JPS637812A - Treatment of drainage dispersed with mineral particle - Google Patents

Treatment of drainage dispersed with mineral particle

Info

Publication number
JPS637812A
JPS637812A JP15157786A JP15157786A JPS637812A JP S637812 A JPS637812 A JP S637812A JP 15157786 A JP15157786 A JP 15157786A JP 15157786 A JP15157786 A JP 15157786A JP S637812 A JPS637812 A JP S637812A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
tensile strength
filtration
melt
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15157786A
Other languages
Japanese (ja)
Other versions
JPH0811167B2 (en
Inventor
Masataka Ikeda
昌孝 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61151577A priority Critical patent/JPH0811167B2/en
Publication of JPS637812A publication Critical patent/JPS637812A/en
Publication of JPH0811167B2 publication Critical patent/JPH0811167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To remove mineral particles by using a filtration drum wound with the nonwoven fabric on the circumferential surface of a perforated pipe wherein extremely fine fiber having 0.3-3.0mum mean diameter of single yarn fiber is interwound at random and having bulk density not less than 0.35g/cm<3> and 200g/cm tensile strength. CONSTITUTION:Nonwoven fabric wherein extremely fine fiber having 0.3-3.0mum mean diameter of single yarn fiber obtained by a melt-blow method is interwound random and bulk density exceeds 0.35g/cm<3> and tensile strength in the longitudinal direction is at least 200g/cm is used as a filter medium. This nonwoven fabric is obtained by strongly pressing a melt-blow web at the temp. not more than glass transition point of the fiber in 5kg/cm.breadth and over. The nonwoven fabric obtained by such a way is wound on the circumferential surface of a cylindrical perforated pipe in a multilayer and a filtration drum having a cavity in the center thereof is formed and thereafter used for filtration. Drainage dispersed with mineral particles not more than 5.0mum particle diameter is passed to the inside from the outside in the radial direction for the cross-section of the filtration drum and thereby the drainage is filtered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体、とりわけ排水中に含有される無機質粒子
を除去するための処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a treatment method for removing inorganic particles contained in liquids, especially wastewater.

〔従来の技術〕[Conventional technology]

近年、エレクトロニクスの進歩に伴い、LSIなどの小
型半導体装置の製造に当っては、丸棒状の半導体素材を
薄い厚みで順次切り落して多数の薄い円板状基板を作る
ことが行なわれている。ところで、この場合、切削部に
水をかけながら切断を行うが、この水の中には切断によ
って住じた0、3〜1μm程度の径をもつ、半導体素材
の切屑が多量に入り込む。この排水からの切屑や純水の
回収が要求されるとともに、とりわけ、半導体基板の材
料がガリウム砒素のような場合には有害物質を含むため
直接排出することは出来ず、この排水の浄化が要求され
る。
2. Description of the Related Art In recent years, with advances in electronics, in manufacturing small semiconductor devices such as LSIs, a large number of thin disc-shaped substrates are manufactured by sequentially cutting a round bar-shaped semiconductor material into thin pieces. Incidentally, in this case, cutting is performed while spraying water on the cutting part, and a large amount of chips of the semiconductor material with a diameter of about 0.3 to 1 μm, which are present during cutting, enter into the water. It is necessary to collect chips and pure water from this wastewater, and in particular, in cases where the semiconductor substrate material is gallium arsenide, it cannot be directly discharged because it contains harmful substances, so it is necessary to purify this wastewater. be done.

この排水の濾過装置としては、特開昭60−82113
、同60−175511に開示されているように、従来
のカートリッジ方式に対して、面倒な交換作業なしに長
時間連続して液体濾過を行うことが出来る方式として、
中心に′空胴部をもつように濾材をロール状に巻いて、
目詰まりした際には表面濾材を別に巻取って、常に新し
い濾材により濾過を行うようにした方式が考案されてい
る。このような高性能液体濾過においては、l)高い除
去効率、2)低い初期圧力損失、に加え、3)高い引張
り強力を合わせもつ濾材を用いねばならない。
As a filtration device for this wastewater, Japanese Patent Application Laid-Open No. 60-82113
, 60-175511, as a method that can perform liquid filtration continuously for a long time without troublesome replacement work, compared to the conventional cartridge method.
Wrap the filter media into a roll with a cavity in the center.
A method has been devised in which the surface filter medium is separately rolled up when it becomes clogged, so that filtration is always performed using a new filter medium. In such high-performance liquid filtration, a filter medium must be used that has l) high removal efficiency, 2) low initial pressure drop, and 3) high tensile strength.

これら1)、2)および3)の特徴を全てあわせもつ濾
材は現状までのところなかった。
To date, there has been no filter medium that has all of these characteristics 1), 2), and 3).

〔発明が解決しようとする問題点) 液体の濾過材として現在までに開発されているものは、
金属粒の焼結体、セルローズ、合成樹脂、アスベストな
どの繊維を抄紙したもの、合成樹脂フィルムに孔をあけ
た所謂ボアタイプである。これら濾材の濾過原理は、除
去しようとする粒子の粒径より小さい孔を作り、これに
よって粒子の通過を阻止して除去しようとするものであ
る。しかしながら、焼結金属によるものでは金属粒子の
大きさにもとづく制限から、また、ボアタイプのもので
は、孔明は技術上の制約から孔の径を小さくすることに
限界があり、要求性能を満たすような高い除去効率と低
い初期圧力損失をあわせもつ濾過材を作り得なかった。
[Problems to be solved by the invention] The liquid filter media that have been developed to date are:
It is a so-called bore type paper made from sintered metal grains, cellulose, synthetic resin, asbestos, or other fibers, or a synthetic resin film with holes. The filtration principle of these filter media is to create pores smaller than the particle size of the particles to be removed, thereby blocking the passage of the particles and removing them. However, with sintered metals, there are limitations based on the size of the metal particles, and with bore types, there are limits to how small the hole diameter can be made due to technical constraints, and it is difficult to reduce the hole diameter to meet the required performance. It has not been possible to create a filter material that has both high removal efficiency and low initial pressure loss.

一方、繊維を抄紙したものは、抄紙するために繊維長を
短り(−般には10以下)する必要があり、このためシ
ートの引張り強力が低かった。引張り強力を高めるため
に、シートにバインダーを付与すると、除去効率および
初期正順のいずれの性能も大巾に低下し、結局、先の3
つの要件を全てを満たすものは存在しなかった。
On the other hand, when paper is made from fibers, it is necessary to shorten the fiber length (generally 10 or less) in order to make paper, and as a result, the tensile strength of the sheet is low. When a binder is added to the sheet in order to increase its tensile strength, both the removal efficiency and the initial normal order performance are drastically reduced, and as a result, the above three
There was no one that met all of the requirements.

本発明の目的は、要するに、高性能で高強力な液体濾材
を用いて、工業的有利に排液から無機質粒子を除去する
方法を提供するにある。とりわけ、本発明で用いる濾材
は、除去効率および初期圧損に優れていることに加え、
高い引張り強力も保有するため、従来のカートリッジ方
式ではなくロール方式による連続的濾過を可能としたも
のであり、前記半導体素子の洗浄水などの高度の浄化に
よる性能の向上、公害防止等に大きく寄与する。
Briefly, the object of the present invention is to provide an industrially advantageous method for removing inorganic particles from a waste liquid using a high-performance and high-strength liquid filter medium. In particular, the filter medium used in the present invention has excellent removal efficiency and initial pressure drop, as well as
Because it also has high tensile strength, it enables continuous filtration using a roll method rather than the conventional cartridge method, and greatly contributes to improving performance and preventing pollution through high-level purification of water for washing semiconductor devices. do.

〔問題点を解決するための手段および作用〕本発明に係
る無機質粒子が分散した排液の処理方法は、粒径5.0
μm以下の無機質の粒子が分散した排液を、平均単糸繊
維径0.3〜3.0μmの極細繊維がランダムに絡み合
ってなり、嵩密度が0.35g/calを越え、長さ方
向の引張り強力が少くとも200g/Cm巾であるメル
トブロー法による不織布を多孔管周に巻き付けて形成し
た濾過用の横断面に沿った方向に通液して、前記無機質
の粒子を実質的に除去することを特徴とする。
[Means and effects for solving the problems] The method for treating waste liquid in which inorganic particles are dispersed according to the present invention is based on
The waste liquid in which inorganic particles of less than μm are dispersed is made up of ultrafine fibers with an average single fiber diameter of 0.3 to 3.0 μm, which are randomly intertwined, have a bulk density of more than 0.35 g/cal, and have a longitudinal direction. Substantially removing the inorganic particles by passing liquid in a direction along a filtration cross section formed by winding a melt-blown nonwoven fabric having a tensile strength of at least 200 g/cm width around a porous tube. It is characterized by

メルトブロー法は、例えば特開昭50−46972号に
開示されており、熱可塑性重合体を溶融してオリフィス
から吐出させ、オリフィスの両側にあるスリットから加
熱された高速ガスを噴射して吐出体を細化することによ
り極細の繊維を得るプロセスである。このメルトブロー
法で得られた繊維ウェブは、極細繊維どうしがランダム
に絡み合った不織布である。本発明で使用する不織布で
は、この極細繊維が繊維束状になっていなくて実質的に
単繊維状に分離していることが重要である。
The melt blow method is disclosed, for example, in Japanese Patent Application Laid-open No. 50-46972, in which a thermoplastic polymer is melted and discharged from an orifice, and heated high-speed gas is injected from slits on both sides of the orifice to blow the discharge body. This is the process of obtaining ultra-fine fibers by thinning. The fibrous web obtained by this melt blowing method is a nonwoven fabric in which ultrafine fibers are randomly entangled with each other. In the nonwoven fabric used in the present invention, it is important that the ultrafine fibers are not formed into fiber bundles but are substantially separated into single fibers.

本発明者らの検討によれば、極細繊維が繊維束状のまま
で存在する不織布では、極細繊維としての機能がほとん
ど発揮されず、太い繊維の不織布と大差がないフィルタ
ー性能しか得られないことが判った。即ち、極細繊維ど
うしのランダムな絡み合いで形成される微小空間が除去
率を高めるポイントであることが判り、実質的に単繊維
状に分離した繊維集合構造をもつ不織布にすることによ
り高性能な除去率と併せ低い圧力損失が達成された。こ
の実質的に繊維束を含まないランダムな極細繊維不織布
を得るのはメルトブロー法が最適である。
According to the studies conducted by the present inventors, a nonwoven fabric in which ultrafine fibers exist in the form of fiber bundles hardly exhibits the function of ultrafine fibers, and only provides filter performance that is not much different from that of a nonwoven fabric with thick fibers. It turns out. In other words, it was found that the tiny spaces formed by the random entanglement of ultra-fine fibers are the key to increasing the removal rate, and by creating a nonwoven fabric with a fiber aggregate structure that is essentially separated into single fibers, high-performance removal can be achieved. A low pressure drop was achieved along with a high efficiency. The melt-blowing method is optimal for obtaining this random microfiber nonwoven fabric that does not substantially contain fiber bundles.

実公昭55−41292には、極細繊維が複数本集束し
てなる極細繊維集束状繊維が絡合して構成された不織布
からなる高性能エアフィルターが開示されている。この
不織布は、極細繊維が単繊維状に分離した不織布に比べ
て圧力FM失を抑えることは可能であるが、反面捕集効
率は著しく低下する。この公報の不織布を揉む、叩たく
、こする等の+IJ、M的処理を施こしても1部の繊維
を部分的に解繊することが出来るだけで、本発明で用い
る不織布にみられるような高度な解繊状態は達成されム
い。
Japanese Utility Model Publication No. 55-41292 discloses a high-performance air filter made of a non-woven fabric formed by intertwining a plurality of ultrafine fiber bundles. Although this nonwoven fabric can suppress pressure FM loss compared to a nonwoven fabric in which ultrafine fibers are separated into single fibers, the collection efficiency is significantly lowered. Even if the nonwoven fabric of this publication is subjected to +IJ and M treatments such as kneading, pounding, and rubbing, it is only possible to partially defibrate some of the fibers, as seen in the nonwoven fabric used in the present invention. A high degree of defibration is unlikely to be achieved.

本発明で用いるメルトブロー極細繊維の平均単糸繊維径
は0.3〜3.(!11m、好ましくは、0.5〜2、
0μmである。3.0μmを超えると除去効率が極端に
低下してしまい、本発明で用いる高性能フィルターとし
ては不適である。−方、0.3μm未満では、不織布の
引張り強力が低下し、かつ圧力陽失が大きくなりすぎ、
本発明の目的は達成されない。
The average single fiber diameter of the melt-blown ultrafine fibers used in the present invention is 0.3 to 3. (!11m, preferably 0.5-2,
It is 0 μm. If it exceeds 3.0 μm, the removal efficiency will be extremely reduced, making it unsuitable as a high-performance filter for use in the present invention. - On the other hand, if it is less than 0.3 μm, the tensile strength of the nonwoven fabric will decrease and the pressure loss will be too large.
The object of the invention is not achieved.

メルトブロー法で得られた繊維の直径は極めて小さいた
め繊維の長さを正確に測定することは困難であるが、繊
維の平均の長さは30mm以上、通常100mm〜数百
mmである。繊維長が比較的長いことが本発明で用いる
不織布の引張り強力が高い要因となっている。
Although it is difficult to measure the length of the fibers accurately because the diameter of the fibers obtained by the melt-blowing method is extremely small, the average length of the fibers is 30 mm or more, usually 100 mm to several hundred mm. The relatively long fiber length is a factor contributing to the high tensile strength of the nonwoven fabric used in the present invention.

極細繊維の素材としては、メルトブロー可能な熱可望性
重合体であれば何でもよく、例えば、ポリエステル、ポ
リアミド、ポリオレフィンおよびこれらのブレンド、共
重合体などが挙げられる。
The material for the ultrafine fibers may be any thermoplastic polymer that can be melt-blown, such as polyester, polyamide, polyolefin, and blends and copolymers thereof.

高い嵩密度と大きい引張り強力がi1易いことからポリ
エステル、特に熱収縮率が大きいポリエチレンテレフタ
レートが好ましい。
Polyester is preferred, especially polyethylene terephthalate, which has a high heat shrinkage rate, because it is easy to achieve high bulk density and high tensile strength.

本発明で使用する不織布の嵩密度は0.35g/c++
tより大でなければならず、好ましくは、0.60g/
cJ以下、より好ましくは0.55g/cn!以下であ
る。嵩密度は、除去効率、初期圧力損失のみならず不織
布の引張り強力に寄与する重要な要素である。この嵩密
度が過大であると、除去効率、引張り強力は高まるが初
期圧力損失が過大となるので好ましくない。他方、0.
35g/cnl以下では初期圧力損失が小さくなる点で
は好ましいが、反面引張り強力が低くなり不適となる。
The bulk density of the nonwoven fabric used in the present invention is 0.35 g/c++
must be greater than t, preferably 0.60 g/
cJ or less, preferably 0.55 g/cn! It is as follows. Bulk density is an important factor contributing not only to removal efficiency and initial pressure drop, but also to the tensile strength of the nonwoven fabric. If the bulk density is too large, the removal efficiency and tensile strength will increase, but the initial pressure loss will become too large, which is not preferable. On the other hand, 0.
If it is less than 35 g/cnl, it is preferable because the initial pressure loss will be small, but on the other hand, the tensile strength will be low and it will be unsuitable.

この様に高い嵩密度を有する不織布を得る方法としては
、メルトブローウェブをその繊維のガラス転位点以下の
温度で、5 kg / cm巾以上で強くプレスする方
法が好ましい。この条件でプレスを行えば繊維相互間で
熱融着が起こることが無<、濾過性能および強力が高ま
る。
As a method for obtaining a nonwoven fabric having such a high bulk density, it is preferable to strongly press a melt-blown web at a width of 5 kg/cm or more at a temperature below the glass transition point of the fibers. If pressing is carried out under these conditions, there will be no heat fusion between the fibers, and the filtration performance and strength will be increased.

本発明で使用する不織布の1方向(長さ方向)の引張り
強力は少なくとも200g/cm以上、好ましくは30
0g/cm以上、更に好ましくは500g/c+++以
上である。この強力以上で初めてロール方式の連続濾過
装置用の濾材として使用することが可能となる。極細繊
維を繊維束状でなく単繊維に分離したランダム1不織布
とした場合、不織布の引張り強力を高く保持することが
著しく困難となる。本発明者は、比較的繊維長の長い極
!!l繊維が得られるメルトブロー極細繊維を用いたこ
とと、この極細繊維不織布の嵩密度を0−35g/cJ
より大と高めて、繊維相互の絡み合い程度を高めること
により、この高い強力を、高いフィルター性能(高い除
去効率、低い圧力損失)を満たした上で達成することが
出来た。
The tensile strength of the nonwoven fabric used in the present invention in one direction (lengthwise direction) is at least 200 g/cm, preferably 30 g/cm or more.
It is 0 g/cm or more, more preferably 500 g/c+++ or more. For the first time, it becomes possible to use it as a filter medium for a roll-type continuous filtration device. When a random non-woven fabric in which the microfibers are separated into single fibers rather than fiber bundles is used, it becomes extremely difficult to maintain a high tensile strength of the non-woven fabric. The present inventor discovered that the fibers are relatively long! ! 1 fiber was used, and the bulk density of this ultrafine fiber nonwoven fabric was 0-35 g/cJ.
By increasing the size and increasing the degree of intertwining of the fibers, it was possible to achieve this high strength while satisfying high filter performance (high removal efficiency, low pressure loss).

本発明で用いる不織布は捕集効率として70%以上、好
ましくは80%以上を有する。ここでいう捕集効率は0
.3μmのジオクチルテレフタレート(DOP)粒子で
測定した値である。この捕集効率であれば、排水中の切
断屑として0.3μm以上の粒径のものを99%以上除
去することが出来る。また、本発明で用いる不織布の初
期圧力損失は、風速が4 cm /sec、で50mm
以下、好ましくは、30mm HzO以下と低いもので
ある。
The nonwoven fabric used in the present invention has a collection efficiency of 70% or more, preferably 80% or more. The collection efficiency here is 0
.. This is a value measured using 3 μm dioctyl terephthalate (DOP) particles. With this collection efficiency, 99% or more of cutting debris with a particle size of 0.3 μm or more can be removed from wastewater. In addition, the initial pressure loss of the nonwoven fabric used in the present invention is 50 mm at a wind speed of 4 cm /sec.
Preferably, it is as low as 30 mm HzO or less.

本発明で用いる、不織布の目付は20〜loog/ =
であることが好ましい。20g/ m未満では引張り強
力が低下し、他方、100g/mを超えると初期圧力損
失が大きくなりすぎることがある。
The basis weight of the nonwoven fabric used in the present invention is 20~log/=
It is preferable that If it is less than 20 g/m, the tensile strength will decrease, while if it exceeds 100 g/m, the initial pressure loss may become too large.

上記不織布は通常円筒状の多孔管の周面に多層に巻付け
て、中心に空洞をもつ濾過用を形成して濾過に用いる。
The above-mentioned nonwoven fabric is usually used for filtration by wrapping it in multiple layers around the circumferential surface of a cylindrical porous tube to form a filter having a cavity in the center.

C,過処理すべき排水は、濾過用の横断面に沿った放射
方向に、外部から濾過胴内部へまたは濾過胴内部から外
部へ通液することによ/)濾過する。
C. The wastewater to be filtered is filtered by passing it from the outside into the filter barrel or from the filter barrel to the outside in a radial direction along the filtering cross section.

上記のように濾過用を形成し、外部にこの不織布の巻取
軸を設けて、濾過用の外周面から内部へ排水を通液して
濾過を行う場合、所定期間が経過して目詰りが始まった
とき外部の巻取軸に不織布を巻取って、新しい不織布濾
材面を表面に露出することにより連続して濾過を行うこ
とができる。
If a filter is formed as described above, a winding shaft of this nonwoven fabric is provided outside, and drainage is passed from the outer peripheral surface of the filter to the inside for filtration, clogging will occur after a predetermined period of time. When starting, the nonwoven fabric is wound up on an external winding shaft, and a new nonwoven filter medium surface is exposed to the surface, so that filtration can be performed continuously.

排水としては粒径5.08m以下、特に0.3〜1.0
μmの無機質の粒子が分散したものが処理される。その
ような無機質粒子としてはシリコンウェハー、ガリウム
・砒素ウェハー等の切屑が挙げられる。
As wastewater, the particle size is 5.08m or less, especially 0.3 to 1.0
Dispersed micrometer-sized inorganic particles are processed. Examples of such inorganic particles include chips from silicon wafers, gallium/arsenic wafers, and the like.

〔実施例〕〔Example〕

次に、本発明の排液処理方法の具体例を更に詳細に説明
する。
Next, a specific example of the wastewater treatment method of the present invention will be explained in more detail.

なお、嵩密度は、目付量を厚みで除した値である。厚み
はダイアルシノクネスゲージH(ビーコック型:尾崎製
作所)を用い測定した。また、引張り強力は不織布サン
プルを巾2cm、把持長10cm、引張りスピード10
cm/分の条件でテンシロンを用いて測定した値を巾1
cm当りで表わしたものである。
Note that the bulk density is a value obtained by dividing the basis weight by the thickness. The thickness was measured using a Dial Shinokness Gauge H (Beecock type: Ozaki Seisakusho). In addition, the tensile strength was measured using a nonwoven fabric sample with a width of 2 cm, a gripping length of 10 cm, and a tensile speed of 10.
Width 1 is the value measured using Tensilon under the condition of cm/min.
It is expressed per cm.

実施例1゜ ポリエチレンテレフタレートをメルトブロー法で紡糸し
、目付50g/ rd J巾1m、長さ600m(7)
’7.zブとして巻取った。このウェブの平均単糸繊維
径(走査型電子顕微鏡で写真撮影を行い測定)は、1.
5μmであった。このウェブを室温(25℃)で10k
g/cm巾の圧力でプレスし連続的に巻取った。
Example 1 Polyethylene terephthalate was spun using the melt blow method, with a basis weight of 50 g/rd J, width of 1 m, and length of 600 m (7).
'7. It was wound up as a Z-bu. The average single fiber diameter of this web (measured by taking photographs with a scanning electron microscope) was 1.
It was 5 μm. This web was heated for 10k at room temperature (25℃).
It was pressed with a pressure of g/cm width and continuously wound.

この不織布の嵩密度は0.45g/cII!、引張り強
力は長さ方向で670g/cm、巾方向で350g/a
mであった。
The bulk density of this nonwoven fabric is 0.45g/cII! , Tensile strength is 670g/cm in the length direction and 350g/a in the width direction.
It was m.

また、DOP捕集効率は90%であった。この不織布を
多孔をもった円筒管に多層に巻き付けて、中心に空洞部
をもつ濾過用を形成させ、その外部にこの不織布(濾材
)の巻取軸を設けて、濾過用の外周面から内周面方向に
被処理水を供給して濾過を行った。被処理水として、1
0cc当り約30.000〜so、ooo個のシリコン
切断屑を含む排出水を流量251/分で通し濾過したと
ころ、排水中の切断屑の数は4?4Th 10 cc当
り100個(粒径0.3〜1.0μm)との良好な結果
が得られた。
Moreover, the DOP collection efficiency was 90%. This non-woven fabric is wound in multiple layers around a cylindrical tube with porous holes to form a filtration tube with a cavity in the center, and a winding shaft of this non-woven fabric (filter material) is provided on the outside of the cylindrical tube. Filtration was performed by supplying water to be treated in the circumferential direction. As treated water, 1
When drained water containing approximately 30,000 to so, ooo silicon cutting chips per 0 cc was passed through and filtered at a flow rate of 251/min, the number of cutting chips in the waste water was 4?4Th 100 pieces per 10 cc (particle size 0). A good result of .3 to 1.0 μm) was obtained.

目詰り後に巻取軸に不織布濾材を巻取って新しい濾材面
を表面に露出することにより連続的に濾過を続けること
が出来た。
After clogging, continuous filtration was possible by winding up the nonwoven filter material around the winding shaft and exposing the new filter material surface to the surface.

実施例2゜ ポリプロピレンをメルトブロー繊 d、巾1m、長さ600+n、平均単糸繊維径0.8μ
mのウェブを得た。このウェブを室温で15kg/am
巾の圧力でプレスして、嵩密度0.53g/cflI、
引張り強力は長さ方向740g/cm、巾方向560g
/ ctn、 D OP捕集効率99.9%の不織布を
得た。この不織布を用いて実施例1と同様な排水処理テ
ストを行ったところ、除去率は99.9%以上であり、
極めて良好であった。
Example 2 Melt-blown polypropylene fibers d, width 1m, length 600+n, average single fiber diameter 0.8μ
A web of m was obtained. 15kg/am of this web at room temperature
Pressed with width pressure, bulk density 0.53g/cflI,
Tensile strength is 740g/cm in the length direction and 560g in the width direction.
/ctn, D A nonwoven fabric with an OP collection efficiency of 99.9% was obtained. When a wastewater treatment test similar to that in Example 1 was conducted using this nonwoven fabric, the removal rate was 99.9% or more.
It was extremely good.

〔発明の効果〕〔Effect of the invention〕

本発明で用いる平均単糸繊維径0.3〜3.0μmのメ
ルトブロー極細繊維がランダムに絡み合った0、35g
/cfflを越える嵩密度を存する不織布は、メルトブ
ロー極細繊維が実質的に単繊維状に分離して交絡した構
造にもとづくミクロ空間による優れたフィルター性能と
、メルトブロー繊維という比較的長い繊維長の繊維の高
度な交絡構造に基づく高い引張り強力を有している。こ
れにより、高い除去効率と低い初期圧力損失に加え高い
引張り強力という3つの優れた性能を有する液体処理用
濾材が得られる。この濾材は、従来のカートリッジ方式
に対して、面倒な交換操作なしに長時間連続して液体濾
過を行うことが出来るロール方式の濾過搬用の濾材とし
て最適のものであり、特に、水中の半導体素材(シリコ
ンウェハー、ガリウム・砒素ウェハー等)の切屑(0,
3〜1μm程度の径)の除去と純水の回収に有効な濾材
であり、この発明の工業的意義は大きい。
0.35 g of randomly intertwined melt-blown microfibers with an average single fiber diameter of 0.3 to 3.0 μm used in the present invention
Nonwoven fabrics with a bulk density exceeding /cffl have excellent filter performance due to the micro-spaces based on a structure in which melt-blown ultrafine fibers are essentially separated into single fibers and intertwined, and they also have excellent filter performance due to the micro-spaces based on the structure in which melt-blown ultrafine fibers are essentially separated into single fibers and intertwined. It has high tensile strength based on its highly entangled structure. As a result, a filter medium for liquid treatment can be obtained that has three excellent performances: high removal efficiency, low initial pressure loss, and high tensile strength. This filter material is ideal for use in roll-type filtration transport, which allows liquid filtration to be carried out continuously for long periods of time without the need for troublesome replacement operations, compared to conventional cartridge-type filters. (silicon wafer, gallium/arsenic wafer, etc.) chips (0,
This invention is of great industrial significance as it is an effective filter material for removing particles (with a diameter of about 3 to 1 μm) and recovering pure water.

Claims (1)

【特許請求の範囲】 1、粒径5.0μm以下の無機質の粒子が分散した排液
を、平均単糸繊維径0.3〜3.0μmの極細繊維がラ
ンダムに絡み合ってなり、嵩密度が0.35g/cm^
3を越え、長さ方向の引張り強力が少くとも200g/
cm幅であるメルトブロー法による不織布を多孔管周に
巻き付けて形成した濾過胴の横断面に沿った方向に通液
して、前記無機質の粒子を実質的に除去することを特徴
とする無機質粒子が分散した排液の処理方法。 2、不織布の目付が20〜100g/m^2であって、
粒径0.3μmのジオクチルテレフタレートの粒子を少
くとも70%以上捕集し得る特許請求の範囲第1項記載
の排液の処理方法。
[Claims] 1. The waste liquid in which inorganic particles with a particle size of 5.0 μm or less are dispersed is made up of ultrafine fibers with an average single fiber diameter of 0.3 to 3.0 μm randomly intertwined, and the bulk density is 0.35g/cm^
3 and the tensile strength in the longitudinal direction is at least 200g/
The inorganic particles are substantially removed by passing liquid in the direction along the cross section of a filtration drum formed by winding a nonwoven fabric having a width of 1.2 cm around a porous pipe using a melt-blown method. How to treat dispersed wastewater. 2. The basis weight of the nonwoven fabric is 20 to 100 g/m^2,
The method for treating waste liquid according to claim 1, which is capable of collecting at least 70% of dioctyl terephthalate particles having a particle size of 0.3 μm.
JP61151577A 1986-06-30 1986-06-30 Method for treating waste liquid in which inorganic particles are dispersed Expired - Fee Related JPH0811167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61151577A JPH0811167B2 (en) 1986-06-30 1986-06-30 Method for treating waste liquid in which inorganic particles are dispersed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61151577A JPH0811167B2 (en) 1986-06-30 1986-06-30 Method for treating waste liquid in which inorganic particles are dispersed

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5161797A Division JP2531486B2 (en) 1993-06-30 1993-06-30 Filter medium for treating waste liquid in which inorganic particles are dispersed

Publications (2)

Publication Number Publication Date
JPS637812A true JPS637812A (en) 1988-01-13
JPH0811167B2 JPH0811167B2 (en) 1996-02-07

Family

ID=15521558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61151577A Expired - Fee Related JPH0811167B2 (en) 1986-06-30 1986-06-30 Method for treating waste liquid in which inorganic particles are dispersed

Country Status (1)

Country Link
JP (1) JPH0811167B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125404A (en) * 2008-11-28 2010-06-10 Mitsui Chemicals Inc Liquid filter
JP2014024061A (en) * 2013-10-02 2014-02-06 Mitsui Chemicals Inc Liquid filter
JP2016121430A (en) * 2016-02-10 2016-07-07 三井化学株式会社 Meltblown nonwoven fabric and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053666A (en) * 1973-08-31 1975-05-12
JPS60216818A (en) * 1984-01-06 1985-10-30 ポ−ル・コ−ポレ−シヨン Cylindrical fibrous structure and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053666A (en) * 1973-08-31 1975-05-12
JPS60216818A (en) * 1984-01-06 1985-10-30 ポ−ル・コ−ポレ−シヨン Cylindrical fibrous structure and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125404A (en) * 2008-11-28 2010-06-10 Mitsui Chemicals Inc Liquid filter
JP2014024061A (en) * 2013-10-02 2014-02-06 Mitsui Chemicals Inc Liquid filter
JP2016121430A (en) * 2016-02-10 2016-07-07 三井化学株式会社 Meltblown nonwoven fabric and use thereof

Also Published As

Publication number Publication date
JPH0811167B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US4824451A (en) Melt-blown filter medium
EP0084711B1 (en) Filter
JP4236284B2 (en) Cylindrical filter
JP2006503696A (en) Filter media and method of entanglement treatment with fluid with improved static elimination
JP4083951B2 (en) Cylindrical filter
JP2002085918A (en) Filter medium for liquid filtration and production process of the same
JPS637812A (en) Treatment of drainage dispersed with mineral particle
JP3293180B2 (en) Liquid filter
JP2531486B2 (en) Filter medium for treating waste liquid in which inorganic particles are dispersed
JPH08196829A (en) Air cleaning filter medium and its production
JPH0671122A (en) Filter cloth and preparation of the same
WO2021220720A1 (en) Depth filter
KR920003765B1 (en) Method of filter body with cellulose spun bond nonwoven fabric as raw material
JP2001321620A (en) Cylindrical filter
JPH10216430A (en) Filter for treatment of polluted water
JP3144488B2 (en) Non-woven catalyst
JP4464433B2 (en) Cylindrical filter
JP3373877B2 (en) Nonwoven fabric having pore diameter gradient and method for producing the same
JP3712464B2 (en) Cartridge filter and manufacturing method thereof
JPH0518614U (en) Cartridge Filter
JP3421846B2 (en) Method for filtering suspension containing concrete or stone sludge
JP3660055B2 (en) Cartridge filter and manufacturing method thereof
JPH11156125A (en) Depth type filter
JPH0691105A (en) Cartridge filter
JPH04193316A (en) Filter material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees