JPS6380220A - Forming method for optical bar - Google Patents

Forming method for optical bar

Info

Publication number
JPS6380220A
JPS6380220A JP61224746A JP22474686A JPS6380220A JP S6380220 A JPS6380220 A JP S6380220A JP 61224746 A JP61224746 A JP 61224746A JP 22474686 A JP22474686 A JP 22474686A JP S6380220 A JPS6380220 A JP S6380220A
Authority
JP
Japan
Prior art keywords
optical element
optical
light
light beam
refracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61224746A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
義夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Machida Endoscope Co Ltd
Original Assignee
Machida Endoscope Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Machida Endoscope Co Ltd filed Critical Machida Endoscope Co Ltd
Priority to JP61224746A priority Critical patent/JPS6380220A/en
Priority to DE19873730610 priority patent/DE3730610A1/en
Publication of JPS6380220A publication Critical patent/JPS6380220A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To form a continuous optical bar having roughly uniform width and luminance by forming an optical element by bundling optical fibers, and allowing a light beam to be made incident on this optical element almost perpendicularly to the axis thereof. CONSTITUTION:A light beam is made incident on an optical element almost perpendicularly to the axis thereof. That is to say, when a light beam 10 is radiated to an optical element 1, the light beam is made incident on an optical fiber 3 in the optical element 1, a part of the light beam transmits through this optical fiber 3 and refracted, the other part of the light beam is brought to a total reflection in this optical fiber 3, and thereafter, transmits through and refracted, and these transmission light beams proceed to other optical fiber 3 of the vicinity, and transmit, refracted and brought to a total reflection again. As a result, the light beam is diffused in all peripheral directions in the optical element 1 and emitted from the optical element 1. Subsequently, each transmission light which is emitted from many optical fibers 3 placed on the outside peripheral part of the optical element 1 interferes mutually, and a bright part of an optical bar 30 is formed continuously on a production of all peripheral directions of the optical element. The bright part of this optical bar 30 goes to that which has uniformly the luminance exceeding a prescribed value and the width exceeding a prescribed dimension.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光学走査装置等に使用される光パーの形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming an optical par used in an optical scanning device or the like.

(従来の技術) 近年、光工学の各種産業分野における工業的利用は非常
に盛んになっている。その中には光バーを利用したもの
も多くあり、例えば、光学走査装置により光バーをバー
コード上に照射してバーコードで表示された数値(商品
の価格等)を読み取ったり、光学走査装置に上り光バー
を検体に照射してピンホールの有無を調べたり、光バー
を検体に照射して光バーの形状の変化により検体の形状
を察知する等、その応用例は多岐に互っている。
(Prior Art) In recent years, the industrial use of optical engineering in various industrial fields has become very popular. Many of them use light bars. For example, an optical scanning device illuminates a barcode with a light bar to read the numerical value (product price, etc.) displayed on the barcode, and an optical scanning device It has a wide variety of applications, such as examining the presence or absence of pinholes by shining a light bar on a specimen, or detecting the shape of a specimen by shining a light bar on the specimen and detecting changes in the shape of the light bar. There is.

第3図は従来の光バーの形成方法を示すものであって、
図中符号1′は光学素子としてのガラス製のシリンドリ
カルレンズであり、その断面は略半円形をなしている。
FIG. 3 shows a conventional method of forming a light bar,
Reference numeral 1' in the figure is a glass cylindrical lens as an optical element, and its cross section is approximately semicircular.

従来方法によれば、図示しない光発射装置から出射され
た平行光線束10はシリンドリカルレンズ1′の平坦面
1a’からほぼ垂直に入射し、曲面1b’において屈折
した透過光がスクリーン20に投影されて光パー30″
が形成される。
According to the conventional method, a parallel light beam 10 emitted from a light emitting device (not shown) enters the cylindrical lens 1' almost perpendicularly from the flat surface 1a', and the transmitted light is refracted at the curved surface 1b' and is projected onto the screen 20. Light par 30″
is formed.

尚、周知のように、シリンドリカルレンズ1′は平坦面
1a’ に垂直に入射する光に対しシリンドリカルレン
ズ1′の軸芯方向に関しては屈折させることなく直進さ
せる性質を有している。したがって光バー30′の上下
幅りは平行光線束10の径dに等しくなる。
As is well known, the cylindrical lens 1' has the property of allowing light incident perpendicularly to the flat surface 1a' to travel straight without being refracted in the axial direction of the cylindrical lens 1'. Therefore, the vertical width of the light bar 30' is equal to the diameter d of the parallel beam 10.

上記従来方法により形成された光バー30′は大きな輝
度を有する明部30a’ と小さな輝度を有する暗部3
0b′とから構成されている。又、明部30a′の上下
幅はスクリーン20の中央域20aにおいて平行光線束
10の径dと等しいが、スクリーン20の両側域20b
においては漸次狭まっている。
The light bar 30' formed by the above conventional method has a bright part 30a' with high brightness and a dark part 30 with low brightness.
0b'. Further, the vertical width of the bright portion 30a' is equal to the diameter d of the parallel light beam 10 in the central area 20a of the screen 20, but the width in both sides 20b of the screen 20 is equal to the diameter d of the parallel beam 10.
It is gradually narrowing down.

上記現象は次のように解釈される。第4図において、シ
リンドリカルレンズ1′は光軸C0からの入射光線の距
離によって異なる焦点を有している。即も、光軸C0の
近傍の近軸光線C1に対しての焦点はF、であり、光軸
C0から離れた周縁光線C2に対しての焦点はF2であ
り、焦点F2は焦点F1上9もシリンドリカルレンズ1
′に接近している。したがって、焦点F、の位置に平坦
なスクリーン20を配置すると、近軸光線C1の透過光
CI’はスクリーン20上の焦点F、に集光して投影さ
れるため照度が極めて大きく、輝度は大きくなり、これ
に対して周縁光線C2の透過光C2’は焦点F2を通過
した後拡散されて、スクリーン2O上において広範囲に
広がって投影されるため照度は小さくなって、輝度は小
さくなる。
The above phenomenon is interpreted as follows. In FIG. 4, the cylindrical lens 1' has different focal points depending on the distance of the incident light ray from the optical axis C0. Immediately, the focal point for the paraxial ray C1 near the optical axis C0 is F, and the focal point for the peripheral ray C2 far from the optical axis C0 is F2, and the focal point F2 is 9 9 above the focal point F1. Also cylindrical lens 1
′ is approaching. Therefore, when a flat screen 20 is placed at the focal point F, the transmitted light CI' of the paraxial ray C1 is condensed and projected onto the focal point F on the screen 20, resulting in extremely high illumination and brightness. On the other hand, the transmitted light C2' of the marginal ray C2 is diffused after passing through the focal point F2, and is projected over a wide range on the screen 2O, so that the illuminance becomes low and the brightness becomes low.

(発明が解決しようとする問題点) ところで、工業的に利用可能な光バーの条件としては、
所定値以上の輝度と所定寸法以上の上下幅が必要であり
、この条件が満たされない光バーを使用した場合には所
定の検出精度等を維持することかでトなくなる。
(Problems to be solved by the invention) By the way, the conditions for an industrially usable light bar are as follows:
Luminance greater than a predetermined value and vertical width greater than a predetermined dimension are required, and if a light bar that does not meet these conditions is used, it will be impossible to maintain a predetermined detection accuracy.

このような理由から、従来の光バー30゛において工業
的に利用可能な部分は、第3図においてスクリーン20
に投影された中央域20aにおける明部30a′だけで
あった。
For this reason, the industrially usable portion of the conventional light bar 30 is the screen 20 in FIG.
There was only a bright portion 30a' in the central region 20a projected onto the image.

その結果、前記応用例についていうと、バーコードの幅
、検体の被検査寸法等に制限を受けていた。この欠点を
補うためには光学走査装置の走行回数を増やす等により
対処せざるを得す、作業が煩雑となり、能率が悪かった
As a result, in the above-mentioned application example, there are limitations on the width of the barcode, the size of the specimen to be inspected, etc. In order to compensate for this drawback, it is necessary to increase the number of times the optical scanning device runs, which makes the work complicated and inefficient.

(問題点を解決するための手段) この発明は上記問題点を解決するためになされたもので
、その要旨は、光を光学素子に入射させ、その透過光に
より光バーを形成する方法において、多数の光7フイパ
ーを束ねて光学素子を形成し、この光学素子の細芯にほ
ぼ垂直に光を入射し、上記各光ファイバーを透過させた
後その透過光を光学素子から全周方向へ出射させ、略均
一な幅と輝度とを有する光バーを得ることを特徴とする
光バーの形成方法にある。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and its gist is to provide a method for making light incident on an optical element and forming a light bar using the transmitted light. A large number of optical fibers are bundled to form an optical element, and light is incident almost perpendicularly into the fine core of this optical element, and after passing through each of the optical fibers, the transmitted light is emitted from the optical element in the entire circumferential direction. , a method of forming a light bar characterized by obtaining a light bar having substantially uniform width and brightness.

(作用) 光を光学素子に照射すると、光は光学素子内の光ファイ
バーに入射し、一部の光はこの光ファイバーを透過して
屈折し、他の一部の光はこの光フアイバー内で全反射し
た後透過して屈折し、これら透過光は近傍の他の光ファ
イバーへと進み、そこで再び透過、屈折、全反射を行う
、このように光学素子内において多数の光ファイバーに
より光は次々と屈折、全反射を繰り返す。その結果、光
は光学素子内の全周方向へ拡散されて光学素子から出射
される。
(Function) When light is irradiated onto an optical element, the light enters the optical fiber inside the optical element, some of the light is transmitted through this optical fiber and refracted, and the other part of the light is totally reflected within this optical fiber. After that, the transmitted light is transmitted and refracted, and these transmitted lights proceed to other nearby optical fibers, where they are transmitted, refracted, and totally reflected again.In this way, the light is successively refracted and totally reflected by a large number of optical fibers within the optical element. Repeat the reflection. As a result, the light is diffused in the entire circumferential direction within the optical element and is emitted from the optical element.

そして、光学素子外周部に配置された多数の光ファイバ
ーから出射された各透過光は相互に干渉し合って、光学
素子の全周方向の延長線上に光バーの明部を連続的に形
成する。この光バーの明部は一様に所定値以上の輝度と
所定寸法以上の幅を有するものとなる。
The transmitted light beams emitted from a large number of optical fibers arranged around the outer periphery of the optical element interfere with each other to continuously form a bright part of the light bar on an extended line in the circumferential direction of the optical element. The bright portion of this light bar uniformly has a luminance of a predetermined value or more and a width of a predetermined dimension or more.

(実施例) 以下、この発明の一実施例を第1図、第2図の図面に従
って説明する。尚、第3図と同一態様部分については同
一符号を付して説明するものとする。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings of FIGS. 1 and 2. Note that the same parts as in FIG. 3 will be described with the same reference numerals.

第1図はこの発明による光パーの形成方法を示すもので
あって、図中符号1はコンジットの光学素子である。こ
の光学素子1は極めて多数のガラス製の光ファイバーを
束ねたものであり、このようにして製造された光学素子
1の断面は第2図のようになっている。即ち、各党ファ
イバーのクラッド2は溶融して一体となり、各光ファイ
バーのコア3はこのクラッド2内に均等に多数分布し、
光学素子1の外周面にはガラス製の保護層4が形成され
ている。
FIG. 1 shows a method of forming an optical path according to the present invention, and reference numeral 1 in the figure indicates an optical element of a conduit. This optical element 1 is made by bundling a very large number of glass optical fibers, and the cross section of the optical element 1 manufactured in this way is as shown in FIG. That is, the cladding 2 of each optical fiber is melted and integrated, and the cores 3 of each optical fiber are evenly distributed in large numbers within this cladding 2.
A protective layer 4 made of glass is formed on the outer peripheral surface of the optical element 1.

尚、第2図においてコア3の数は図示の都合上百数十本
になっているが、実際には万単位の数のコア3が配置さ
れている。
Although the number of cores 3 in FIG. 2 is over a hundred for convenience of illustration, in reality, the number of cores 3 is in the order of ten thousand.

そして、光発射装置(図示しない)から直径dの平行光
線束10を上記光学素子1の軸芯に対して垂直に照射す
る。
Then, a parallel light beam 10 having a diameter d is irradiated perpendicularly to the axis of the optical element 1 from a light emitting device (not shown).

上記平行光線束10は保護層4に入射する際に僅かに屈
折し、保護層4からクラッド2に入射する際に再び屈折
する。クラッド2内を透過した平行光線束10は光学素
子1の外周部に配置された多数のコア3に屈折して入射
する。そして、これら各コア3に入射した光線はコア3
からクラッド2への入射角度の違いにより、一部の光線
はこのコア3を透過してコア3からクラッド2へ出射す
る際に屈折し、他の一部の光線は境界面で全反射して当
該コア3内を進み、再び境界面において屈折してクラッ
ド2へ出射される。これらコア3を透過してクラッド2
内に入射した光線は、その光路上にある近傍の他のコア
3へ入射する。このコア3においても上記同様に屈折、
全反射が行なわれる。
The parallel light beam 10 is slightly refracted when it enters the protective layer 4, and is refracted again when it enters the cladding 2 from the protective layer 4. A parallel light beam 10 that has passed through the cladding 2 is refracted and incident on a large number of cores 3 arranged around the outer circumference of the optical element 1. The rays incident on each of these cores 3 are
Due to the difference in the angle of incidence from the core 3 to the cladding 2, some light rays pass through the core 3 and are refracted when exiting from the core 3 to the cladding 2, while other light rays are totally reflected at the boundary surface. The light travels inside the core 3, is refracted at the boundary surface, and is emitted to the cladding 2. The cladding 2 passes through these cores 3.
The light beam that enters the core 3 enters other cores 3 in the vicinity on the optical path. In this core 3 as well, refraction and
Total internal reflection takes place.

このようにして平行光線束10の各光線は光学素子1内
を次々と全方向的に拡散していき、最早的には光学素子
1の外周部に配置された各コア3からクラッド2及び保
護層4を介して光学素子1の全周方向に向けほぼ均等に
出射される。
In this way, each ray of the parallel ray bundle 10 is successively diffused in all directions within the optical element 1, and eventually passes from each core 3 disposed on the outer periphery of the optical element 1 to the cladding 2 and the protective The light is emitted almost uniformly through the layer 4 toward the entire circumference of the optical element 1.

上記光学素子1の外周部の各コア3から出射された各透
過光により形成される光バーは、その一つ一つについて
は従来と同様な照度分布、輝度分布を有しているものと
予想されるが、外周部に配置されているコア3は極めて
多数であり、しかもその透過光は全周方向へ出射されて
いるため、各透過光は相互に干渉し合い、第1図に示す
ように光学素子1から所定寸法離れた位置に配置された
曲面状のスクリーン20上に投影された光バー30は全
長に互って略均一な幅h(h=d)と所定値の輝度とを
有する連続した明部となり、前記従来の光バー30″の
場合のように暗部が形成されることはない。
It is expected that each light bar formed by each transmitted light emitted from each core 3 on the outer periphery of the optical element 1 has the same illuminance distribution and brightness distribution as before. However, since there are an extremely large number of cores 3 arranged on the outer periphery, and the transmitted light is emitted in the entire circumferential direction, each transmitted light interferes with each other, as shown in Fig. 1. The light bar 30 projected onto the curved screen 20 disposed at a predetermined distance from the optical element 1 has a substantially uniform width h (h=d) along its entire length and a predetermined brightness. The light bar 30'' has a continuous bright area, and no dark area is formed as in the case of the conventional light bar 30''.

したがって、光パー30は全長に互って工業的に利用可
能な範囲となり、従来の光パー30′に比較して極めて
長くなる。
Therefore, the entire length of the optical par 30 is within an industrially usable range, and is extremely long compared to the conventional optical par 30'.

尚、スクリーン20が従来と同様に平面状である場合に
も、上記同様の光パー30が形成されることが確認され
ている。
It has been confirmed that the same optical pars 30 as described above are formed even when the screen 20 is flat like the conventional one.

又、上記光学素子1からの透過光は全周方向に出射され
るので、スクリーン20を円筒状にして光学素子1と同
心状に配置した場合には、このスクリーン20を一周す
る環状の光バー30が形成される。
Furthermore, since the transmitted light from the optical element 1 is emitted in the entire circumferential direction, if the screen 20 is made cylindrical and arranged concentrically with the optical element 1, an annular light bar that goes around the screen 20 is formed. 30 is formed.

上述説明したように、この光パー30は光学素子1から
出射された各透過光相互の干渉によって略均一な輝度と
なったものであるので、微視的に見ると若干の干渉縞を
有している。そこで、光バー30の使用目的によりこの
干渉縞を取り除きたい場合には、光学素子1をその軸芯
を中心として所定の速度で等速回転させると干渉縞は除
去される。
As explained above, this optical par 30 has approximately uniform brightness due to mutual interference between the transmitted light beams emitted from the optical element 1, so when viewed microscopically, it has some interference fringes. ing. Therefore, if it is desired to remove these interference fringes depending on the purpose of use of the light bar 30, the interference fringes are removed by rotating the optical element 1 at a constant speed around its axis at a constant speed.

この発明は上記実施例に制約されず種々の態様が可能で
ある。
This invention is not limited to the above-mentioned embodiments, and various embodiments are possible.

(発明の効果) 以上説明したように、この発明によれば、光ファイバー
を束ねて光学素子を形成し、この光学素子の軸芯にほぼ
垂直に光を入射させるよ″うにしたことにより、光は光
学素子内において屈折、反射を繰り返し、光学素子から
全周方向へ出射されて、略均一な幅と輝度とを有する連
続的な光バーを形成することができる。
(Effects of the Invention) As explained above, according to the present invention, optical fibers are bundled to form an optical element, and the light is made to enter almost perpendicularly to the axis of the optical element. The light is repeatedly refracted and reflected within the optical element, and is emitted from the optical element in the entire circumferential direction, thereby forming a continuous light bar having substantially uniform width and brightness.

したがって、工業的に利用可能条件を有する光パーを極
めて長尺に形成することができ、光バー利用技術におけ
る長さの制限が大幅に緩和される。
Therefore, it is possible to form a very long optical bar that can be used industrially, and the length restrictions in the optical bar utilization technology are greatly relaxed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図の図面はこの発明の一実施例を示すもの
であり、第1図は光パーの形成方法を示す概略斜視図、
第2図はこの発明に使用される光学素子の概略断面図で
ある 第3図、第4図は従来技術を示すものであり、第3図は
従来技術による第1図相当斜視図、第4図はその原理を
示す幾何光学線図である。 1・・・光学素子、 2・・・クラッド(光ファイバー
)、3・・・コア(光ファイバー)、 10・・・光(平行光線束)、 30・・・光バー。
The drawings in FIGS. 1 and 2 show an embodiment of the present invention, and FIG. 1 is a schematic perspective view showing a method of forming an optical hole;
FIG. 2 is a schematic sectional view of an optical element used in the present invention. FIGS. 3 and 4 show the prior art. FIG. 3 is a perspective view of the prior art equivalent to FIG. The figure is a geometrical optical line diagram showing the principle. DESCRIPTION OF SYMBOLS 1... Optical element, 2... Clad (optical fiber), 3... Core (optical fiber), 10... Light (parallel beam bundle), 30... Light bar.

Claims (1)

【特許請求の範囲】[Claims] 光を光学素子に入射させ、その透過光により光バーを形
成する方法において、多数の光ファイバーを束ねて光学
素子を形成し、この光学素子の軸芯にほぼ垂直に光を入
射し、上記各光ファイバーを透過させた後その透過光を
光学素子から全周方向へ出射させ、略均一な幅と輝度と
を有する光バーを得ることを特徴とする光バーの形成方
法。
In the method of making light enter an optical element and forming a light bar with the transmitted light, a number of optical fibers are bundled to form an optical element, light is made almost perpendicular to the axis of this optical element, and each of the above-mentioned optical fibers is 1. A method for forming a light bar, which comprises transmitting light and then emitting the transmitted light from an optical element in the entire circumferential direction to obtain a light bar having substantially uniform width and brightness.
JP61224746A 1986-09-25 1986-09-25 Forming method for optical bar Pending JPS6380220A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61224746A JPS6380220A (en) 1986-09-25 1986-09-25 Forming method for optical bar
DE19873730610 DE3730610A1 (en) 1986-09-25 1987-09-11 Device for generating light which propagates in a plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224746A JPS6380220A (en) 1986-09-25 1986-09-25 Forming method for optical bar

Publications (1)

Publication Number Publication Date
JPS6380220A true JPS6380220A (en) 1988-04-11

Family

ID=16818587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224746A Pending JPS6380220A (en) 1986-09-25 1986-09-25 Forming method for optical bar

Country Status (2)

Country Link
JP (1) JPS6380220A (en)
DE (1) DE3730610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115349A (en) * 1989-05-25 1992-05-19 Kabushiki Kaisha Machida Seisakusho Projector system and system for detecting flaw

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115349A (en) * 1989-05-25 1992-05-19 Kabushiki Kaisha Machida Seisakusho Projector system and system for detecting flaw

Also Published As

Publication number Publication date
DE3730610A1 (en) 1988-03-31

Similar Documents

Publication Publication Date Title
US5126872A (en) Apparatus for optically scanning the surface of an object whose surface is capable of reflecting or scattering light
US3240106A (en) Fiber optical scanning device
JP2716445B2 (en) Diffuse reflectance measurement device for non-contact measurement
US6796697B1 (en) Illumination delivery system
US5857041A (en) Optical coupler and method utilizing optimal illumination reflector
FR2519148B1 (en) WAVELENGTH SELECTOR
US6170973B1 (en) Method and apparatus for wide-angle illumination in line-scanning machine vision devices
US20080062424A1 (en) Compact Ringlight
US3656832A (en) Micro-optical imaging apparatus
US3453440A (en) Optical inspection devices employing light-conducting fibers
JPH02110356A (en) Defect detecting apparatus using linear light source
KR920014975A (en) Device for optically scanning the material being sewn in a sewing machine
US3604802A (en) Wide angle photoelectric position detecting device utilizing a conical truncated optical condenser
JPS6380220A (en) Forming method for optical bar
US3379832A (en) Micro-optical scanning apparatus
KR870001324B1 (en) Image collection and object illumination
US3588258A (en) Apparatus for the detection of checks in glass containers
JP2003107006A (en) Method and apparatus for illumination
JPS6039604A (en) Image fiber for observation of piping inside
US3590239A (en) Radiation condensers
US20240035924A1 (en) Inspection method for optical fiber, inspection device for optical fiber, and method for manufacturing optical fiber-wound bobbin
CN111344546B (en) Device and method for measuring glass eccentricity of optical fiber
JPH01126603A (en) Optical fiber line light
SU1465699A1 (en) Device for checking defects of cylindrical surfaces of parts
RU2156434C2 (en) Opticoelectronic converter for contact-free measurement of linear displacement and ( or ) diameter