JPS6380767A - Method for controlling circulating current type cycloconverter - Google Patents

Method for controlling circulating current type cycloconverter

Info

Publication number
JPS6380767A
JPS6380767A JP22665786A JP22665786A JPS6380767A JP S6380767 A JPS6380767 A JP S6380767A JP 22665786 A JP22665786 A JP 22665786A JP 22665786 A JP22665786 A JP 22665786A JP S6380767 A JPS6380767 A JP S6380767A
Authority
JP
Japan
Prior art keywords
current
circulating current
load
load current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22665786A
Other languages
Japanese (ja)
Other versions
JP2598635B2 (en
Inventor
Junichi Takahashi
潤一 高橋
Mitsugi Matsutake
貢 松竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61226657A priority Critical patent/JP2598635B2/en
Publication of JPS6380767A publication Critical patent/JPS6380767A/en
Application granted granted Critical
Publication of JP2598635B2 publication Critical patent/JP2598635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve a power factor by feeding a flat circulating current at a rated load current or smaller, and feeding a completely circulating current proportional to the load current up to the maximum load at the time of the maximum overload. CONSTITUTION:A circulating current type cycloconverter is composed of positive and negative converters 2, 3 and a DC reactor 4 with an intermediate tape, which is connected to one phase of an AC motor 5. A controller is composed of a load current controller 7, a circulating current controller 8, and a DC reactor voltage drop compensator 9. A load current command and a detection signal are input to the controller 7, a voltage command signal is output from its deviation, and a voltage command for feeding a circulating current is obtained by the addition 10 of the output of the controller 8 and the output of the compensator 9. Thus, a flat circulating current is fed at rated load current or lower, fed proportionally to the load current from the rated load to the maximum overload, and a completely circulating current is fed at the time of the maximum overload.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘導電導機等の交流電動機に可変周波数の交
流電力を供給するサイクロコンバータに係り、特に正側
変換器と負側変換器との間に循環電流を流す循環電流形
サイクロコンバータの制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cycloconverter that supplies variable frequency AC power to an AC motor such as an induction machine, and particularly relates to a cycloconverter that supplies variable frequency AC power to an AC motor such as an induction machine, and particularly to a cycloconverter that supplies variable frequency AC power to an AC motor such as an induction machine. The present invention relates to a method for controlling a circulating current type cycloconverter in which a circulating current is caused to flow during the period.

〔従来の技術〕[Conventional technology]

交流電動機を可変速駆動するために、出力周波数の上昇
が可能で、かつ、電動機のトルクリップルの発生が少な
いという利点を有する循環電流形サイクロコンバータの
適用について種々の検討が行なわれている。
In order to drive an AC motor at variable speed, various studies have been conducted on the application of a circulating current type cycloconverter, which has the advantage of being able to increase the output frequency and causing less torque ripple in the motor.

この循環電流形サイクロコンバータは上記の利点を有す
る反面、循環電流はすべて無効分となるために電源の力
率が低下し、また、循環電流と負荷電流は正側と負側の
両変換器間に介挿された直流リアクトル(DCL)を共
有する形で流れるために負荷電流の周波数および大きさ
に影響されて循環電流が大きく変動する欠点があり、そ
の結果、正側および負側の変換器(例えば、サイリスタ
)や電源変圧器の容量を増加しなればならない。
Although this circulating current type cycloconverter has the above advantages, the power factor of the power supply decreases because all of the circulating current becomes a reactive component, and the circulating current and load current are distributed between the positive and negative side converters. Since the circulating current flows through a shared DC reactor (DCL) inserted in the converter, there is a drawback that the circulating current fluctuates greatly depending on the frequency and magnitude of the load current. (e.g. thyristors) and power transformers must be increased in capacity.

そこで、従来では、循環電流が負荷電流の影響を受けて
変動するのを補償する方法として、電気学会論文誌59
−810 (1984年2月)における「非干渉制御理
論を適用した循環電流制御法の検討」と題する文献に開
示された補償法が提案されている。ここに示された非干
渉化方法によれば、循環電流をフラットで小さくでき、
また、コンバータおよび電源変圧器容量を小さくするこ
とができる。
Therefore, conventionally, as a method to compensate for fluctuations in the circulating current due to the influence of the load current,
A compensation method disclosed in a document entitled "Study of Circulating Current Control Method Applying Non-Interference Control Theory" in JP-810 (February 1984) has been proposed. According to the deinterference method shown here, the circulating current can be flat and small,
Additionally, the converter and power transformer capacity can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、非干渉化制御により循環電流をフラット
にするためには、負荷電流により、直流リアクトルに発
生する電圧降下分を補償するような電圧を変換器より加
えてやる必要があり、この方法では、電源変圧器電圧を
高くすることになり、結果的には、力率は改善されない
However, in order to flatten the circulating current through non-interference control, it is necessary to apply a voltage from the converter that compensates for the voltage drop that occurs in the DC reactor due to the load current. The power transformer voltage will be increased, and as a result, the power factor will not be improved.

一方、直流リアクトルで発生する電圧降下をなくする方
法としては、交流の負荷電流に応じて凸形の完全循環電
流を流す方法がある。この方法は、フラットな循環電流
を流す方法にくらべ、電源変圧器電圧を低くできるが、
負荷電流に応じて凸形循環電流のPeak値を大きくす
るため、コンバータ容量および電源変換器容量が大きく
なる欠点がある。従来方法における負荷電流に対する変
換器出力電圧(VSCF+)および循環電流(工0)の
変化を第2図、第3図に示す、第2図、第3図における
Vpzt Iozはフラットな循環電流を流す場合、V
px、 Iozは、完全循環電流を流す場合のそれを示
す、フラットな循環電流を流す場合、変換器出力電圧は
、最大過負荷電流(IL、口)にて、第2図V P 1
のごとく最大となるため、電源変圧器の電圧を高くする
必要があり、結果的に定格負荷時の電源力率が低下する
。一方完全循環電流を流す場合、直流リアクトルの相互
インダクタンスにより、直流リアクトル間の電圧はほぼ
零となり、第2図V p 1に示すごとく、変換器出力
電圧は低くできるが、第3図Iozに示すごとく、大き
な循環電流を流すことになり、定格負荷時の電源力率が
悪くなる。
On the other hand, as a method for eliminating the voltage drop that occurs in a DC reactor, there is a method of flowing a convex complete circulation current in accordance with the AC load current. This method can lower the power transformer voltage compared to the method of flowing a flat circulating current, but
Since the peak value of the convex circulating current is increased according to the load current, there is a drawback that the converter capacity and the power supply converter capacity become large. Figures 2 and 3 show the changes in the converter output voltage (VSCF+) and circulating current (0) with respect to the load current in the conventional method. In case, V
px, Ioz are those for full circulating current; when carrying a flat circulating current, the converter output voltage is at maximum overload current (IL, mouth) as shown in Fig. 2 V P 1
As a result, the voltage of the power transformer must be increased, resulting in a decrease in the power factor of the power supply at rated load. On the other hand, when a complete circulating current is applied, the voltage between the DC reactors becomes almost zero due to the mutual inductance of the DC reactors, and the converter output voltage can be lowered as shown in Figure 2 V p 1, but as shown in Figure 3 Ioz. As a result, a large circulating current will flow, and the power factor of the power supply at rated load will deteriorate.

上記のごとく、従来技術は、最大過負荷時の変換器電圧
について配慮されておらず、結果的には、定格負荷時の
力率が低下する問題があった。
As described above, the conventional technology does not take into consideration the converter voltage at maximum overload, resulting in a problem that the power factor at rated load decreases.

本発明の目的は、定格負荷時の力率を向上させることに
ある。
An object of the present invention is to improve the power factor at rated load.

〔間層点を解決するための手段〕[Means for solving interlayer points]

上記目的は、直流リアクトルを介して正側変換器と、負
側変換器とが逆並列に接続され、前記両変換器間に前記
直流リアクトルを介し、循環電流を流して可変周波数の
交流電力を負荷に供給する循環電流形サイクロコンバー
タを循環電流指令信号、循環電流検出信号、負荷電流指
令信号および負荷電流検出信号に基づいて位相制御する
制御方法において、前記負荷電流検出値が定格値以内の
場合に直流の循環電流を流し、前記負荷電流検出値が過
負荷値である場合に完全循環電流を流し、前記負荷電流
検出値が定格値と過負荷値との中間領域にある場合は循
環電流の大きさを負荷量に応じて比例的に変化させるこ
とにより達成される。
The above purpose is to connect a positive side converter and a negative side converter in antiparallel through a DC reactor, and to flow a circulating current between the two converters through the DC reactor to generate variable frequency AC power. In a control method for phase-controlling a circulating current type cycloconverter supplied to a load based on a circulating current command signal, a circulating current detection signal, a load current command signal, and a load current detection signal, when the detected load current value is within a rated value. A DC circulating current is passed through the circuit, a complete circulating current is passed when the detected load current value is an overload value, and a complete circulating current is passed when the detected load current value is in the intermediate region between the rated value and the overload value. This is achieved by changing the size proportionally depending on the amount of load.

〔作用〕[Effect]

上記本発明によれば、第3図−点鎖線工0δに示すよう
に、定格負荷電流以下ではフラットな循環電流を流し、
定格負荷から最大過荷までは負荷電流に比例して循環電
流を大きくシ、最大過負荷的には、完全循環電流を流す
ことにより変換器出力電圧は、第2図−点鎖線V p 
8に示すような値となり、最大過負荷時は、完全循環電
流を流す方式と同一の低い値いとなり、定格負荷時の力
率を従来のフラット循環電流を流す方式にくらべて向上
させることができる。
According to the present invention, as shown in Figure 3 - dotted chain line 0δ, a flat circulating current flows below the rated load current,
From the rated load to the maximum overload, the circulating current is increased in proportion to the load current, and at the maximum overload, by flowing the complete circulating current, the converter output voltage is as follows: Figure 2 - Dotted chain line V p
The value is as shown in Figure 8, and at maximum overload, it is the same low value as the method that flows a complete circulating current, and the power factor at rated load can be improved compared to the conventional method that flows a flat circulating current. can.

〔実施例〕〔Example〕

次に9本発明の実施例を図面に基づいて説明する。 Next, nine embodiments of the present invention will be described based on the drawings.

第1図に循環電流形サイクロコンバータおよびその制御
装置の構成を示す。
FIG. 1 shows the configuration of a circulating current type cycloconverter and its control device.

皿災晟肌 循環電流形サイクロコンバータは正側コンバータ2.負
側コンバータ3および中間タップは直流リアクトル4か
ら構成され、前記正側及び負側コンバータ2,3は電源
トランス1に接続されている。第1図に示す正側コンバ
ータは一相分を示し、直流リアクトル4の中間タップか
ら交流電動機5の1相に接続される。第1図では、交流
電動機の1相分を等偏口路にて図示している。正側。
The positive circulating current type cycloconverter is the positive side converter 2. The negative side converter 3 and the intermediate tap are composed of a DC reactor 4, and the positive side and negative side converters 2 and 3 are connected to a power transformer 1. The positive side converter shown in FIG. 1 shows one phase, and is connected from the center tap of the DC reactor 4 to one phase of the AC motor 5. In FIG. 1, one phase of the AC motor is illustrated as a path with equal eccentricity. Positive side.

負側コンバータの出力電圧VP 、VNは、位相制御回
路6から与えられるゲートパレス信号にて可変される。
The output voltages VP and VN of the negative side converter are varied by a gate pulse signal given from the phase control circuit 6.

制御回路は、負荷電流制御回路7.循環電流制御回路8
.直流リアクトル電圧降下補償回路9から構成される。
The control circuit includes a load current control circuit 7. Circulating current control circuit 8
.. It is composed of a DC reactor voltage drop compensation circuit 9.

負荷電流制御回路7には、負荷電流指令iム拳と負荷電
流検出器14からの検出信号iしかフィードバック信号
として入力され、その偏差が増幅されて、負荷電流を流
すに必要な電圧指令信号vL―を出力する。
Only the load current command i and the detection signal i from the load current detector 14 are input as feedback signals to the load current control circuit 7, and the deviation thereof is amplified to generate the voltage command signal vL necessary to flow the load current. - is output.

一方、循環電流を流すに必要な電圧指令vo・は。On the other hand, the voltage command vo required to cause the circulating current to flow is.

循環電流制御回路8の出力とDCL電圧降下補償回路9
の出力信号を加算器10にて加算された信号がVQ−と
して出力される。また、循環電流i。
Output of circulating current control circuit 8 and DCL voltage drop compensation circuit 9
A signal obtained by adding the output signals of 1 and 2 in an adder 10 is output as VQ-. Also, the circulating current i.

は、循環電流検出回路15にて、正側コンバータ2の出
力電流検出器16の検出信号iP、負側コンバータ3の
出力電流検出器17の検出信号iN。
are the detection signal iP of the output current detector 16 of the positive side converter 2 and the detection signal iN of the output current detector 17 of the negative side converter 3 in the circulating current detection circuit 15.

および負荷電流検出器14の検出信号iLの各信号より
次の演算を行ない循環電流ioが検出される。
The following calculation is performed on the detection signal iL of the load current detector 14, and the circulating current io is detected.

1o=−((ip+iN)   l  it、I)  
  ・・・(1)DCL電圧降下補償回路9の出力信号
は、負荷電流を微分演算された信号を負荷電流の極性に
応じて切換えられた信号が出力される0位相制制御回路
6の入力信号である正側、負側コンバータ出力電圧指令
VP*、 VN・は、ML・およびVo”の各信号を加
算器11.12および極性反転回路13により次の演算
を行ない作成される。
1o=-((ip+iN) it, I)
(1) The output signal of the DCL voltage drop compensation circuit 9 is the input signal of the 0-phase control circuit 6, which outputs a signal obtained by differentiating the load current and switching the signal according to the polarity of the load current. The positive side and negative side converter output voltage commands VP* and VN· are created by performing the following calculations on the respective signals ML· and Vo'' by the adder 11.12 and the polarity inverting circuit 13.

vp拳= VLI+ VQ幸            
        ”’(2)vN*= −VL*+ V
O*                   ”’(3
)なお、vp・、 VN拳に対する正側、負側変換器出
力電圧vp 、vsの比をK p + K N とする
と、Kp。
VP fist = VLI + VQ Yuki
”'(2) vN*= −VL*+ V
O* ”'(3
) Note that if the ratio of the positive side converter output voltage vp and the negative side converter output voltage vp and vs with respect to vp·, VN fist is K p + K N , then Kp.

KN次の関係式を満足する。Satisfies the KN order relational expression.

KP:  KN              ・・・(
4)これらの関係を整理すると、vp 、VNとML・
KP: KN...(
4) Organizing these relationships, vp, VN and ML・
.

Vo拳の関係は、次式で表わされる。The Vo fist relationship is expressed by the following equation.

2・Kp 2・Kp 以上の回路構成および演算式は従来方式の場合も同様で
ある。
2.Kp 2.Kp The above circuit configuration and calculation formula are the same for the conventional method.

星上末厘五 次に1本発明に関係する循環電流を流すに必要な電圧指
令voltおよび負荷電流を流すに必要な電圧指令vL
拳を求めると次のようになる。
Hoshigami Suerin 5th Edition 1 Voltage command volt necessary to flow a circulating current related to the present invention and voltage command vL necessary to flow a load current
If you ask for a fist, it will look like this:

正側、負側コンバータの出力電圧をVp 、 VNとし
、その出力電流をip 、iNとし、負荷である交流電
動機の端子電圧(相電圧相当)をML、その内部を抵抗
RM 、インダクタンスLM 、逆起電力相当の電圧を
eにとし、負荷電流をiL、直流リアクトルの抵抗と自
己および相互インダクタンスをr、L、Mとすると電圧
方程式は、次のように表わせる。電圧、電流の方向は第
1図に図示する方向をプラスとする。
The output voltages of the positive side and negative side converters are Vp and VN, their output currents are ip and iN, the terminal voltage (equivalent to phase voltage) of the AC motor that is the load is ML, and the inside thereof is resistance RM, inductance LM, and reverse. If the voltage equivalent to the electromotive force is e, the load current is iL, and the resistance and self and mutual inductances of the DC reactor are r, L, and M, the voltage equation can be expressed as follows. Regarding the direction of voltage and current, the direction shown in FIG. 1 is assumed to be positive.

vp=(r+pL) ・ip+PM−is+vL −(
7)vN= −p M−ip−(r + p L) ・
iN+ vt、=(8)vt、=(R+、+ p LL
) 曽ib+ eH・=(9)また、各変換器出力電流
ip 、isは、負荷電流iLの極性に対して次式で表
わされる。
vp=(r+pL) ・ip+PM-is+vL −(
7) vN=-pM-ip-(r+pL)・
iN+vt,=(8)vt,=(R+,+p LL
) Soib+eH.=(9) Also, each converter output current ip, is is expressed by the following equation with respect to the polarity of the load current iL.

it、≧0の場合 1p=it、+io  t  1s=io      
    −(10)it、<Oの場合 1p=io 、1N=−ib+io      −(1
1)従って、(10)、(11)式より次式が得られる
it, if ≧0 then 1p=it, +io t 1s=io
-(10)it, if <O then 1p=io, 1N=-ib+io -(1
1) Therefore, the following equation is obtained from equations (10) and (11).

IP−x  N=  I L ip+ is= l  it、l + 2・io   
     ・・・(12)ここで、(7)、(8)式お
よび(12)式を(5)、(6)式に代入すると、次式
が得られる。
IP-x N= I L ip+ is= l it, l + 2・io
(12) Here, by substituting equations (7), (8) and (12) into equations (5) and (6), the following equation is obtained.

Kp @ vt、*= −(VP+ VN)=−(r十
P(L−M)) ・iL+vb・・・(13) KP e vo拳=−(VP−VN) =−(r+P(L+M)) (lit、l+2・ io)      ・・・(14
)(13)式より、負荷電流iしは、負荷電圧指令vL
*によって制御される。なおりCLの自己および相互イ
ンダクタンスL=Mに選択され、−・r−it、(ML
のため、Kp−VL*4VLとなる。
Kp @ vt, *= -(VP+VN)=-(r1P(L-M)) ・iL+vb...(13) KP evo fist=-(VP-VN) =-(r+P(L+M)) (lit, l+2・io) ... (14
) From equation (13), the load current i is the load voltage command vL
Controlled by *. As a result, the self and mutual inductance of CL is chosen to be L=M, and −・r−it, (ML
Therefore, Kp-VL*4VL.

他方、循環電流ioを流れに必要な電圧指令vo拳は、
(14)式より負荷電流iLの絶対値の微分値と、循環
電流ioの微分値によって決まることになる。
On the other hand, the voltage command vo required for the circulating current io to flow is
From equation (14), it is determined by the differential value of the absolute value of the load current iL and the differential value of the circulating current io.

ここで、本発明においては第4図(b)、(0)に示す
ような部分循環、完全循環電流を流すとすれば、循環電
流ioは次式にて表わされる。
Here, in the present invention, if partial circulation and complete circulation currents as shown in FIGS. 4(b) and (0) are caused to flow, the circulating current io is expressed by the following equation.

、k i o= −(It、p−l  it、l  )  +
  Ioc       −(15)ま ただし、It、p:負荷電流(7)peak値でIt、
p=Ji・ エし I oc :フラットな循環電流を流す値に:負荷電流
ILの大きさに応じて 係数 なお、(15)式のkは、負荷電流の大きさ工しに応じ
て次のように変化させるものとする。
, k io= −(It, pl it, l ) +
Ioc - (15) However, It, p: Load current (7) Peak value It,
p=Ji・I oc : A value that allows a flat circulating current to flow: a coefficient depending on the size of the load current IL. Note that k in equation (15) is determined by the following depending on the size of the load current: It shall be changed as follows.

工し≦定格負荷電流(I Lloo)の場合に=0  
            ・・・(16)IL≧最大過
負荷電流(I t、wax)の場合に=1      
       ・・・(16−2)I bmax> I
 t、> I LIOQの場合工し−IL工00 (15)式を(14)式に代入すると、次式が得られる
= 0 when rated load current (I Lloo)
...(16) = 1 when IL≧maximum overload current (It, wax)
...(16-2)I bmax>I
When t, > I LIOQ, the following equation is obtained by substituting the equation (15) into the equation (14).

Kp−vo* =−(r + P (L +M))x(
1−k)X I iLI +rX(−XIt、p+Ioa)    −(17)(
17)大筒1項は、負荷電流iL (交流電流)の微分
値に(1−k)の係数かがかった信号で、交流成分の電
圧指令に相当し、第2項は、負荷電流の大きさに応じた
信号で直流の電圧降下値(即ち直流成分の電圧指令)と
考えられる。
Kp-vo* =-(r + P (L + M)) x (
1-k)X I iLI +rX(-XIt, p+Ioa) -(17)(
17) The first term of the main tube is a signal obtained by multiplying the differential value of the load current iL (AC current) by a coefficient of (1-k), and corresponds to the voltage command of the AC component, and the second term is the magnitude of the load current. This signal corresponds to the DC voltage drop value (that is, the DC component voltage command).

この第1の実施例においては、(15)式において、k
の値を(16−1)、(16−2)。
In this first embodiment, in equation (15), k
The values of (16-1) and (16-2).

(16−3)式に示すように変化させることにより、第
3図−点座線Io8に示すように、定格負荷電流以下で
はフラットな循環電流を流し、定格負荷から最大過負荷
までは負荷電流に比例して循環電流を大きくし、最大過
負荷時には、完全循環電流を流すこととなる。変換器出
力電圧は、第2図−点鎖線V p sに示すような値と
なり、最大過負荷時は、完全循環電流を流す方式と同一
の低い値となり、定格負荷時の力率を従来のフラット循
環電流を流す方式にくらべて、向上させることができる
By changing as shown in equation (16-3), as shown in Figure 3 - dotted line Io8, a flat circulating current flows below the rated load current, and the load current flows from the rated load to the maximum overload. The circulating current will be increased in proportion to the current, and at maximum overload, the complete circulating current will flow. The converter output voltage has a value as shown in Figure 2 - dotted chain line V p s, and at the maximum overload, it becomes the same low value as in the system where full circulation current flows, and the power factor at rated load is lower than the conventional one. It can be improved compared to the method of flowing flat circulating current.

黒λIL匹 しかしながら、上記の第1の実施例の場合、循環電流i
oを第4図(a)に示すようなフラットな循環電流とす
る場合、同図(b)凸形の部分循環電流を流す場合、同
図(0)完全循環電流を流す場合のごとく、3つのモー
ドをスムーズに切換える必要がある。また、循環電流波
形は第4図(b)、(Q)に示すように交流成分を含ん
だ波形となる。同図凸形波形の周波数は負荷電流(iし
)の周波数の2倍となり従来方式の循環電流制御系(A
CR系)では、ACR系の応答遅れにより思うような凸
形の循環電流が流れなくなる、負荷電流周波数が高い場
合、応答遅れにより、その制御回路出力が逆極性となり
、最悪の場合循環電流のピーク値が増幅され、過電流検
出レベルにまで達する場合もある。
However, in the case of the first embodiment described above, the circulating current i
When o is a flat circulating current as shown in Fig. 4(a), when a convex partial circulating current is passed in Fig. 4(b), and when o is a complete circulating current as shown in Fig. 4(0), It is necessary to smoothly switch between two modes. Further, the circulating current waveform includes an alternating current component as shown in FIGS. 4(b) and 4(Q). The frequency of the convex waveform in the figure is twice the frequency of the load current (i), which is the frequency of the conventional circulating current control system (A
In the CR system, the expected convex circulating current does not flow due to the response delay of the ACR system.When the load current frequency is high, the control circuit output becomes reverse polarity due to the response delay, and in the worst case, the circulating current peaks. The value may be amplified and reach the overcurrent detection level.

そこで、上記問題点を解決するため循環電流を流すに要
する変換器電圧を、直流成分と交流成分に分離して考え
、直流成分の電圧を電流制御回路出力より供給し、交流
成分電圧を直流リアクトルの電圧降下を補償する回路9
より供給しようというものである。この方法によれば、
第4図(b)。
Therefore, in order to solve the above problem, the converter voltage required to cause the circulating current to flow is considered by separating it into a DC component and an AC component, and the DC component voltage is supplied from the current control circuit output, and the AC component voltage is supplied to the DC reactor. Circuit 9 that compensates for the voltage drop in
The idea is to provide more. According to this method,
Figure 4(b).

(c)に示すような交流成分を含んだ循環電流を流す場
合、すなわち、定格電流以上の過負荷電流を流す場合循
環電流ioに負荷電流に所定のゲインを掛算した信号を
加算して直流量の指令およびフィードバック信号を作成
し、前記合成信号を循環電流制御回路に入力するもので
ある。一方、直流リアクトルの電圧降下を補償する回路
の出力は、過負荷量に応じてゲインを下げて行くものと
する6上記方法によれば、フラット循環2部分循環。
When flowing a circulating current containing an AC component as shown in (c), that is, when flowing an overload current that is higher than the rated current, the DC amount is calculated by adding a signal obtained by multiplying the load current by a predetermined gain to the circulating current io. A command and a feedback signal are created, and the combined signal is input to the circulating current control circuit. On the other hand, the gain of the output of the circuit that compensates for the voltage drop of the DC reactor is lowered according to the amount of overload.6 According to the above method, flat circulation and two-part circulation are performed.

完全循環のいずれの方式の電流を流す場合でも、循環電
流制御回路の入力信号は、直流成分量となり、負荷電流
の周波数に無関係となる。このことは、循環電流制御系
(ACR系)の応答遅れと負荷電流の周波数とが無関係
になることを意味しており、前述したような問題を無く
することができる。また、後述するような負荷電流に応
じた係数kにし、循環電流制御回路の指令およびフィー
ドバック量Dc+、の電圧降下補償回路9のゲインを同
時に可変することにより、スムーズな制御モード切換も
可能となる。
No matter which type of complete circulation current is applied, the input signal to the circulating current control circuit is a direct current component and is unrelated to the frequency of the load current. This means that the response delay of the circulating current control system (ACR system) has no relation to the frequency of the load current, and the above-mentioned problem can be eliminated. In addition, smooth control mode switching is also possible by setting the coefficient k according to the load current as described later and simultaneously varying the gain of the voltage drop compensation circuit 9 for the command of the circulating current control circuit and the feedback amount Dc+. .

すなわち、第2の実施例においては(17)大男1項の
交流成分電圧指令を、DCLの電圧降下補償回路9の出
力信号を補正回路20にて(1−k)の係数を掛けて出
力し、第2項の直流成分電圧指令は循環電流制御回路8
の出力信号として供給すべく、電流制御回路8の電流指
令および電流フィードバック信号は、指令補正回路18
.フィードバック補正回路19にて1次のような補正演
算を行なうようにした。
That is, in the second embodiment, the AC component voltage command of (17) Daio 1 term is multiplied by the output signal of the voltage drop compensation circuit 9 of the DCL by the coefficient of (1-k) in the correction circuit 20 and output. However, the DC component voltage command in the second term is the circulating current control circuit 8.
The current command and current feedback signal of the current control circuit 8 are supplied to the command correction circuit 18 in order to be supplied as output signals of the current control circuit 8.
.. The feedback correction circuit 19 performs a first-order correction calculation.

電流指令値=−・k−It、p+ Ioc    ・・
・(18)電流フィードバック値=10十−・k・1i
し1・・・(19) (18)は、部分循環および完全循環電流を流す場合、
その循環電流ioのpeak値の大きさを示し、定常的
には、直流量となる。したがって。
Current command value = -・k−It, p+ Ioc ・・
・(18) Current feedback value = 10-・k・1i
1...(19) (18) is when partial circulation and complete circulation current is applied,
It shows the magnitude of the peak value of the circulating current io, which is a direct current amount in a steady state. therefore.

(19)式に示されるフィードバック値も定常的には直
流量の大きさを示す信号となる。したかって、(18)
、(19)式に示す指令およびフィードバック値を電流
制御回路8に入力することにより、電流制御系から負荷
電流の周波数成分を無くすることができる。
The feedback value shown in equation (19) also becomes a signal indicating the magnitude of the DC amount on a steady basis. I want to do it (18)
By inputting the command and feedback value shown in equation (19) to the current control circuit 8, it is possible to eliminate the frequency component of the load current from the current control system.

このように、本実施例によれば、循環電流をフラット循
環→部分循環→完全循環と循環電流の流し方をスムーズ
に切換でき、かつ、電流制御回路が負荷電流の周波数の
影響を受けないため、良好な部分循環電流を流すことが
できる。
As described above, according to this embodiment, the circulating current can be smoothly switched from flat circulation to partial circulation to complete circulation, and the current control circuit is not affected by the frequency of the load current. , a good partial circulation current can flow.

その結果、変換器出力電圧を第2図V p aの如く動
作させることができ、従来方式に比べて、同図V p 
1→Vpδまで下げることができる。これは電源電圧を
低く選択できることになる。一方、循環電流ioを、定
格負荷電流以下では、第3図I03に示すように、従来
方式Iozと同様の値にすることができる。したがって
、定格負荷電流以内の領域においては、従来方式に比べ
て電源力率が改善される。
As a result, the converter output voltage can be operated as shown in Figure 2, Vp a, compared to the conventional method.
It can be lowered to 1→Vpδ. This means that the power supply voltage can be selected low. On the other hand, when the circulating current io is below the rated load current, it can be set to a value similar to that of the conventional system Ioz, as shown in FIG. 3 I03. Therefore, in a region within the rated load current, the power supply power factor is improved compared to the conventional system.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、定格負荷時の電
源力率を向上させることができる。
As described above, according to the present invention, the power factor of the power supply at rated load can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するブロック線図、第2図
、第3図は本発明と従来方式の差を説明する図、第4図
は本発明による循環電流の動作波形の説明図、第5図は
負荷電流と係数の関係を示す説明図である。 2.3・・・正側、負側コンバータ、4・・・中間タッ
プ付直流リアクトル、8・・・循環電流制御回路、9・
・・直流リアクトル電圧降下補償回路、15・・・循環
電流検出回路、18・・・循環電流指令補正回路、19
・・・循環電流フィードバック補正回路、20・・・電
圧降下補償出力ゲイン補正回路。
FIG. 1 is a block diagram explaining the present invention in detail, FIGS. 2 and 3 are diagrams explaining the differences between the present invention and the conventional system, and FIG. 4 is a diagram explaining the operating waveform of the circulating current according to the present invention. , FIG. 5 is an explanatory diagram showing the relationship between load current and coefficient. 2.3... Positive side, negative side converter, 4... DC reactor with intermediate tap, 8... Circulating current control circuit, 9...
...DC reactor voltage drop compensation circuit, 15... Circulating current detection circuit, 18... Circulating current command correction circuit, 19
... Circulating current feedback correction circuit, 20... Voltage drop compensation output gain correction circuit.

Claims (1)

【特許請求の範囲】 1、直流リアクトルを介して正側変換器と負側変換器と
が逆並列に接続され、前記両変換器間に前記直流リアク
トルを介し、循環電流を流して可変周波数の交流電力を
負荷に供給する循環電流形サイクロコンバータを循環電
流指令信号、循環電流検出信号、負荷電流指令信号およ
び負荷電流検出信号に基づいて位相制御する制御方法に
おいて、 前記負荷電流検出値が定格値以内の場合に直流の循環電
流を流し、 前記負荷電流検出値が過負荷値である場合に完全循環電
流を流し、 前記負荷電流検出値が定格値と過負荷値との中間領域に
ある場合には循環電流の大きさを負荷量に応じて比例的
に変化させることを特徴とする循環電流サイクロコンバ
ータの制御方法。 2、特許請求の範囲第1項記載の制御方法において、負
荷電流検出値が定格値を越える値である場合に、循環電
流制御信号に負荷電流の上昇に伴って下降するゲインの
直流リアクトル電圧降下補償信号を加算することを特徴
とする循環電流形サイクロコンバータの制御方法。
[Claims] 1. A positive side converter and a negative side converter are connected in antiparallel through a DC reactor, and a circulating current is passed between the two converters through the DC reactor to generate a variable frequency. In a control method for controlling the phase of a circulating current type cycloconverter that supplies AC power to a load based on a circulating current command signal, a circulating current detection signal, a load current command signal, and a load current detection signal, the detected load current value is a rated value. A DC circulating current is passed when the load current detection value is within the overload value, a complete circulation current is passed when the load current detection value is an overload value, and when the load current detection value is in the intermediate region between the rated value and the overload value. is a method of controlling a circulating current cycloconverter, which is characterized by changing the magnitude of the circulating current proportionally according to the amount of load. 2. In the control method according to claim 1, when the detected load current value exceeds the rated value, the circulating current control signal includes a DC reactor voltage drop with a gain that decreases as the load current increases. A control method for a circulating current type cycloconverter characterized by adding a compensation signal.
JP61226657A 1986-09-25 1986-09-25 Control method and control device for circulating current type cycloconverter Expired - Lifetime JP2598635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226657A JP2598635B2 (en) 1986-09-25 1986-09-25 Control method and control device for circulating current type cycloconverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226657A JP2598635B2 (en) 1986-09-25 1986-09-25 Control method and control device for circulating current type cycloconverter

Publications (2)

Publication Number Publication Date
JPS6380767A true JPS6380767A (en) 1988-04-11
JP2598635B2 JP2598635B2 (en) 1997-04-09

Family

ID=16848611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226657A Expired - Lifetime JP2598635B2 (en) 1986-09-25 1986-09-25 Control method and control device for circulating current type cycloconverter

Country Status (1)

Country Link
JP (1) JP2598635B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258673A (en) * 1985-05-07 1986-11-17 Mitsubishi Electric Corp Circulating current controlling method of bidirectional power converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258673A (en) * 1985-05-07 1986-11-17 Mitsubishi Electric Corp Circulating current controlling method of bidirectional power converter

Also Published As

Publication number Publication date
JP2598635B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US5291119A (en) Low distortion alternating current output active power factor correction circuit using two bi-directional switching regulations
JPH041589B2 (en)
JP2527911B2 (en) PWM converter
JP5115730B2 (en) PWM converter device
JPS6399770A (en) Method for controlling circulating current type cycloconverter
JPS6380767A (en) Method for controlling circulating current type cycloconverter
Pal et al. Disturbance Observer Based Sliding Mode Approach for Dual Active Bridge Converter
Bagawade et al. Interleaved boost based AC/DC bidirectional converter with four quadrant power control based on one-cycle controller (OCC)
RU2677628C1 (en) Three-phase reactive power compensator
JP2003088124A (en) Rectifier
JP2000037078A (en) Multilevel power converter
RU2056692C1 (en) Transformer-thyristor reactive-power corrector
JPS6362985B2 (en)
JP7099351B2 (en) Bidirectional isolated DC-DC converter and control method
JPH07123700A (en) Controlling method for input oscillation of semiconductor power conversion device
JP2007074799A (en) Controller of rectifying circuit
WO2019182161A1 (en) Power converting system, power converting device, power converting method, power generating system, effective power transferring system, power grid, power transferring system, load system, and power transmission and distribution system
JP4533668B2 (en) Power converter
JPS60194794A (en) Controlling method for cycloconverter
JPS6051337B2 (en) Reactive power regulator
JPH02261057A (en) Delta connection cycloconverter
JPS61264416A (en) Control system for reactive power compensating device
JPH01283061A (en) Control device of multiple pwm converter
JPH03265467A (en) Three-phase converter circuit
JPH0477550B2 (en)