JPS637932B2 - - Google Patents

Info

Publication number
JPS637932B2
JPS637932B2 JP53135354A JP13535478A JPS637932B2 JP S637932 B2 JPS637932 B2 JP S637932B2 JP 53135354 A JP53135354 A JP 53135354A JP 13535478 A JP13535478 A JP 13535478A JP S637932 B2 JPS637932 B2 JP S637932B2
Authority
JP
Japan
Prior art keywords
mold
block molding
convex
bulge
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53135354A
Other languages
Japanese (ja)
Other versions
JPS5561436A (en
Inventor
Toshio Isobe
Akio Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP13535478A priority Critical patent/JPS5561436A/en
Publication of JPS5561436A publication Critical patent/JPS5561436A/en
Publication of JPS637932B2 publication Critical patent/JPS637932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • B29C44/586Moulds with a cavity increasing in size during foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はビーズ法発泡スチロールをブロツク成
形機で成形する際の成形方法及びそれに使用する
金型に関するもので、本発明方法及びその金型を
使用することにより、成形時における冷却放冷時
間を大巾に短縮することが可能になり、成形の生
産性を向上することができることを特長とする。 本発明は、(1)ビーズ法発泡スチロールのブロツ
ク成形に於て、ブロツク成形機の金型表面を凸形
にしたものを用いて冷却放冷時間短縮を図ること
を特徴とするブロツク成形方法、及び(2)金型表面
を凸形にしてなるビーズ法発泡スチロール用ブロ
ツク成形金型である。 本発明において、金型表面の凸形とは、金型の
製品室側、即ち、第3図x、y軸の交点側から見
て表面凸形を意味する。 金型表面を凸形にする際その程度は希望する離
型圧での製品のふくらみ値から製品に許容される
ふくらみ値を減じた値を金型の凸形に採用すると
最もよく目的を達することができる。また金型表
面の凸形面を形成支持するに凸形面に見合うよう
高低を付与した支持体によつて支持するのが好ま
しい。 ブロツク成形の通常の方法は、予備発泡粒を金
型内に充填し、蒸気による予備加熱(金型加熱と
もいう)後、一方加熱、両面加熱を経て、成形体
の冷却放冷後、成形体の離型取出しを行つてい
る。現在、ブロツク成形機に使用されている金型
は、一般的な寸法として1840mm×925mm×415mmで
直線平板で囲まれたものが使用されている。 通常の使用されている金型すなわち直線平板金
型で成形した例を第1表に示す。
The present invention relates to a molding method for molding Styrofoam using a bead method using a block molding machine, and a mold used therein.By using the method of the present invention and the mold, the cooling and cooling time during molding can be greatly increased. It is characterized by being able to shorten the molding process to improve molding productivity. The present invention provides (1) a block molding method that uses a block molding machine with a convex mold surface to shorten the cooling and cooling time in block molding of expanded polystyrene using the bead method; (2) A bead-method block molding mold for polystyrene foam with a convex mold surface. In the present invention, the convex shape of the mold surface means the convex shape of the surface when viewed from the product chamber side of the mold, that is, from the intersection of the x and y axes in FIG. When making the mold surface convex, the purpose is best achieved if the convex shape of the mold is determined by subtracting the allowable bulge value for the product from the bulge value of the product at the desired mold release pressure. Can be done. Further, in order to form and support the convex surface of the mold surface, it is preferable to support the mold with a support having a height corresponding to the convex surface. The usual method for block molding is to fill a mold with pre-expanded grains, preheat with steam (also called mold heating), heat on one side, heat on both sides, cool the molded product, and then cool it. The mold is being removed from the mold. Currently, the molds used in block molding machines generally have dimensions of 1840 mm x 925 mm x 415 mm and are surrounded by straight flat plates. Table 1 shows an example of molding using a commonly used mold, that is, a straight plate mold.

【表】【table】

【表】 成形時間は第1表で表示の如く、合計1860秒
で、このうち放冷が1500秒で、全体の80%を占め
ており、この部分が一番長いので、これが短縮で
きれば生産性に最も効果があがることが判る。 しかしながら放冷時間を短縮して成形品を取出
す場合は、成形体の内部に膨張圧が残留している
ため面圧が高いということであり、この結果とし
て成形体が後ぶくれが大きくなる。この結果次の
3点の不利が生じる。(1)成形体がふくらんで外観
がよくない。(2)成形体の外皮を切断して直線化す
る際に、切断機に掛けるときのセツト性が悪い。
(3)成形体をスライスして大型ボードを作る際、外
皮は放棄するので切断ロスが多くなる。 以上のような理由により通常実施されている離
型時の面圧は、後ぶくれを小さくするという要求
と冷却放冷時間を短縮して経済性を高めなければ
いけないとの相反する要求の妥協として一般的に
0.05〜0.1Kg/cm2である。 これらの現象は、離型時の面圧と離型後のふく
らみ値及び冷却放冷時間との関係を示す1例であ
る第1図によつて明確となる。第1図により冷却
放冷時間を短縮すればふくらみ値は大きくなるこ
とが示される。但し、0.05〜0.1Kg/cm2の場合で
もふくらみはある。ふくらみの測定方法は第2図
に示される通りで、x、y、z軸の原点を中心に
y方向は100mm、z方向は50mm間隔に区切つて、
この点を測定点としx―xnioを測定する(xnio
最小x値)。第3図に本発明の表面凸形金型の1
例の断面図を示す。 上記のふくらみの不利を解決するためには、離
型圧0.05Kg/cm2の形状と同一になるように、金型
表面を前以つて凸状に補正しておけば、離型圧
0.05Kg/cm2以上でも同等の成形体が得られること
になる。 次に金型凸状に補正する方法について述べる。 金型凸状に補正するには成形体のふくらみの状
態を測定する必要がある。第1表に示される成形
操作条件のもとに離型圧力を(1)0.05Kg/cm2と、(2)
0.2Kg/cm2で夫々成形して各成形体の各点のふく
らみ値の測定結果を第2表及び第3表に示す。 なお、上記の各場合共に各稜線は直線になつて
おり、またx―y側面及びz―x側面は水平面を
なしており、y―z側面のみが凸状をなしてい
た。また各軸からの対称位置のふくらみ値はほぼ
同値を示すので片側のみ測定した。但し、離型圧
力0.3Kg/cm2の場合は成形体の各側面共に凸状を
しており、いわゆるダルマ状をしていて自立でき
ない状態なので実用上は不可といえる。
[Table] As shown in Table 1, the total molding time is 1860 seconds, of which cooling is 1500 seconds, accounting for 80% of the total, and this part is the longest, so if this can be shortened, productivity will increase. It turns out that it is most effective. However, when the molded product is removed after shortening the cooling time, the surface pressure is high because expansion pressure remains inside the molded product, and as a result, the molded product has a large rear bulge. As a result, the following three disadvantages arise. (1) The molded product swells and does not have a good appearance. (2) When cutting and straightening the outer skin of the molded product, it is difficult to set it on a cutting machine.
(3) When slicing a molded body to make a large board, the outer skin is discarded, resulting in a large amount of cutting loss. For the above-mentioned reasons, the surface pressure that is normally applied during mold release is a compromise between the conflicting demands of reducing the back bulge and shortening the cooling and cooling time to increase economic efficiency. generally as
It is 0.05-0.1Kg/ cm2 . These phenomena become clear from FIG. 1, which is an example showing the relationship between the surface pressure at the time of mold release, the swelling value after mold release, and the cooling and cooling time. FIG. 1 shows that the swelling value increases if the cooling and cooling time is shortened. However, even in the case of 0.05 to 0.1 Kg/cm 2 , there is swelling. The measurement method for the bulge is as shown in Figure 2. Centering on the origin of the x, y, and z axes, divide the bulge into 100 mm intervals in the y direction and 50 mm in the z direction.
This point is used as a measurement point and x−x nio is measured (x nio is the minimum x value). Figure 3 shows one of the surface convex molds of the present invention.
An example cross-sectional view is shown. In order to solve the above-mentioned disadvantage of bulging, if the mold surface is corrected to a convex shape in advance so that it has the same shape as the mold release pressure of 0.05Kg/ cm2 , the mold release pressure
Even if the weight is 0.05Kg/cm 2 or more, an equivalent molded product can be obtained. Next, a method for correcting the mold convexity will be described. In order to correct the mold convexity, it is necessary to measure the bulge state of the molded product. Under the molding operation conditions shown in Table 1, the mold release pressure is (1) 0.05Kg/cm 2 and (2)
Tables 2 and 3 show the measurement results of the swelling value at each point of each molded product after molding at 0.2 Kg/cm 2 . In each of the above cases, each ridgeline was a straight line, the xy side surface and the zx side surface were horizontal surfaces, and only the yz side surface was convex. In addition, since the bulge values at symmetrical positions from each axis show almost the same value, only one side was measured. However, if the mold release pressure is 0.3 Kg/cm 2 , each side of the molded product is convex, creating a so-called daruma shape and unable to stand on its own, which is practically impossible.

【表】【table】

【表】【table】

【表】 求める表面凸状の金型の形状は第3表の各点の
ふくらみ値から第2表のふくらみ値を差引いた値
を採用して金型を作れば離型圧0.2Kg/cm2の場合
でも離型圧0.05Kg/cm2の場合と同等の形状のもの
が、冷却放冷時間を40%短縮しても同一形状の成
形体が得られる。 与えられた曲率を金型に与える方法については
下記の方法により容易に製作できる。 従来、平面で使用する通常の金型を構成する板
金は例えばアルミ製で板厚は8〜12mmであり、こ
の金型の取付法は支持体として細長い板により支
持し、ボルトで押え止めている。本発明に使用さ
れる複雑な凸形面を持つ金型を従来方法により製
造しようとすれば与えられた曲率を具体化するた
めに、上記の細長い板を第2図で示されるy及び
z軸方向に曲率が出るように勾配をもつように切
削加工する必要があるが、取付位置との関連もあ
り非常に手間が掛り難しい。従つて、この点を改
良するには、支持体として細長い板の代りに既述
の曲率に見合うような高低を付与した支持柱を使
用することが、より好ましい。例えば直径約20mm
φの円柱とし、これに曲率が出るような高さにし
て100〜200mmピツチに配置し、この上に金型をボ
ルトで押え止めることにより必要な曲率が得られ
工業的に能率良く製造出来ることが判明した。支
持柱は円柱状に限定されることなく、4角柱や3
角柱その他高低を付与出来るものであれば良く、
その間隔、素材も適宜選択することが出来る。金
型には蒸気及び空気供給口としてスリツト又は細
孔があるので板厚8〜12mmでも容易に曲つて曲率
が出る。 本発明の成形方法及び金型によれば能率よく、
放冷時間の短縮をはかることができる。
[Table] The desired shape of the mold with a convex surface can be obtained by subtracting the bulge value in Table 2 from the bulge value at each point in Table 3 . Even in the case of 0.05 Kg/cm 2 of mold release pressure, a molded product with the same shape can be obtained even if the cooling and standing time is shortened by 40%. As for how to give a given curvature to a mold, it can be easily manufactured by the following method. Conventionally, the sheet metal that constitutes a normal mold used on a flat surface is, for example, made of aluminum and has a thickness of 8 to 12 mm, and the method of mounting this mold is to support it with a long and thin plate as a support and hold it down with bolts. . If a mold with a complex convex surface used in the present invention is to be manufactured by a conventional method, in order to embody a given curvature, the above-mentioned elongated plate is moved along the y and z axes shown in FIG. It is necessary to cut it so that it has a slope so that the curvature appears in the direction, but this is very time-consuming and difficult due to the relationship with the mounting position. Therefore, in order to improve this point, it is more preferable to use a support column having a height corresponding to the above-mentioned curvature instead of an elongated plate as a support. For example, about 20mm in diameter
By making a cylinder of φ and arranging it at a pitch of 100 to 200 mm with a height that gives it a curvature, and holding the mold on top of this with bolts, the necessary curvature can be obtained and it can be manufactured industrially and efficiently. There was found. The support pillar is not limited to a cylindrical shape, but can be a square pillar or a three-sided pillar.
It is fine as long as it is a prism or something that can give height.
The spacing and material can also be selected as appropriate. Since the mold has slits or pores as steam and air supply ports, it is easy to bend and create curvature even if the plate is 8 to 12 mm thick. According to the molding method and mold of the present invention, efficient
It is possible to shorten the cooling time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は離型圧とふくらみ値及び冷却放冷時間
との関係を示すグラフ、第2図は成形体の離型時
のふくらみ値の測定方法及び測定点を示す説明図
であり、第2図―1は成形体の説明用斜視図、第
2図―2はA1A2A3A4横断面(x―z平面)のふ
くらみとz番号を示す説明図、第2図―3は
B1B2B3B4縦断面(x―y平面)のふくらみとy
番号を示す説明図である。第3図は本発明の製品
室側から見て表面凸形の金型の1例を示す断面図
である。第1図の1は離型圧力とふくらみ値の関
係グラフ、第1図の2は離型圧力と冷却放冷時間
の関係グラフである。
FIG. 1 is a graph showing the relationship between mold release pressure, swelling value, and cooling/cooling time, and FIG. Figure 1 is an explanatory perspective view of the molded body, Figure 2-2 is an explanatory diagram showing the bulge and z number of the A 1 A 2 A 3 A 4 cross section (xz plane), and Figure 2-3 is an explanatory diagram showing the z number.
B 1 B 2 B 3 B 4Longitudinal section (x-y plane) bulge and y
It is an explanatory diagram showing numbers. FIG. 3 is a sectional view showing an example of a mold having a convex surface when viewed from the product chamber side of the present invention. 1 in FIG. 1 is a relationship graph between mold release pressure and swelling value, and 2 in FIG. 1 is a relationship graph between mold release pressure and cooling and cooling time.

Claims (1)

【特許請求の範囲】 1 ビーズ法発泡スチロールのブロツク成形に於
て、ブロツク成形機の金型が製品室側から見て表
面凸形である金型を用いて成形することを特徴と
するブロツク成形方法。 2 設定した離型圧での製品のふくらみ値から、
製品に許容されるふくらみ値を減じた値を、金型
表面の凸形のふくらみ値として採用する特許請求
の範囲第1項記載のブロツク成形方法。 3 金型の製品室側から見て表面を凸形にしたビ
ーズ法発泡スチロール用ブロツク成形金型。 4 金型の表面凸形面を構成する板金の支持体と
して、該凸形面曲率に見合う高低を有する支持体
を用いてなる特許請求の範囲第3項記載のブロツ
ク成形金型。
[Scope of Claims] 1. A block molding method for block molding expanded polystyrene using the bead method, characterized in that the mold of the block molding machine is molded with a mold whose surface is convex when viewed from the product chamber side. . 2 From the swelling value of the product at the set mold release pressure,
2. The block molding method according to claim 1, wherein a value obtained by subtracting the bulge value allowable for the product is adopted as the bulge value of the convex shape on the mold surface. 3. A bead method styrofoam block molding mold with a convex surface when viewed from the product chamber side of the mold. 4. The block molding mold according to claim 3, wherein the support for the sheet metal constituting the convex surface of the mold has a height corresponding to the curvature of the convex surface.
JP13535478A 1978-11-02 1978-11-02 Block molding method and its mold Granted JPS5561436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13535478A JPS5561436A (en) 1978-11-02 1978-11-02 Block molding method and its mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13535478A JPS5561436A (en) 1978-11-02 1978-11-02 Block molding method and its mold

Publications (2)

Publication Number Publication Date
JPS5561436A JPS5561436A (en) 1980-05-09
JPS637932B2 true JPS637932B2 (en) 1988-02-19

Family

ID=15149787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13535478A Granted JPS5561436A (en) 1978-11-02 1978-11-02 Block molding method and its mold

Country Status (1)

Country Link
JP (1) JPS5561436A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010684B1 (en) 2015-03-31 2019-08-13 닛폰세이테츠 가부시키가이샤 Hot Rolled Bar Seals, Parts and Manufacturing Method of Hot Rolled Bar Seals

Also Published As

Publication number Publication date
JPS5561436A (en) 1980-05-09

Similar Documents

Publication Publication Date Title
CN104690981B (en) The accurate forming frock of aircraft composite and precisely moulding manufacture method
JP4421473B2 (en) Tire mold piece and piece type tire mold
CN111496182B (en) Precision casting method for preventing deformation of single-crystal duplex block-cast turbine guide vane edge plate
US2916771A (en) Pressing tools particularly for the manufacture of large-area pressings
JPS637932B2 (en)
US3302276A (en) Furniture fabricating method
JP2010221245A (en) Method for producing mold for tire molding
JP3021990B2 (en) Manufacturing method of multi-curved mold
US3024506A (en) Mold and method of making metalfaced foundry patterns thereon
CN109848250B (en) Aluminum alloy sheet wire filling hot shaping process
JPH0518698B2 (en)
CN209206240U (en) Deepen sheet metal component Bending Mould
CN211518296U (en) Sheet forming injection mold
JPS58116123A (en) Manufacture of simple mold
CN102847756A (en) Marine thick plate bending process
KR102146475B1 (en) Method For Manufacturing Mold For Ice Bar
CN217512812U (en) Ceramic core wrapped type cold wax core for hollow blade
JPH09216242A (en) Method for manufacturing resin molded product and device therefor
US4005511A (en) Method and apparatus for casting extrusion dies
CN210362266U (en) Mould benevolence location mounting structure of trapezoidal mould
CN207735452U (en) A kind of automobile side plate stay mold
US2948197A (en) Manufacture of blades
JP2553124B2 (en) Mold manufacturing method
JPS58205618A (en) Forming method of drawings having bent part
RU2197351C2 (en) Method of making punch for shaping double-curvature articles