で用いられるためには、帯電、露光、現像、転写、除
電、清掃等の苛酷な環境条件に@された場合においても
、常に安定な性能を維持している必要があるが、前述し
た有機物質においては、何れも耐久性に乏しく、性能面
での不安定要素が多かった。
このような欠点を解消すべく、近年、有害性を改善し耐
久性に富んだ材料として、グロー放電法により生成され
るアモルファスシリコンの電子写真感光体への応用が進
んで来ている。しかし、アモルファスシリコンは、原料
としてシランガスを多量に必要とする反面、高価なガス
であることから、出来上がった電子写真感光体も従来の
感光体に比べ大幅に高価なものとなる。また、成膜速度
が遅く、成膜時間の増大に伴い爆発性を有するシラン未
分解生成物を粉塵状に発生する等、生産上の不都合も多
い。また、この粉塵が製造時に感光層中に混入した場合
には、画像品質に著しく悪影響を及ぼす。ざらに、アモ
ルファスシリコンは、元来、比誘電率が高いため帯電性
能が低く、複写機内で所定の表面電位に帯電するために
は膜厚を厚くする必要があり、高価なアモルファスシリ
コン膜を長時間堆積きせなくてはならない。
ところでアモルファスカーボン膜自体は、プラズマ有機
重合膜として古くより知られており、例えばジエン(M
、5hen)及びベル(A、T。
Be1l)により、1973年発行ののジャーナル・オ
ブ・アプライド・ポリマー・サイエンス(Journa
l  of  Applied  P。
lymer  5cience)第17巻の第885頁
乃至第892頁において、あらゆる有機化合物のガスか
ら作製きれ得る事が、また、同著者により、1979年
のアメリカンケミカルソサエティー(American
  ChemicalSociety)発行によるプラ
ズマボリマライゼーション(Plasma  Poly
merization)の中でもその成膜性が論じられ
ている。
しかしながら従来の方法で作製したプラズマ有機重合膜
は絶縁性を前提とした用途に限って用いられ、即ちそれ
らの膜は通常のポリエチレン膜の如<10”Ωcm程度
の比抵抗を有する絶縁膜と考えられ、或は、少なくとも
そのような膜であるとの認識のもとに用いられていた。
実際に電子写真感光体への用途にしても同様の認識から
、保護層、接着層、ブロッキング層もしくは絶縁層に限
られており、所謂アンダーコート層もしくはオーバーコ
ート層としてしか用いられていなかった。
例えば、特開昭59−28161号公報には、基板上に
ブロッキング層及び接着層としてプラズマ重合された網
目構造を有する高分子層巻設け、その上にアモルファス
シリコン層を設けた感光体が開示きれている。特開昭5
9−38753号公報には、基板上にブロッキング層及
び接着層として酸素と窒素と炭化水素の混合ガスから生
成される1013〜1015ΩCmの高抵抗のプラズマ
重合膜を10人〜100人設けた上にアモルファスシリ
コン層を設けた感光体が開示されている。特開昭59−
136742号公報には、アルミ基板上に設けたアモル
ファスシリコン層内へ光照射時にアルミ原子が拡散する
のを防止するための保護層として1〜5μm程度の炭素
膜を基板表面に形成せしめた感光体が開示きれている。
特開昭60−63541号公報には、アルミ基板とその
上に設けたアモルファスシリコン層との接着性を改善す
るために、接着層として200人〜2μmのダイヤモン
ド状炭素膜を中間に設けた感光体が開示きれ、残留電荷
の面から膜厚は2μm以下が好ましいとされている。
これらの開示は、何れも基板とアモルファスシリコン層
との間に、所謂アンダーコート層を設けた発明であり、
電荷輸送性についての開示は全くなく、また、a−3i
の有する前記した本質的問題を解決するものではない。
また、例えば、特開昭50−20728号公報には、ポ
リビニルカルバゾール−セレン系感光体の表面に保護層
としてグロー放電重合によるポリマー膜を0.1〜1μ
m設けた感光体が開示されている。特開昭59−214
859号公報には、アモルファスシリコン感光体の表面
に保護層としてスチレンやアセチレン等の有機炭化水素
モノマーをプラズマ重合させて5μm程度の膜を形成さ
せる技術が開示されている。特開昭60−61761号
公報には、表面保護層として、500人〜2μmのダイ
ヤモンド状炭素薄膜を設けた感光体が開示され、透光性
の面から膜厚は2μm以下が好ましいとされてている。
特開昭60−249115号公報には、0.05〜5μ
m程度の無定形炭素または硬質炭素膜を表面保護層とし
て用いる技術が開示され、膜厚が5μmを越えると感光
体活性に悪影響が及ぶときれている。
これらの開示は、何れも感光体表面に所謂オーバーコー
ト層を設けた発明であり、電荷輸送性についての開示は
全くなく、また、a−stの有する前記した本質的問題
を解決するものではない。
また、特開昭51−46130号公報には、ポリビニル
カルバゾール系電子写真感光体の表面にグロー放電重合
を行なって0.001〜3μmのポリマー膜を形成せし
めた電子写真感光板が開示されているが、電荷輸送性に
ついては全く言及されていないし、a−Stの持つ前記
した本質的問題を解決するものではない。
一方、アモルファスシリコン膜については、スピア(W
、E、5pear)及びレコンバ(P。
G、LeComber)により1976年発行のフィロ
ソフィカル・マガジン(Philosophical 
 Magazine)第33巻の第935頁乃至第94
9頁において、極性制罪が可能な材料である事が報じら
れて以来、種々の光電デバイスへの応用が試みられて来
た。感光体への応用に関しては、例えば、特開昭56−
62254号公報、特開昭57−119356号公報、
特開昭57−177147号公報、特開昭57−119
357号公報、特開昭57−177149号公報、特開
昭57−119357号公報、特開昭57−17714
6号公報、特開昭57−177148号公報、特開昭5
7−174448号公報、特開昭57−174449号
公報、特開昭57−174450号公報、等に、炭素原
子を含有したアモルファスシリコン感光体が開示されて
いるが、何れもアモルファスシリコンの光導電性を炭素
原子により調整する事を目的としたものであり、また、
アモルファスシリコン自体厚い膜を必要としている。
βが ゛ しようとする  Φ 以上のように、従来、電子写真感光体に用いられている
プラズマ有機重合膜は所謂アンダーコート層もしくはオ
ーバーコート層として使用されていたが、それらはキャ
リアの輸送機能を必要としない膜であって、有機重合膜
が絶縁性で有るとの判断にたって用いられている。従っ
てその膜厚も高々5μm程度の極めて薄い膜としてしか
用いられず、キャリアはトンネル効果で膜中を通過する
か、トンネル効果が期待できない場合には、残留電位の
発生に関して事実上問題にならずに済む程度の薄い膜で
しか用いられていない。また、従来、電子写真に用いら
れているアモルファスシリコン膜は所謂厚膜で使用され
ており、価格或は生産性等に、不都合な点が多い。
本発明者らは、アモルファスカーボン膜の電子写真感光
体への応用を検討しているうちに、本来絶縁性であると
考えられていた水素化アモルファスカーボン膜が窒素原
子を含有せしめる事により、燐原子及び硼素原子のうち
少なくとも一方を含有してなる水素化或は弗素化アモル
ファスシリコンゲルマニウム膜との積層においては電荷
輸送性を有し、容易に好適な電子写真特性を示し始める
事を見出した。その理論的解釈には本発明者においても
不明確な点が多く詳細に亙り言及はできないが、窒素原
子含有水素化アモルファスカーボン膜中に捕捉きれてい
る比較的不安定なエネルギー状態の電子、例えばπ電子
、不対電子、残存フリーラジカル等が形成するバンド構
造が、燐原子及び硼素原子のうち少なくとも一方を含有
してなる水素化或は弗素化アモルファスシリコンゲルマ
ニウム膜が形成するバンド構造と電導帯もしくは荷電子
帯において近似したエネルギー準位を有するため、燐原
子及び硼素原子のうち少なくとも一方を含有してなる水
素化或は弗素化アモルファスシリコンゲルマニウム膜中
で発生したキャリアが容易に窒素原子含有水素化アモル
ファスカーボン膜中へ注入され、ざらに、このキャリア
は前述の比較的不安定なエネルギー状態の電子の作用に
より窒素原子含有水素化アモルファスカーボン膜中を好
適に走行し得るためと推定される。
本発明はその新たな知見を利用することにより、アモル
ファスシリコン感光体の持つ前述の如き本質的問題点を
全て解消し、また従来とは全く使用目的も特性も異なる
、有機プラズマ重合膜、特に少なくとも窒素原子を含有
してなる水素化アモルファスカーボン膜を電荷輸送層と
して使用し、かつ、燐原子及び−素原子のうち少なくと
も一方を含有してなる水素化或は弗素化アモルファスシ
リコンゲルマニウムの薄膜を電荷発生層として使用した
感光体を提供する事を目的とする。
rp″′壱をn2するための 即ち、本発明は、電荷発生層と電荷輸送層とを有する機
能分離型感光体において、該電荷輸送層がプラズマ重合
反応から生成される少なくとも窒素原子を含有してなる
水素化アモルファスカーボン膜であり、かつ、該電荷発
生層が燐原子及び硼素原子のうち少なくとも一方を含有
してなる水素化或は弗素化アモルファスシリコンゲルマ
ニウム膜であることを特徴とする感光体に関する(以下
、本発明による電荷輸送層をa−C膜及び電荷発生層を
a−Si膜と称する)。
本発明は、従来のアモルファスシリコン感光体において
は、電荷発生層として優れた機能を有するアモルファス
シリコンを、電荷発生能が無くても電荷輸送能ざえあれ
ば済む電荷輸送層としても併用していたため発生してい
たこれらの問題点を解決すべく成されたものである。
即ち、本発明は、電荷輸送層としてグロー放電により生
成きれる少なくとも窒素原子を含有してなる水素化アモ
ルファスカーボン膜を設け、かつ、電荷発生層として同
じくグロー放電により生成される燐原子及び硼素原子の
うち少なくとも一方を含有してなる水素化或は弗素化ア
モルファスシリコンゲルマニウム膜を設けた事を特徴と
する機能分離型感光体に関する。該電荷輸送層は、可視
光もしくは半導体レーザー光付近の波長の光に対しては
明確なる光導電性は有きないが、好適な輸送性を有し、
ざらに、帯電能、耐久性、耐候性、耐環境汚染性等の電
子写真感光体性能に優れ、しかも透光性にも優れるため
、機能分離型感光体としての積層構造を形成する場合に
おいても極めて高い自由度が得られるものである。また
、該電荷発生層は、可視光もしくは半導体レーザー光付
近の波長の光に対して優れた光導電性を有し、しかも従
来のアモルファスシリコン感光体に比べて極めて薄い膜
厚で、その機能を活かす事ができるものである。
本発明においては、a −C膜を形成するために有機化
合物ガス、特に炭化水素ガスが用いられる。
該炭化水素における相状態は常温常圧において必ずしも
気相である必要はなく、加熱或は減圧等により溶融、蒸
発、昇華等を経て気化しうるものであれば、液相でも固
相でも使用可能である。
使用可能な炭化水素には種類が多いが、飽和炭化水素と
しては、例えば、メタン、エタン、プロパン、ブタン、
ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、テ
°カン、ウンデカン、ドデカン、トリデカン、テトラデ
カン、ペンタデカン、ヘキサデカン、ヘプタデカン、オ
クタコサン、ノナデカン、エイコサン、ヘンエイコサン
、トコサン、トリコサン、テトラコサン、ペンタコサン
、ヘキサコサン、ヘプタコサン、オクタコサン、ノナコ
サン、トリアコンタン、トドリアコンタン、ペンタトリ
アコンタン、等のノルマルパラフィン並びに、イソブタ
ン、イソペンタン、ネオペンタン、イソヘキサン、ネオ
ヘキサン、2.3−ジメチルブタン、2−メチルヘキサ
ン、3−エチルペンタン、2.2−ジメチルペンタン、
2,4−ジメチルペンタン、3,3−ジメチルペンタン
、トリブタン、2−メチルへブタン、3−メチルへブタ
ン、2,2−ジメチルヘキサン、2,2.5−ジメチル
ヘキサン、2,2.3−)ジメチルペンタン、2,2.
4−トリメチルペンタン、2.3゜3−トリメチルペン
タン、2.3.4−トリメチルペンタン、イソナノン、
等のイソパラフィン、等が用いられる。不飽和炭化水素
としては、例えば、エチレン、プロピレン、イソブチレ
ン、1−ブテン、2−ブテン、1−ペンテン、2−ペン
テン、2−メチル−1−ブテン、3−メチル−1−ブテ
ン、2−メチル−2−ブテン、1−ヘキセン、テトラメ
チルエチレン、l−ヘプテン、1−オクテン、1−ノネ
ン、1−デセン、等のオレフィン、並びに、アレン、メ
チルアレン、ブタジェン、ペンタジェン、ヘキサジエン
、シクロペンタジェン、等のジオレフィン、並びに、オ
シメン、アロオシメン、ミルセン、ヘキサトリエン、等
のトリオレフイン、並びに、アセチレン、ブタジイン%
113−ペンタジイン、2.4−へキサジイン、メチル
アセチレン、1−ブチン、2−ブチン、1−ペンチン、
1−ヘキシン、1−ヘプチン、1−オクチン、1−ノニ
ン、1−デシン、等が用いられる。
脂環式炭化水素としては、例えば、シクロプロパン、シ
クロブタン、シクロペンタン、シクロヘキサン、シクロ
へブタン、シクロオクタン、シクロノナン、シクロデカ
ン、シクロウンデカン、シクロトチ”カン、シクロトリ
デカン、シクロテトラデカン、シクロペンタデカン、シ
クロヘキサデカン、等のシクロパラフィン並びに、シク
ロプロペン、シクロブテン、シクロペンテン、シクロヘ
キセン、シクロヘプテン、シクロオクテン、シクロノネ
ン、シクロデセン、等のシクロオレフィン並びに、リモ
ネン、テルピノレン、フエランドレン、シルベストレン
、ツエン、カレン、ピネン、ボルニレン、カンフエン、
フェンチェン、シクロウンデカン、トリシクレン、ビサ
ボレン、シンギベレン、クルクメン、フムレン、カジネ
ンセスキベニヘン、セリネン、カリオフィレン、サンタ
レン、セドレン、カンホレン、フィロクラテン、ボドヵ
ルブレン、ミレン、等のテルペン並びに、ステロイド等
が用いられる。芳香族炭化水素としては、例えば、ベン
ゼン、トルエン、キシレン、ヘミメンテン、プソイドク
メン、メシチレン、プレニテン、イソジュレン、ジュレ
ン、ペンタメチルベンゼン、ヘキサメチルベンゼン、エ
チルベンゼン、プロピルベンゼン、クメン、スチレン、
ビフェニル、テルフェニル、ジフェニルメタン、トリフ
ェニルメタン、ジベンジル、スチルベン、インデン、ナ
フタリン、テトラリン、アントラセン、フェナントレン
、等が用いられる。
さらに、炭化水素以外でも、例えば、アルコール類、ケ
トン類、エーテル類、エステル類、等炭素と成りうる化
合物であれば使用可能である。
本発明におけるa −C膜中に含まれる水素原子の量は
グロー放電を用いるというその製造面から必然的に定ま
るが、炭素原子と水素原子の総量に対して、概ね30乃
至60原子%含有される。ここで、炭素原子並びに水素
原子の膜中含有量は、有機元素分析の常法、例えばON
H分析を用いる事により知る事ができる。
本発明におけるa −C膜中に含まれる水素原子の量は
、成膜装置の形態並びに成膜時の条件により変化するが
、例えば、基板温度を高くする、圧力を低くする、原料
炭化水素ガスの希釈率を低くする、印加電力を高くする
、交番電界の周波数を低くする、交番電界に重畳せしめ
た直流電界強度を高くする、等の手段、或は、これらの
組合せ操作は、含有水素量を低くする効果を有する。
本発明における電荷輸送層としてのa −C膜の膜厚は
、通常の電子写真プロセスで用いるためには、5乃至5
0μm1特に7乃至20μmが適当であり、5μmより
薄いと、帯電電位が低いため充分な複写画像濃度を得る
事ができない。また、50μmより厚いと、生産性の面
で好ましくない。
このa−C膜は、高透光性、高暗抵抗を有するとともに
電荷輸送性に富み、膜厚を上記の様に5μm以上として
もキャリアはトラップきれる事無く輸送され明減衰に寄
与する事が可能である。
本発明における原料気体からa −C膜を形成する過程
としては、原料気体が、直流、低周波、高周波、或はマ
イクロ波等を用いたプラズマ法により生成されるプラズ
マ状態を経て形成される方法が最も好ましいが、その他
にも、イオン化蒸着法、或はイオンビーム蒸着法等によ
り生成されるイオン状態を経て形成されてもよいし、真
空蒸着法、或はスパッタリング法等により生成される中
性粒子から形成されてもよいし、ざらには、これらの組
み合わせにより形成されてもよい。
本発明においては炭化水素の他に、a −C膜中に少な
くとも窒素原子を添加するための原料として、窒素化合
物が用いられる。該窒素化合物における相状態は常温常
圧において必ずしも気相である必要はなく、加熱或は減
圧等により溶融、蒸発、昇華等を経て気化しうるもので
あれば、液相でも固相でも使用可能である。窒素化合物
としては、例えば、窒素、アンモニア等の無機化合物、
アミノ基(−NH2) 、シアノ基(−CN)等の官能
基を有する有機化合物、並びに窒素を含む複素環等が用
いられる。
使用可能な有機化合物には種類が多いが、アミノ基を有
する有機化合物としては、例えば、メチルアミン、エチ
ルアミン、プロピルアミン、ブチルアミン、アミルアミ
ン、ヘキシルアミン、ヘプチルアミン、オクチルアミン
、ノニルアミン、デシルアイミン、ウンデシルアミン、
ドデシルアミン、トリデシルアミン、テトラデシルアミ
ン、ペンタデシルアミン、セチルアミン、ジメチルアミ
ン、ジエチルアミン、ジプロピルアミン、ジブチルアミ
ン、シアミルアミン、トリメチルアミン、トリエチルア
ミン、トリプロピルアミン、トリブチルアミン、トリア
ミルアミン、アリルアミン、ジアリルアミン、トリアリ
ルアミン、シクロプロピルアミン、シクロブチルアミン
、シクロペンチルアミン、シクロヘキシルアミン、アニ
リン、メチルアニリン、ジメチルアニリン、エチルアニ
リン、ジエチルアニリン、トルイジン、ベンジルアミン
、ジベンジルアミン、トリベンジルアミン、ジフェニル
アミン、トリフェニルアミン、ナフチルアミン、エチレ
ンジアミン、トリメチレンジアミン、テトラメチレンジ
アミン、ペンタメチレンジアミン、ヘキサメチレンジア
ミン、ジアミノへブタン、ジアミノオクタン、ジアミノ
ノナン、ジアミノデカン、フェニレンジアミン、等が用
いられる。シアノ基を有する有機化合物としては、例え
ば、アセトニトリル、プロピオニトリル、ブチロニトリ
ル、バレロニトリル、カプロニトリル、エナントニトリ
ル、カプリロニトリル、フエラルゴンニトリル、カブリ
ニトリル、ラウロニトリル、パルミトニトリル、ステア
ロニトリル、クロトンニトリル、マロンニトリル、ステ
アロニトリル、ダルタルニトリル、アジポニトリル、ベ
ンゾニトリル、トルニトリル、シアン化ベンジルケイ皮
酸ニトリル、ナフトニトリル、シアンピリジン、等が用
いられる。複素環化合物としては、例えば、ビロール、
ビロリン、ピロリジン、オキサゾール、チアゾール、イ
ミダゾール、イミダシリン、イミダゾリジン、ピラゾー
ル、ピラゾリン、ピラゾリジン、トリアゾール、テトラ
ゾール、ピリジン、ピペリジン、オキサジン、モルホリ
ン、チアジン、ピリダジン、ピリミジン、ピラジン、ピ
ペラジン、トリアジン、インドール、インドリン、ベン
ゾオキサゾール、インダゾール、ベンゾイミダゾール、
キノリン、シンノリン、フタラジン、フタロシアニン、
キナゾリン、キンキサリン、カルバゾール、アクリジン
、フエナントロリン、フェナジン、フェノキサジン、イ
ンドリジン、キノリジン、キヌクリジン、ナフチリジン
、プリン、プテリジン、アジリジン、アゼピン、オキサ
ジアジン、ジチアジン、ベンゾキノリン、イミダゾチア
ゾール、等が用いられる。
本発明において化学的修飾物質として含有される窒素原
子の量は、全構成原子に対して5.0原子%以下である
。ここで、窒素原子の膜中含有量は、元素分析の常法、
例えばオージェ分析により知る事ができる。窒素原子を
含まない場合には、好適な輸送性が確保されず、成膜速
度が遅く、更に、成膜後の経時劣化を招きやすくなる。
一方、窒素原子の量が5.0原子%を越える場合には、
少量の添加では好適な輸送性を保証していた窒素原子が
、逆に膜の低抵抗化を招く作用を示し、帯電能が低下し
てしまう。従って、本発明における窒素の添加量範囲は
重要である。
本発明に於いて化学的修飾物質として含有される窒素原
子の量は、主に、プラズマ反応を行なう反応室への前述
の窒素化合物の導入量を増減することにより制御するこ
とが可能である。窒素化合物の導入量を増大させれば、
本発明によるa−C膜中への窒素原子の添加量を高(す
ることが可能であり、逆に窒素化合物の導入量を減少き
せれば、本発明によるa −C膜中への窒素原子の添加
量を低くすることが可能である。
本発明においては、a−Si膜を形成するためにシラン
ガス、ジシランガス、或は、弗化シランガスが用いられ
る。また、化学的修飾物質として燐原子或は硼素原子を
膜中に含有せしめるための。
原料ガスとして、ホスフィンガス或はジボランガスが用
いられる。また、ゲルマニウム原子を含有させるために
、ゲルマンガスが用いられる。
本発明におけるa−Si膜中に含有されるゲルマニウム
原子の含有量は、シリコン原子とゲルマニウム原子との
総和に対して、30原子%以下が好ましい。ここで、ゲ
ルマニウム原子及びシリコン原子の含有率は、元素分析
の常法、例えばオージェ分析により知る事ができる。ゲ
ルマニウム原子の含有量は、膜形成時に流入するゲルマ
ンガスの流量を増加する事により高くなる。ゲルマニウ
ム原子の含有量が高くなるにつれ本発明感光体の長波長
感度は向上し、短波長領域から長波長領域にまで幅広く
露光源が選択され得るようになり好ましいが、ゲルマニ
ウム原子が30原子%より多く含有きれると帯電能の低
下を招くため、過剰の添加は好ましくない。従って、本
発明におけるa −3i膜中に含有きれるゲルマニウム
原子の含有量は重要である。
本発明において化学的修飾物質として含有きれる燐原子
或は硼素原子の量は、全構成原子に対して20000原
子ppm以下である。ここで燐原子或は硼素原子の膜中
含有量は、元素分析の常法、例えばオージェ分析或はI
MA分析により知る事ができる。燐原子或は硼素原子の
膜中含有量が20000原子ppmより高い場合には、
少量の添加では好適な輸送性、或は、極性制御効果を保
証していた燐原子或は硼素原子が、逆に膜の低抵抗化を
招(作用を示し、帯電能の低下を来たす。従って、本発
明における燐原子或は硼素原子添加量の範囲は重要であ
る。
本発明におけるa−3i膜中に含まれる水素原子或は弗
素原子の量はグロー放電を用いるというその製造面から
必然的に定まるが、シリコン原子と水素原子或はシリコ
ン原子と弗素原子の総量に対して、概ね1o乃至35原
子%含有される。ここで、水素原子或は弗素原子の膜中
含有量は、元素分析の常法、例えばONH分析、オージ
ェ分析等を用いる事により知る事ができる。
本発明における電荷発生層としてのa−Si膜の膜厚は
、通常の電子写真プロセスで用いるためには、0.1乃
至5μmが適当であり、0.1μmより薄いと、光吸収
が不十分となり充分な電荷発生が行なわれなくなり、感
度の低下を招く。また、5μmより厚いと、生産性の面
で好ましくない。このa−Si膜は電荷発生能に富み、
さらに、本発明の最も特徴とするところのa−σ膜との
積層構成において効率よ<a−C膜中に発生キャリアを
注入せしめ、好適な明減衰に寄与する事が可能である。
本発明における原料気体からa−3i膜を形成する過程
は、a−C膜を形成する場合と同様にして行なわれる。
本発明において化学的修飾物質として含有きれる燐原子
或は硼素原子の量は、主に、プラズマ反応を行なう反応
室への前述のホスフィンガス或はジボランガスの導入量
を増減することにより制御することが可能である。ホス
フィンガス或はジボランガスの導入量を増大させれば、
本発明によるa−Si膜中への燐原子或は硼素原子の添
加量を高くすることが可能であり、逆にホスフィンガス
或はジボランガスの導入量を減少させれば、本発明によ
るa−Si膜中への燐原子或は硼素原子の添加量を低く
することが可能である。
本発明における感光体は、電荷発生層と電荷輸送層から
成る機能分離型の構成とするのが最適で、該電荷発生層
と該電荷輸送層の積層構成は、必要に応じて適宜選択す
ることが可能である。
第1図は、その一形態として、導電性基板(1)上に電
荷輸送層(2)と電荷発生層(3)を順次積層してなる
構成を示したものである。第2図は、別の一形態として
、導電性基板(1)上に電荷発主層(3)と電荷輸送層
(2)を順次積層してなる構成を示したものである。第
3図は、別の一形態として、導電性基板(1)上に、電
荷輸送層(2)と電荷発生層(3)と電荷輸送層(2)
を順次積層してなる構成を示したものである。
感光体表面を、例えばコロナ帯電器等により正帯電した
後、画像露光して使用する場合においては、第1図では
電荷発生層(3)で発生した正孔が電荷輸送層(2)中
を導電性基板(1)に向は走行し、第2図では電荷発生
層(3)で発生した電子が電荷輸送層(2)中を感光体
表面に向は走行し、第3図では電荷発生層(3)で発生
した正孔が導電性基板側の電荷輸送層(2)中を導電性
基板(1)に向は走行すると共に、同時に電荷発生層(
3)で発生した電子が表面側の電荷輸送層(2)中を感
光体表面に向は走行し、好適な明減衰に保証された静電
潜像の形成が行なわれる。反対に感光体表面を負帯電し
た後、画像露光して使用する場合においては、電子と正
孔の挙動を入れ代えて、キャリアーの走行性を解すれば
よい。第2図及び第3図では、画像露光用の照射光が電
荷輸送層中を通過する事になるが、本発明による電荷輸
送層は透光性に優れることから、好適な潜像形成を行な
うことが可能である。
第4図は、ざらなる一形態として、導電性基板(1)上
に電荷輸送層(2)と電荷発生層(3)と表面保護層(
4)を順次積層してなる構成を示したものである。即ち
第1図の形態に表面保護層を設けた形態に相当するが、
第1図の形態では、最表面が耐湿性に乏しいa−3i膜
で有ることから、多くの場合実用上の対湿度安定性を確
保するために表面保護層を設けることが好ましい。第2
図及び第3図の構成の場合、最表面が耐久性に優れたa
−C膜であるため表面保護層を設けなくてもよいが、例
えば現像剤の付着による感光体表面の汚れを防止するよ
うな、複写機内の各種エレメントに対する整合性を調整
する目的から、表面保護層を設けることもざらなる一形
態と成りうる。
第5図は、ざらなる一形態として、導電性基板(1)上
に中間層(5)と電荷発生N(3)と電荷輸送層(2)
を順次積層してなる構成を示したものである。即ち第2
図の形態に中間層を設けた形態に相当するが、第2図の
形態では、導電性基板との接合面がa−3i膜である事
から、多くの場合接着性及び注入阻止効果を確保するた
めに中間層を設ける事が好ましい。第1図及び第3図の
構成の場合、導電性基板との接合面が、接着性及び注入
阻止効果に優れた、本発明による電荷輸送層であるため
、中間層を設けなくてもよいが、例えば導電性基板の前
処理方法のような、感光層形成以前の製造工程との整合
性を調整する目的から、中間層を設けることもざらなる
一形態と成りうる。
第6図は、ざらなる一形態として、導電性基板(1)上
に中間層(5)と電荷輸送層(2)と電荷発生層(3)
と表面保護層(4)を順次積層してなる構成を示したも
のである。即ち第1図の形態に中間層と表面保護層を設
けた形態に相当する。
中間層と表面保護層の設置理由は前述と同様であり、従
って第2図及び第3図の構成において中間層と表面保護
層を設けることもざらなる一形態と成りうる。
本発明において中間層と表面保護層は、材料的にも、製
法的にも、特に限定を受けるものではなく所定の目的が
達せられるものであれば、適宜選択することが可能であ
る。本発明によるa−C膜を用いてもよい。但し、用い
る材料が、例えば従来例で述べた如き絶縁性材料である
場合には、残留電位発生の防止のため膜厚は5μm以下
に留める必要がある。
本発明による感光体の電荷輸送層は、気相状態の分子を
減圧下で放電分解し、発生したプラズマ雰囲気中に含ま
れる活性中性種あるいは荷電種を基板上に拡散、電気力
、あるいは磁気力等により誘導し、基板上での■結合反
応により固相として堆積させる、所謂プラズマ重合反応
から生成される事が好ましい。
第7図は本発明に係わる感光体の製造装置を示し、図中
(701)〜(706)は常温において気相状態にある
原料化合物及びキャリアガスを密封した第1乃至第6タ
ンクで、各々のタンクは第1乃至第6調節弁(707)
〜(712)と第1乃至第6流量制御器(713)〜(
718)に接続きれている。図中(719)〜(721
)は常温において液相または固相状態にある原料化合物
を封入した第1乃至第3容器で、各々の容器は気化のた
め第1乃至第3温調器(722)〜(724)により与
熱可能であり、ざらに各々の容器は第7乃至第9調節弁
(725)〜(727)と第7乃至第9流量制御器(7
28)〜(730)に接続されている。これらのガスは
混合!(731)で混合された後、主管(732)を介
して反応室(733)に送り込まれる。途中の配管は、
常温において液相または固相状態にあった原料化合物が
気化したガスが、途中で凝結しないように、適宜配置さ
れた配管加熱器(734)により、与熱可能とされてい
る。反応室内には接地電極(735)と電力印加電極(
736)が対向して設置され、各々の電極は電極加熱器
(737)により与熱可能ときれている。電力印加電極
(736)には、高周波電力用整合M (738)を介
して高周波電源(739)、低周波電力用整合u (7
40)を介して低周波電源(741)、ローパスフィル
タ(742)を介して直流電源(743)が接続されて
わり、接続選択スイッチ(744)により周波数の異な
る電力が印加可能とされている。反応室(733)内の
圧力は圧力11ilJ御弁(745)により調整可能で
あり、反応室(733)内の減圧は、排気系選択弁(7
46)を介して、拡散ポンプ(747) 、油回転ポン
プ(748) 、或は、冷却除外装置(749) 、メ
カニカルブースターポンプ(750)、油回転ポンプ(
748)により行なわれる。排ガスについては、ざらに
適当な除外装置(753)により安全無害化した後、大
気中に排気きれる。これら排気系配管についても、常温
において液相または固相状態にあった原料化合物が気化
したガスが、途中で凝結しないように、適宜配置された
配管加熱器(734)により、与熱可能ときれている。
反応室(733)も同様の理由から反応室加熱器(75
1)により与熱可能とされ、内部に配された電極上に導
電性基板(752)が設置される。第7図において導電
性基板(752)は接地電極(735)に固定して配き
れているが、電力印加電極(736)に固定して配され
てもよく、さらに双方に配されてもよい。
第8図は本発明に係わる感光体の製造装置の別の一形態
を示し、反応室(833)内部の形態以外は、第7図に
示した本発明に係わる感光体の製造装置と同様であり、
付記された番号は、700番台のものを800番台に置
き換えて解すればよい。第8図において、反応室(83
3)内部には、第7図における接地電極(735)を兼
ねた円筒形の導電性基板(852)が設置され、内側に
は電極加熱器(837)が配きれている。導電性基板(
852)周囲には同じく円筒形状をした電力印加電極(
836)が配され、外側には電極加熱器(837)が配
されている。導電性基板(852)は、外部より駆動モ
ータ(854)を用いて自転可能となっている。
感光体製造に供する反応室は、拡散ポンプにより予め1
0−4乃至1O−6Torr程度にまで減圧し、真空度
の確認と装置内部に吸着したガスの脱着を行なう。同時
に電極加熱器により、電極並びに電極に固定して配きれ
た導電性基板を所定の温度まで昇温する。導電性基板に
は、前述の如き感光体構成の中から所望の構成を得るた
めに、必要であれば、予めアンダーコート層或は電荷発
生層を設けて置いてもよい。アンダーコート層或は電荷
発生層の設置には、本装置を用いてもよいし別装置を用
いてもよい。次いで、第1乃至第6タンク及び第1乃至
第3容器から、原料ガスを適宜第1乃至第9流量制御器
を用いて定流量化しながら反応室内に導入し、圧力調節
弁により反応室内を一定の減圧状態に保つ。ガス流量が
安定化した後、接続選択スイッチにより、例えば高周波
電源を選択し、電力印加電極に高周波電力を投入する。
両電極間には放電が開始され、時間と共に基板上に固相
の膜が形成される。a−SiM或はa−CMは、原料ガ
スを代える事により任意に形成可能である。放電を一旦
停止し、原料ガス組成を変更した後、再び放電を再開す
れば異なる組成の膜を積層する事ができる。また、放電
を持続させながら原料ガス流量だけを徐々に代え、異な
る組成の膜を勾配を持たせながら積層する事も可能であ
る。
反応時間により膜厚を制御し、所定の膜厚並びに積層構
成に達したところで放電を停止し、本発明による感光体
を得る。次いで、第1乃至第9調節弁を閉じ、反応室内
を充分に排気する。ここで所望の感光体構成が得られる
場合には反応室内の真空を破り、反応室より本発明によ
る感光体を取り出す。更に所望の感光体構成において、
電荷発生層或はオーバーコート層が必要とされる場合に
は、そのまま本装置を用いるか、或は同様に一旦真空を
破り取り出して別装置に移してこれらの層を設け、本発
明による感光体を得る。
以下実施例を挙げながら、本発明を説明する。
X旅ガ1 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10=To r r程度の高真
空にした後、第1、第2、及び第3(707,708、
及び709)を解放し、第1タンク(701)より水素
ガス、第2タンク(702)よりエチレンガス、及び第
3タンク(703)より窒素ガスを各々出力圧1.0K
g/cm2の下で第1、第2、及び第3流量制御器(7
13,714、及び715)内へ流入させた。そして各
流量制御器の目盛を調整して、水素ガスの流量を50s
ccrr+、エチレンガスの流量を60secm1及び
窒素ガスの流量を7secmとなるように設定して、途
中混合W(731)を介して、主’I!” (732)
より反応室(733)内へ流入した。
各々の流量が安定した後に、反応室(733)内の圧力
が1.3Torrとなるように圧力調節弁(745)を
調整した。一方、導電性基板(752)としては、樅5
0×横50X厚3mmのアルミニウム基板を用いて、予
め250℃に加熱しておき、ガス流量及び圧力が安定し
た状態で、予め接続選択スイッチ(744)により接続
しておいた高周波電源(739)を投入し、電力印加電
極(736)に200Wattの電力を周波数13゜5
6MHzの下で印加して約8時間40分プラズマ重合反
応を行ない、導電性基板(752)上に厚ざ15μmの
a−C膜を電荷輸送層として形成した。成膜完了後は、
電力印加を停止し、調節弁を閉じ、反応室(733)内
を充分に排気した。
以上のようにして得られたa −C膜につぎ有機元素分
析を行なったところ、含有される水素原子の量は炭素原
子と水素原子の総量に対して39原子%、また、オージ
ェ分析より含有される窒素原子の量は全構成原子に対し
て0.3原子%であった。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708)、及び第6調節弁(712)を解
放し、第1タンク(701)から水素ガス、第2タンク
(702)からゲルマンガス、及び第6タンク(706
)からシランガスを、出力圧IKg/cm2の下で第1
、第2、及び第6流量制御!(713,714、及び7
18)内へ流入させた。同時に、第4調節弁(710)
を解放し、第4タンク(704)より水素ガスで110
0ppに希釈されたジボランガスを、出力圧1゜5Kg
/cm2の下で第4流量制御器(716)内へ、流入さ
せた。各流量制御器の目盛を調整して水素ガスの流量を
200secm、ゲルマンガスの流量を6secm、シ
ランガスの流量を101005e、水素ガスで1100
ppに希釈されたジボランガスの流量を10105eに
設定し、反応室(733)内に流入させた。各々の流量
が安定した後に、反応室(733)内の圧力が1.0T
orrとなるように圧力調節弁(745)を調整した。
一方、a−C膜が形成されている導電性基板(752)
は、240℃に加熱しておき、ガス流量及び圧力が安定
した状態で、高周波電源(739)より周波数13.5
6MHzの下で電力印加電極(736)に40Watt
の電力を印加し、グロー放電を発生させた。この放電を
5分間貸ない、厚き0.3μmの電荷発生層を得た。
得られたa−5iffにつき、金属中ONH分析(板場
製作所製EMGA−1300) 、オージェ分析、及び
IMA分析を行なったところ、含有される水素原子は全
構成原子に対して18原子%、硼素原子は10原子pp
m、ゲルマニウム原子は9.7原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一490V (+480V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は32V/μm(31V/μm)と極めて高く
、このことから充分な帯電性能を有する事が理解された
また、暗中にてVmaxからVmaxの90%の表面電
位にまで#減衰するのに要した時間は約12秒(約13
秒)であり、このことから充分な電荷保持性能を有する
事が理Mきれた。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰きせたとこる必要とされた光量は1.3ルツク
ス・秒(1,2ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。また、最高帯
電電位に初期帯電した後、半導体レーザー光(発光波長
780 nm)を用いて最高帯電電位の20%の表面電
位にまで明減衰きせたとこる必要とされた光量は8.8
erg/cm2(7,4erg/cm2)であり、この
ことから充分な長波長光感度性能を有する事が理解され
た。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
X塵透旦 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−’To r r程度の高
真空にした後、第1、第2、及び第3調節弁(707,
708、及び709ンを解放し、第1タンク(701)
より水素ガス、第2タンク(702)よりアセチレンガ
ス、及び第3タンク(703)より窒素ガスを各々出力
圧1.0Kg/cm2の下で第1、第2、及び第3流量
Mm器(713,714、及び715)内へ流入させた
そして各流m制御器の目盛を調整して、水素ガスの流量
を80secm、アセチレンガスの流量を40secm
s及び窒素ガスの流量が18secmとなるように設定
して、途中混合器(731)を介して、主! (732
)より反応室(733)内へ流入した。各々の流量が安
定した後に、反応室(733)内の圧力がl 5Tor
rとなるように圧力調節弁(745)を調整した。一方
、導電性基板(752)としては、*50X横50X厚
3mmのアルミニウム基板を用いて、予め20O℃に加
熱しておき、ガス流量及び圧力が安定した状態で、予め
接続選択スイッチ(744)により接続しておいた高眉
波電源(739)を投入し、電力印加Wfi(736)
に200Wattの電力を周波数13.56MHzの下
で印加して約4時開平プラズマ重合反応を行ない、導電
性基板(752)上に厚さ15μmのa−C膜を電荷輸
送層として形成した。成膜完了後は、電力印加を停止し
、調節弁を閉じ、反応室(733)内を充分に排気した
以上のようにして得られたa −C1ljにつき有機元
素分析を行なったところ、含有きれる水素原子の量は炭
素原子と水素原子の総量に対して30原子%、また、オ
ージェ分析より含有される窒素原子の量は全構成原子に
対して1.4原子%であった。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708) 、及び第6調節弁(712)を
解放し、第1タンク(701)から水素ガス、第2タン
ク(702)からゲルマンガス、及び第6タンク(70
6)からシランガスを、出力圧IKg/am2の下で第
1、及び第6流量制都器(713、及び718)内へ流
入させた。同時に、第4調節弁(710)を解放し、第
4タンク(704)より水素ガスで1100ppに希釈
されたホスフィンガスを、出力圧1.5Kg/cm2の
下で第4流量制御器(716)内へ、流入させた。各流
量1ti11御器の目盛を調整して水素ガスの流量を2
00secm、ゲルマンガスの流量を6secm1シラ
ンガスの流量を101005e。
水素ガスで1100ppに希釈されたホスフィンガスの
流量を10105eに設定し、反応室(733)内に流
入させた。各々の流量が安定した後に、反応室(733
)内の圧力が0.8Torrとなるように圧力調節弁(
745)を調整した。
一方、a−C膜が形成されている導電性基板(752)
は、250℃に加熱しておき、ガス流量及び圧力が安定
した状態で、高周波電源(739)より周波数13.5
6MHzの下で電力印加電極(736)に40Watt
の電力を印加し、グロー放電を発生させた。この放電を
5分間行ない、厚ざ0.3μmの電荷発生層を得た。
得られたa−Si膜につき、金属中ONH分析(板場製
作所*EMGA−4300) 、オージェ分析、及びI
MA分析を行なったところ、含有きれる水素原子は全構
成原子に対して20原子%、燐原子は11原子ppm5
ゲルマニウム原子は10原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一430V (+650V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は28V/μm(43V/μm)と極めて高く
、このことから充分子帯電性能を有する事が理解きれた
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約2O秒(約31
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯7j1電位に初期帯電し
た後、白色光を泪いて最高帯電電位の20%の表面電位
にまで明減衰させたとこる必要ときれた光量は1.3ル
ツクス・秒(2,フルックス・秒)であり、このことか
ら充分な光感度性能を有する事が理解された。また、最
高帯電電位に初期帯電した後、半導体レーザー光(発光
波長780nm)を用いて最高帯電電位の20%の表面
電位にまで明減衰させたとこる必要とされた光量は9.
5erg/cm2(13,3erg/am2)であり、
このことから充分な長波長光感度性能を有する事が理解
された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
X旅倒旦 本発明に係わる製造装置を用いて、第1図に示す如ざ、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−6To r r程度の高
真空にした後、第3調節弁(709)を解放し、第3タ
ンク(703)より亜酸化窒素ガスを出力圧1.0Kg
/cm2の下で第3流量制御器(715)内へ流入させ
た。同時に、第1容器(719)よりミルセンガスを第
1温調器(722)温度80℃のもとで第7流量制御器
(728)内へ流入きせた。亜酸化窒素ガスの流量を3
8sCCm%及びミルセンガスの流量を18secmと
なるように設定して、途中混合器(731)を介して、
主管(732)より反応室(733)内へ流入した。各
々の流量が安定した後に、反応室(733)内の圧力が
0.9Torrとなるように圧力調節弁(745)を調
整した。一方、導電性基板(752)としては、樅50
×横50X厚3mmのアルミニウム基板を用いて、予め
200℃に加熱しておき、ガス流量及び圧力が安定した
状態で、予め接続選択スイッチ(744)により接続し
ておいた低周波電源(741)を投入し、電力印加電極
(736)に150Wattの電力を周波数30KHz
の下で印加して約2時間40分プラズマ重合反応を行な
い、導電性基板(752)上に厚ざ15μmのa−C膜
を電荷輸送層として形成した。成膜完了後は、電力印加
を停止し、調節弁を閉じ、反応室(733)内を充分に
排気した。
以上のようにして得られたa −C膜につき有機元素分
析行なったところ、含有される水素原子の量は炭素原子
と水素原子の!f!3J!iに対して47原子%であっ
た。また、オージェ分析より含有される窒素原子の量は
全構成原子に対して2.1原子%であった。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(7o7)、
第2調節弁(708)、第3調節弁(709)、及び第
6調節弁(712)を解放し、第1タンク(701)か
ら水素ガス、第2タンク(702)から四弗化シランガ
ス、第3タンク(702)からゲルマンガス、及び第6
タンク(706)からシランガスを、出力圧IKg/c
m2の下で第1、第2、第3、及び第6流量制vS器(
713,714,715、及び718)内へ流入させな
。同時に、第4調節弁(710)を解放し、第4タンク
(704)より水素ガスで1100ppに希釈されたジ
ボランガスを、出力圧1゜5Kg/cm2の下で第4流
量制御器(716)内へ、流入きせた。各流量制御器の
目盛を調整して水素ガスの流量を200secm、四弗
化シランガスの流量を50secm、ゲルマンガスの流
量を6secm、シランガスの流量を50secm。
及び水素ガスで1100ppに希釈されたジボランガス
の流量を10105eとなるように設定し、反応室(7
33)内に流入させた。各々の流量が安定した後に、反
応室(733)内の圧力が0゜9Torrとなるように
圧力調節弁(745)を調整した。一方、a −CWi
が形成されている導電性基板(752)は、230℃に
加熱しておぎ、ガス流量及び圧力が安定した状態で、高
周波電源(739)より周波数13.56MHzの下で
電力印加電極(736)に35Wattの電力を印加し
、グロー放電を発生させた。この放電を5分間行ない、
厚さ0.3μmの電荷発生層を得た。
得られたa−3t膜につき、金属中○NH分析(板場製
作所!!!EMGA−1300) 、オージェ分析、及
びIMA分析を行なったところ、含有きれる水素原子は
全構成原子に対して24原子%、硼素原子は10原子p
pm、弗素原子は5原子%、ゲルマニウム原子は10.
5原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯74電位は一700V (+720V)で有り、即ち
、全感光体膜厚が15゜3μmであることから1μm当
りの帯電能は46■/μm(47V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解きれ
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約35秒(約43
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要ときれた光量は3.8ルツク
ス・秒(3,6ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
実旅広丘 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの頭に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−8T o r r程度の
高真空にした後、第1、第2、及び第3調節弁(707
,708、及び709)を解放し、第1タンク(701
)より水素ガス、第2タンク(702)よりブタジェン
ガス、及び第3タンク(703)よりアンモニアガスを
各々出力圧1゜0Kg/cm2の下で第1、第2、及び
第3流量制御器(713,714、及び715)内へ流
入させな。水素ガスの流量を40secm、ブタジェン
ガスの流量を60secm、及びアンモニアガスの流量
を20secmとなるように設定して、途中混合器(7
31)を介して、主管(732)より反応室(733)
内へ流入した。各々の流量が安定した後に、反応室(7
33)内の圧力が1゜5Torrとなるように圧力調節
弁(745)を調整した。一方、導電性基板(752)
としては、縦50X横50X厚3mmのアルミニウム基
板を月いて、予め200℃に加熱しておき、ガス流量及
び圧力が安定した状態で、予め接続選択スイッチ(74
4)により接続しておいた低周波電源(741)を投入
し、電力印加電極(736)に120Wattの電力を
周波数400KHzの下で印加して約30分間プラズマ
重合反応を行ない、導電性基板(752)上に厚ざ15
μmのa −C膜を電荷輸送層として形成した。成膜完
了後は、電力印加を停止し、調節弁を閉じ、反応室(7
33)内を充分に排気した。
以上のようにして得られたa−C膜につき有機元素分析
を行なったところ、含有される水素原子の量は炭素原子
と水素原子の総量に対して55原子%、また、オージェ
分析より含有される窒素原子の量は全構成原子に対して
4.8原子%であった。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708)、第3調節弁(709)、及び第
6調節弁(712)を解放し、第1タンク(701)か
ら水素ガス、第2タンク(702)から四弗化シランガ
ス、第3タンク(703)からゲルマンガス、及び第6
タンク(706)からシランガスを、出力圧IKg/c
m2の下で第1、第2、第3、及び第6流量制御器(7
13,714,715、及び718)内へ流入させた。
同時に、第4調節弁(710)を解放し、第4タンク(
704)より水素ガスで1100ppに希釈されたホス
フィンガスを、出力圧1゜5Kg/cm2の下で第4流
量制御器(716)内へ流入させた。各流量制都藩の目
盛を調整して水素ガスの流量を200secm、ゲルマ
ンガスの流量を6secm、四弗化シランガスの流量を
50secm、シランガスの流量を503 CCm %
水素ガスで1100ppに希釈されたホスフィンガスの
流量を10105eに設定し、反応室(733)内に流
入させた。各々の流量が安定した後に、反応室(733
)内の圧力が0.8Torrとなるように圧力調節弁(
745)を調整した。
一方、a−C膜が形成きれている導電性基板(752)
は、240℃に加熱しておき、ガス流量及び圧力が安定
した状態で、高周波電源(739)より周波数13.5
6MHzの下で電力印加電極(736)に40Watt
の電力を印加し、グロー放電を発生させた。この放電を
5分間行ない、厚ざ0.3μmの電荷発生層を得た。
得られたa−Si膜につき、金属中○NH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して26原子%、燐原子は13原子ppm、
弗素原子は5.6原子%、ゲルマニウム原子は9.8原
子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一720V (+940V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は47V/μm(61V/μm)と極めて高く
、このことから充分な帯電性能を有する事が理解された
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約35秒(約48
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は5.6ルツク
ス・秒(12,フルックス・秒)であり、このことから
充分な光感度性能を有する事が理解きれた。
以上より、本例に示した本発明による感光体は、′感光
体として優れた性能を有するものである事が理Nされる
。また、この感光体に対して常用のカールソンプロセス
の中で、作像して転写したところ、鮮明な画像が得られ
た。
大施透互 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−6To r r程度の高
真空にした後、第1、第2、及び第3調節弁(707,
708、及び709)を解放し、第1タンク(70f 
)より水素ガス、第2タンク(702)よりブタジイン
ガス、及び第3タンク(703)より窒素ガスを各々出
力圧1.0Kg/cm2の下で第1、第2、及び第3流
量制御器(713,714、及び715)内へ流入させ
な。
水素ガスの流量を70sccmsブタジインガスの流量
を40sccms及び窒素ガスの流量を20secmと
なるように設定して、途中混合器(731)を介して、
主管(732)より反応室(733)内へ流入した。各
々の流量が安定した後に、反応室(733)内の圧力が
1.27orrとなるように圧力調節弁(745)を調
整した。
一方、導電性基板(752)としては、樅50×m50
X厚3mmのアルミニウム基板を用いて、予め170℃
に加熱しておき、ガス流量及び圧力が安定した状態で、
予め接続選択スイッチ(744)により接続しておいた
低周波電源(741)を投入し、電力印加電極(736
)に140Wa11の電力を周波数500KHzの下で
印加して約26分間プラズマ重合反応を行ない、導電性
基板(752)上に厚ざ15μmのa−C膜を電荷輸送
層として形成した。成膜完了後は、電力印加を停止し、
調節弁を閉じ、反応室(733)内を充分に排気した。
以上のようにして得られたa −C膜につぎ有機元素分
析を行なったところ、含有される水素原子の量は炭素原
子と水素原子の総量に対して55原子%、また、オージ
ェ分析より含有きれる窒素原子の量は全構成原子に対し
て3.7原子%であった。
電荷発生層形成工程: 次いで、実施例1と同様にして本発明による感光体の電
荷発生層を形成した。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでしよ、正帯電時の測定値を括弧内に示すが、最
高帯電電位は一690V (+670V)で有り、即ち
、全感光体膜厚が15゜3μmであることから1μm当
りの帯電能は45V/μm (44V/μm)と極めて
高く、このことから充分な帯電性能を有する事が理解さ
れた。
また、暗中にてVmaxからVmaXの90%の表面電
位にまで暗減衰するのに要した時間は約39秒(約47
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は4.1ルツク
ス・秒(3,8ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解きれる。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
【図面の簡単な説明】
第1図乃至第6図は本発明感光体の構成を示す図面、第
7図乃至第8図は本発明に係わる感光体の製造装置を示
す図面である。 出願人 ミノルタカメラ株式会社 第1図 第2図 第3図  第4図 第5図  第6図 手続補正書 昭和62年10月21日

Claims (1)

    【特許請求の範囲】
  1. 電荷発生層と電荷輸送層とを有する機能分離型感光体に
    おいて、該電荷輸送層は少なくとも窒素原子を含有して
    なる水素化アモルファスカーボン膜であり、かつ、該電
    荷発生層は燐原子及び硼素原子のうち少なくとも一方を
    含有してなる水素化アモルファスシリコンゲルマニウム
    膜或は燐原子及び硼素原子のうち少なくとも一方を含有
    してなる弗素化アモルファスシリコンゲルマニウム膜で
    あることを特徴とする感光体。
JP22937886A 1986-09-26 1986-09-26 感光体 Pending JPS6381472A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22937886A JPS6381472A (ja) 1986-09-26 1986-09-26 感光体
EP87113882A EP0261653A3 (en) 1986-09-26 1987-09-23 Photosensitive member comprising charge generating layer and charge transporting layer
US07/101,286 US4868076A (en) 1986-09-26 1987-09-25 Photosensitive member comprising charge generating layer and charge transporting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22937886A JPS6381472A (ja) 1986-09-26 1986-09-26 感光体

Publications (1)

Publication Number Publication Date
JPS6381472A true JPS6381472A (ja) 1988-04-12

Family

ID=16891237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22937886A Pending JPS6381472A (ja) 1986-09-26 1986-09-26 感光体

Country Status (1)

Country Link
JP (1) JPS6381472A (ja)

Similar Documents

Publication Publication Date Title
JPS6381472A (ja) 感光体
JPS6382470A (ja) 感光体
JPS6382466A (ja) 感光体
JPS6381456A (ja) 感光体
JPS6381452A (ja) 感光体
JPS6382427A (ja) 感光体
JPS6382481A (ja) 感光体
JPS6381476A (ja) 感光体
JPS6382432A (ja) 感光体
JPS6381448A (ja) 感光体
JPS6382439A (ja) 感光体
JPS6381460A (ja) 感光体
JPS6382474A (ja) 感光体
JPS6382462A (ja) 感光体
JPS6382446A (ja) 感光体
JPS6381464A (ja) 感光体
JPS6381489A (ja) 感光体
JPS6381461A (ja) 感光体
JPS6382460A (ja) 感光体
JPS6382453A (ja) 感光体
JPS6382488A (ja) 感光体
JPS6382477A (ja) 感光体
JPS6382486A (ja) 感光体
JPS6382451A (ja) 感光体
JPS6382425A (ja) 感光体