JPS637788A - Recovering method for coenzyme - Google Patents

Recovering method for coenzyme

Info

Publication number
JPS637788A
JPS637788A JP15048386A JP15048386A JPS637788A JP S637788 A JPS637788 A JP S637788A JP 15048386 A JP15048386 A JP 15048386A JP 15048386 A JP15048386 A JP 15048386A JP S637788 A JPS637788 A JP S637788A
Authority
JP
Japan
Prior art keywords
coenzyme
reaction
moving bed
coenzymes
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15048386A
Other languages
Japanese (ja)
Other versions
JPH0577393B2 (en
Inventor
Hisafumi Shiomi
尚史 塩見
Hideki Fukuda
秀樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP15048386A priority Critical patent/JPS637788A/en
Publication of JPS637788A publication Critical patent/JPS637788A/en
Publication of JPH0577393B2 publication Critical patent/JPH0577393B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To make it possible to repeatedly use a coenzyme and continuously carry out reaction, by separating the coenzyme from a reaction mixture containing the coenzyme with a pseudo-moving bed and simultaneously separating the reaction product and/or unreacted substances, etc. CONSTITUTION:A reaction solution is fed from a solution feed tank 1 to an enzymic reactor 2, passed through a cushion tank 3 and then to a pseudo-moving bed column 4 prepared by using an adsorption and desorption carrier such as a strong acidic or weak acidic ion exchange resin, e.g. zeolite, silica gel, Sephadex, Amberlite, etc. The coenzyme, reaction product, unreacted substances, etc., are continuously separated with a desorbing solution of the same composition as the solvent in the reaction solution and recycled through an immobilization column.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、補酵素の回収方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for recovering coenzymes.

従来の技術 酵素および酵素群の固定化技術の著しい発展に伴い、補
酵素を必要としない比較的単純な反応系においては、固
定化酵素あるいは固定化酵素群による有用物質生産の工
業化にも成功し始めている。
Conventional technology With the remarkable development of enzyme and enzyme immobilization technology, in relatively simple reaction systems that do not require coenzymes, we have succeeded in industrializing the production of useful substances using immobilized enzymes or immobilized enzyme groups. It's starting.

−方、多くの産業上有用と考えられる酵素は、補酵素を
必要とする。しかしながら、補酵素は高価であり、これ
を安価にくり返し再生しながら使用できるシステムがな
い。即ち、従来、補酵素が関与する酵素反応は回分操作
により行なわれ、補酵素等は使い捨てにされていたので
ある。それ故、そのような酵素を用いる有用物質の生産
は工業的には現在のところほとんど成功していない。
-On the other hand, many enzymes considered to be industrially useful require coenzymes. However, coenzymes are expensive, and there is no system that allows them to be used while being repeatedly regenerated at low cost. That is, conventionally, enzymatic reactions involving coenzymes have been carried out in batches, and coenzymes and the like have been disposable. Therefore, the production of useful substances using such enzymes has so far had little success industrially.

このような状況の下で、補酵素を有効に再利用するため
の研究が進められつつある。けれどもいずれの研究も補
酵素を酵素反応系に閉じ込めることにより補酵素を再利
用しようというものであり、次のような方法が例示でき
る。
Under these circumstances, research is underway to effectively reuse coenzymes. However, all of these studies aim to reuse coenzymes by confining them in the enzyme reaction system, and examples include the following methods.

■ 補酵素を可溶性高分子に結合する方法(例えば、ケ
イ モスバッハ(K、 Mo5bach)。
■ Methods for binding coenzymes to soluble macromolecules (eg, Keimosbach (K, Mo5bach)).

アドヴアンスト・エンザイモロノー(AdvEnzym
ol、 ) 4’6.205(1978) )■ イオ
ン交換樹脂に固定化する方法 (例えば、酵素工学(東京化学同人1981年発行)) ■ 分画分子量が補酵素よりも小さな膜、例えば逆浸透
膜により固定化する方法 (例えば、アール、ピー、チャンバー(R,P。
AdvEnzym
ol, ) 4'6.205 (1978) ) ■ Method of immobilization on ion exchange resin (e.g., Enzyme Engineering (Tokyo Kagaku Doujin, published in 1981)) ■ Membrane with a cut-off molecular weight smaller than that of the coenzyme, such as reverse osmosis Methods of immobilization with membranes (for example, R, P, chamber (R, P.

Chamber)ら、エンザイム・エンジニアリング(
E nzyme  Engineering) 2巻、
195(1974)、プレナム出版(P lenum 
 P ress))■ 液体膜を用いて固定化する方法 (例えば、ニス、ダブリュ、メイ(S、W、May)ら
、バイオケミカル・アンド・バイオフィジカル・リサー
チ・コミュニケーションズ(B iochem、Bio
phys、 Res、 Comm、 )67.786 
 (1976))。
Chamber) et al., Enzyme Engineering (
Enzyme Engineering) Volume 2,
195 (1974), Plenum Publishing.
(Press))■ Immobilization method using a liquid film (for example, Varnish, W. May, et al., Biochemical and Biophysical Research Communications (Biochem, Bio
phys, Res, Comm, )67.786
(1976)).

しかしながら、■および■の方法では、補酵素の固定化
に手間とコストが相当かかる上に、高分子化していない
補酵素と比して酵素活性が低いため、工業化には不向き
である。−方、■および■の方法は、■および■が有す
る欠点は無いが、適用可能な系が極めて限られてしまう
という大きな欠点を有し、且つ、反応速度も極めて遅い
ため工業的には全く使えない。さらに、特記すべきこと
は、■〜■のいずれの場合ら、反応生成物と未反応基質
あるいは副生成物と冬分離する操作を必要とすることで
ある。
However, methods (1) and (2) are unsuitable for industrialization because immobilization of the coenzyme requires considerable effort and cost, and the enzyme activity is lower than that of a coenzyme that has not been polymerized. Methods (1) and (2) do not have the disadvantages of (2) and (2), but they have the major disadvantage of extremely limited applicable systems, and the reaction rate is also extremely slow, making them completely unsuitable for industrial use. Not available. Furthermore, it should be noted that in any of the cases (1) to (2), an operation is required to separate the reaction product from unreacted substrates or by-products.

本発明の目的および構成 上記従来技術の欠点を克服し、工業化に耐えうる有効な
補酵素の再利用システムの開発に着手した。そして、鋭
意研究を行った結果、補酵素を反応系に閉じ込めるとい
う考え方に問題があることに気づき、反応系から出てく
る補酵素を効率よく回収する方法について研究を重ね、
擬似移動床により生成物を連続的に分離回収すると同時
に補酵素も回収することが最善であることを見い出し、
本発明を完成するに至った。
Object and Structure of the Present Invention We have begun to develop an effective coenzyme reuse system that overcomes the drawbacks of the above-mentioned conventional techniques and can withstand industrialization. As a result of intensive research, he realized that there was a problem with the idea of confining coenzymes in the reaction system, and continued research on how to efficiently recover the coenzymes that come out of the reaction system.
We discovered that it is best to continuously separate and recover the product using a simulated moving bed and also recover the coenzyme at the same time.
The present invention has now been completed.

すなわち、本発明の要旨は、補酵素を含む反応混合物か
ら擬似移動床により補酵素を分離することを特徴とする
補酵素の回収方法に存する。
That is, the gist of the present invention resides in a method for recovering a coenzyme, which is characterized by separating the coenzyme from a reaction mixture containing the coenzyme using a simulated moving bed.

本発明の回収方法を実際に採用する場合、その工程は、
補酵素を再生する系(以下システムAと呼ぶ)、補酵素
を必要とする酵素反応系(以下システムBと呼ぶモ)、
および補酵素を回収する擬似移動床(以下システムCと
呼ぶ)の3つのシステムからなる。これら3つのシステ
ムを、対象とする補酵素および反応系に応じて都合のよ
い様に組み合わせればよい。
When actually adopting the recovery method of the present invention, the steps are as follows:
A system that regenerates coenzymes (hereinafter referred to as system A), an enzyme reaction system that requires coenzymes (hereinafter referred to as system B),
and a simulated moving bed (hereinafter referred to as system C) for recovering coenzymes. These three systems may be combined in any convenient manner depending on the target coenzyme and reaction system.

例えばシステムAとシステムBが同時に進行せざるをえ
ない場合、あるいはシステムAとシステムBの反応条件
が同一あるいは類似である場合(以下、ケースIと呼ぶ
、。)、システムAとシステムBは同一反応器で反応せ
しめ、システムCの操作を行なうという順序あるいは円
順列が望ましい。
For example, if system A and system B must proceed simultaneously, or if the reaction conditions of system A and system B are the same or similar (hereinafter referred to as case I), system A and system B are the same. The order or circular permutation of reacting in a reactor and operating System C is preferred.

しかし、システムAの反応基質の1つあるいはそれ以上
がシステムBの反応を阻害し、且つシステムAの反応を
行わしめると該阻害物質が著しく減少する場合(以下、
ケース■と呼ぶ。)、システムA、システムB、システ
ムCの順序あるいは円順列に従って操作することが望ま
しい。
However, if one or more of the reaction substrates of system A inhibit the reaction of system B, and the inhibitory substances are significantly reduced when the reaction of system A is carried out (hereinafter referred to as
It is called case ■. ), system A, system B, system C or a circular permutation.

また、システムAの反応基質あるいは副生成物の1つあ
るいはそれ以上が、システムBの反応を阻害し、システ
ムAの反応を行わしめることで、該阻害物質が著しく減
少しないか多くなる場合(以下ケース■と呼ぶ。)、シ
ステムA、システムC,システムBの順列あるいは円順
列により行なうことが望ましい。
Also, if one or more of the reaction substrates or by-products of system A inhibit the reaction of system B and cause the reaction of system A to occur, the inhibitory substance is not significantly reduced or increases (hereinafter referred to as (referred to as case (2)), it is desirable to carry out the permutation of system A, system C, system B, or circular permutation.

ここで、円順列と言及した意味は、例えば、システムA
、システムC,システムBの順に行なう操作も、システ
ムB、システムA、システムCの順に行なう操作も同一
とみなせるという意味であり、可能な円順列はすべて含
めうる。
Here, the meaning referred to as circular permutation is, for example, system A
This means that operations performed in the order of system C, system B, and system B, system A, and system C can be regarded as the same, and all possible circular permutations can be included.

また、反応液は、システムA、B、Cのいずれから入れ
てもよく、都合のよい所から入れればよい。またシステ
ムAとシステムBの反応液組成を別にすることも可能で
あり、反応系に適したものを選択すればよい。
Further, the reaction solution may be introduced from any of systems A, B, and C, and may be introduced from any convenient location. It is also possible to have different reaction liquid compositions for system A and system B, and it is sufficient to select one suitable for the reaction system.

また、システムA、B、Cは、単一である必要はなく、
それぞれ2つ以上用いることも容易である。この場合、
システムA 、B、Cを使った可能な限りの順列組み合
わせとして容易に類推できる。
Also, systems A, B, and C do not need to be single;
It is also easy to use two or more of each. in this case,
This can be easily analogized to all possible permutations using systems A, B, and C.

多目的バイオリアクターの構築らできる。It is possible to construct a multipurpose bioreactor.

ここでいう補酵素とは、酵素作用の存在に不可欠な助酵
素であ、す、すべての補酵素は本発明の対象となり、例
えば、ニコチンアミドアデニンジヌクレオチド(以下N
ADと呼ぶ)、ニコチンアミドアデニンジヌクレオチド
リン酸(以下NADPと呼ぶ)、フラビンモノヌクレオ
チド(以下FMNと呼ぶ)、フラビンアデニンジヌクレ
オチド(以下FADと呼ぶ)、チアミンニリン酸、ビリ
ドキサルリン酸、コエンチームA、リボ酸9葉酸、グル
コース−1,6−ニリン酸、2.3−ジホスホグリセリ
ン酸、アデノシン三リン酸(以下ATPと呼ぶ)。
The term coenzyme here refers to a coenzyme that is essential for the existence of enzymatic action. All coenzymes are subject to the present invention, and include, for example, nicotinamide adenine dinucleotide (hereinafter referred to as N
AD), nicotinamide adenine dinucleotide phosphate (hereinafter referred to as NADP), flavin mononucleotide (hereinafter referred to as FMN), flavin adenine dinucleotide (hereinafter referred to as FAD), thiamine diphosphate, pyridoxal phosphate, coenzyme A, Riboic acid 9 folic acid, glucose-1,6-diphosphoric acid, 2,3-diphosphoglyceric acid, adenosine triphosphate (hereinafter referred to as ATP).

グアノシン二リン酸。ウリジンニリン酸グルコースなど
が挙げられる。
Guanosine diphosphate. Examples include uridine diphosphate glucose.

システムA1即ち補酵素を再生する系は、1つあるいは
それ以上の酵素群を用いて再生する系あるいは、酵素を
用いずに酵素を用いたと同様なことが行なえる系を一括
して呼ぶ。システムAとしては、既に公知の方法に従え
ばよく、いずれの方法を用いてもよい。ここでは、該公
知の方法のうち特に重要なATPおよびNADあるいは
NADPについて言及する。
System A1, that is, a system that regenerates coenzymes, collectively refers to a system that regenerates coenzymes using one or more enzyme groups, or a system that can perform the same thing as using an enzyme without using an enzyme. For the system A, any known method may be followed, and any method may be used. Here, ATP and NAD or NADP, which are particularly important among the known methods, will be mentioned.

ATPを再生する方法として、例えば、解糖系酵素群を
用いる方法、アセテートキナーゼ、アデニレートキナー
ゼを用いる方法、サルベージ合成法を用いる方法、呼吸
系を用いる方法、光リン酸化系を用いる方法、電気化学
的方法など数多く挙げられ。例えば発酵と工i42,6
67(1984)に詳述されている。また、NADある
いはNADPについても、化学的方法、電気化学的方法
、酵素法の3つに大別でき、例えば酵素工学(東京化学
同人、1981年発行)に詳述されている。
Examples of methods for regenerating ATP include methods using glycolytic enzymes, methods using acetate kinase and adenylate kinase, methods using salvage synthesis, methods using the respiratory system, methods using a photophosphorylation system, There are many methods such as electrochemical methods. For example, fermentation and engineering i42,6
67 (1984). Furthermore, NAD or NADP can be roughly divided into three methods: chemical methods, electrochemical methods, and enzymatic methods, and are described in detail in, for example, Enzyme Engineering (Tokyo Kagaku Dojin, published in 1981).

−方、システムBは、1つ以上の酵素からなる酵素群の
うち補酵素を必要とする酵素を1つ以上あるいはすべて
有している系である。システムBの酵素群としては、公
知の酵素で、前述の補酵素を必要とするものがあればい
ずれでもよい。
- On the other hand, system B is a system that has one or more or all enzymes that require coenzymes among an enzyme group consisting of one or more enzymes. The enzyme group of system B may be any known enzyme as long as it requires the above-mentioned coenzyme.

システムAとシステムBの組み合わせら数多く知られて
いる。そのうち、工業上重要な有用物質の生産系につい
て2〜3例を挙げれ、ば、ATP再生系を用いた場合の
、グルタチオン、FAD、CDP−コリン、ペプチド、
S−アデノシルメチオニン、XMP、、グラミジンS、
グルコースー6−リン酸(G−6−P)、ステロイドの
合成や、NADを用いた場合のアラニン、乳酸の生産な
どが挙げられる。
Many combinations of system A and system B are known. Among them, a few examples of production systems for industrially important useful substances include glutathione, FAD, CDP-choline, peptides, etc. when using an ATP regeneration system.
S-adenosylmethionine, XMP, gramidin S,
Examples include the synthesis of glucose-6-phosphate (G-6-P) and steroids, and the production of alanine and lactic acid using NAD.

システムA及びシステムBの酵素の固定化は、公知の固
定化方法(例えば酵素工学(東京化学同人)参照)に従
えばよく、例えば、担体に酵素を結合させる担体結合法
、2個またはそれ以上の官能基をもった試薬で架橋する
架橋法、酵素を高分子ゲルの微細な格子の中に包み込む
か半透膜性の高分子の皮膜によって被覆する包括法など
が挙げられ、いずれでもよい。ただし言及すべきことは
、包括法の場合、補酵素が自由に出入りできることが必
要であり、例えば限外濾過膜により固定化するには、例
えば100〜500,000.さらに好ましくは100
0〜50,000の分画分子虫を有するものが好ましい
。高分子ゲルにより固定化する場合としては、例えばア
クリルアミドゲル、エチルセルロース、光硬化樹脂、K
−カラギーナン、アルギン酸カルシウムゲル、寒天、ア
ガロースゲル、ゼラチンなどが挙げられる。
The enzymes of System A and System B may be immobilized according to known immobilization methods (for example, see Enzyme Engineering (Tokyo Kagaku Dojin Co., Ltd.)). Examples include a crosslinking method in which the enzyme is crosslinked with a reagent having a functional group, and an entrapment method in which the enzyme is wrapped in a fine lattice of a polymer gel or covered with a semipermeable polymer film. However, it should be mentioned that in the case of the comprehensive method, it is necessary for the coenzyme to be able to freely enter and exit, and for example, in order to immobilize it by an ultrafiltration membrane, the cost is, for example, 100 to 500,000. More preferably 100
Those having a fraction of molecular insects of 0 to 50,000 are preferred. Examples of immobilization using polymer gel include acrylamide gel, ethyl cellulose, photocurable resin, K
-Carrageenan, calcium alginate gel, agar, agarose gel, gelatin, etc.

次にシステムCであるが、擬似移動床とは、固体吸着体
が収容されており、かつ前端と後端との間が流体通路で
結合されていて、床内を流体が循環し得るようになって
いる充填床に、床内の流体の流れ方向に沿って脱離液流
体導入口、吸着質流体出口を設け、−定時間毎に各導入
口および抜出口からそれぞれの流体を連続的に導入また
は抜出し、−定時間毎に各導入口および抜出口を順次下
流のそれと切換えることにより、原料流体を固体吸着剤
に相対的に吸着されやすい成分(吸着質成分)および相
対的に吸着され難い成分(非吸着質成分)に分離するも
のを意味し、これ自身は公知である(例えば特公昭42
−15681号参照)。
Next, regarding system C, a pseudo moving bed contains a solid adsorbent, and the front end and rear end are connected by a fluid passage, so that fluid can circulate within the bed. A desorption liquid fluid inlet and an adsorbate fluid outlet are provided in the packed bed along the flow direction of the fluid in the bed, and each fluid is continuously supplied from each inlet and outlet at regular intervals. Introducing or withdrawing - By sequentially switching each inlet and outlet with the downstream one at regular intervals, the raw fluid is divided into components that are relatively easily adsorbed by the solid adsorbent (adsorbate components) and those that are relatively difficult to be adsorbed. It means something that separates into components (non-adsorbent components), and this itself is publicly known (for example,
-15681).

このような擬似移動床技術を利用した例としては、果糖
の製造法(特開昭53−88335号参照。)、マルト
ースの分離法(特開昭60−67000号参照。)等が
挙げられる。しかしながら、擬似移動床を用いて、補酵
素を回収する方法に関する研究は未だ全く報告されてい
ない。
Examples of the use of such a simulated moving bed technology include a method for producing fructose (see JP-A-53-88335), a method for separating maltose (see JP-A-60-67000), and the like. However, no research has yet been reported on a method for recovering coenzymes using a simulated moving bed.

本発明にお檗で特に言及すべきことは、擬似移動床によ
り反応生成物の分離精製と同時に補酵素の回収を行ない
、再使用に供し得る点にある。即ち、従来の技術である
補酵素を逃がさない様にする方法てあっても反応生成物
の分離精製が必要であり、システム全体としては補酵素
の回収と生成物の分離を別々に行なうという2度手間を
していた。しかし、本プロセスではこれを1度にできる
ということに大きな特徴がある。さらに言及すべきこと
は擬似移動床を採用することで連続的な操作ら可能とな
り、システムA、Bも含め1こ系全体としてら連続運転
てきることがずぐれた特徴である。さらに言及すべきこ
とには、未反応物質を回収し、システム1へあるいはB
にリサイクルする操作、あるいは、反応副産物の回収、
反応阻害物質の除去ら同時に連続的に行なうことかでき
ることに乙大きな特徴がある。
What is particularly noteworthy about the present invention is that the coenzyme can be recovered and reused at the same time as the reaction product is separated and purified using a simulated moving bed. In other words, even with conventional techniques that prevent coenzymes from escaping, it is necessary to separate and purify the reaction products, and the system as a whole requires separate collection of coenzymes and separation of products. It took a lot of effort. However, the major feature of this process is that it can be done all at once. Furthermore, it should be mentioned that continuous operation is possible by employing a pseudo-moving bed, and the outstanding feature of this system is that it can be operated continuously as a whole, including systems A and B. It should be further mentioned that unreacted materials are recovered and sent to system 1 or B.
operations for recycling or recovery of reaction byproducts,
A major feature of this method is that it can simultaneously and continuously remove reaction inhibitors.

擬似移動床に用いる吸脱着担体としては、−般に使用さ
れているものでよく、好ましくは強らしくは弱酸性イオ
ン交換樹脂、例えばSo、H基を官能基とするもの(例
えばアンバーライト(Am−berlite) [R−
200)、P O−(OH)2 Wを官能基とするもの
(例えばダオライト(D aolite) C−60、
C0OH基を官能基とするもの(例えばダイアイオン(
D 1aion)WK 10、キレート樹脂(例えばダ
ウエックス(D owex) A −1、又は強もしく
は弱塩基性イオン交換樹脂、例えばアンバーライトIR
A−100、アンバーライト[RA−401、ダウエッ
クス2、ダイアイオン5A20、又は二交換基樹脂、例
えばアンバーライトfR−45、ゼオカーブ(ZeoK
arb)215、スネークケージ樹脂、例えばレターデ
イオン(Retardion)11A8などが挙げられ
る。さらに、多孔性のイオン交換樹脂、例えばXAD−
1,XAD−2゜XAD−4,XAD−7,XAD−8
,XAD−9、XAD−11,XAD−12も例示しう
る。
The adsorption/desorption carrier used in the simulated moving bed may be one commonly used, preferably a strongly acidic ion exchange resin, such as one having a So or H group as a functional group (for example, Amberlite (Am -berlite) [R-
200), those having P O-(OH)2W as a functional group (e.g. Daolite C-60,
Those with C0OH group as a functional group (e.g. diaion (
D 1aion) WK 10, chelating resins (e.g. Dowex A-1), or strong or weakly basic ion exchange resins, e.g. Amberlite IR
A-100, Amberlite [RA-401, DOWEX 2, Diaion 5A20, or two-exchange resins such as Amberlite fR-45, ZeoK
arb) 215, snake cage resins such as Retardion 11A8, and the like. Furthermore, porous ion exchange resins such as XAD-
1, XAD-2゜XAD-4, XAD-7, XAD-8
, XAD-9, XAD-11, and XAD-12 may also be exemplified.

また好ましくはセルロースイオン交換体、例えば0Mセ
ルロース、P−セルロース、PPMセルロース、SE−
セルロース、SM−セルロース、DEAE−セルロース
、GE−セルロース、ECTEOLA−セルロース、P
AB−セルロース、AE−セルロースあるいはそれらの
誘導体なども挙げられる。さらに、デキストランイオン
交換体も挙げられろ。更に、ゲル濾過剤でもよく、例え
ばセファデックス(S ephadex) G 、セフ
ァデックスLH−20、パイオーゲル(B io −G
 et) Pなども好ましい。加えて、その他の吸着剤
でもよく、好ましくは、ゼオライト、ソリ力ゲル、活性
炭1アルミナのいずれら用いることができる。まfこ、
脱着液は何でもよいが、好ましくは反応液の溶媒と同一
の組成にすることが望ましい。以下、実施例を用いて本
発明をより具体的に説明するか、これらにより、本発明
の思想が限定を受けるものでないことは勿論である。
Also preferably a cellulose ion exchanger, such as 0M cellulose, P-cellulose, PPM cellulose, SE-
Cellulose, SM-cellulose, DEAE-cellulose, GE-cellulose, ECTEOLA-cellulose, P
Also included are AB-cellulose, AE-cellulose, and derivatives thereof. Furthermore, mention may also be made of dextran ion exchangers. Furthermore, gel filtration agents may be used, such as Sephadex G, Sephadex LH-20, Bio-G
et) P etc. are also preferable. In addition, other adsorbents may be used, and preferably zeolite, sori gel, activated carbon and alumina can be used. Mafko,
Any desorption liquid may be used, but preferably it has the same composition as the solvent of the reaction liquid. Hereinafter, the present invention will be explained in more detail using examples, but it goes without saying that the idea of the present invention is not limited by these examples.

実施例 実施例1 パン酵母(鐘淵化学工業(抹)製)300gを2回水洗
した後、25°Cて一昼夜乾燥し、更に真空乾燥器で1
6時間乾燥することにより乾燥菌体的70gを得た。図
1に示すプロセスにより実験を行った。
Examples Example 1 After washing 300 g of baker's yeast (manufactured by Kanekabuchi Chemical Industry Co., Ltd.) twice with water, it was dried at 25°C overnight, and then dried in a vacuum dryer for 1 hour.
By drying for 6 hours, 70 g of dried bacterial cells were obtained. Experiments were conducted using the process shown in FIG.

供給する反応液の組成:ま、1Mグルコース、20mM
アデノシン、500ff1Mリン酸バッファー(pH7
,5)、30mM  MgSO4であり、この反応液を
1mQ/minの速度で酵素反応器に供給した。
Composition of reaction solution supplied: 1M glucose, 20mM
Adenosine, 500ff 1M phosphate buffer (pH 7)
, 5), 30mM MgSO4, and this reaction solution was supplied to the enzyme reactor at a rate of 1mQ/min.

酵素反応器として、容ff1l12の限外濾過装置を使
用し、分画分子ff11000、膜面積200cm’の
限外濾過膜を用い、ゲージ圧5Kg/cn+”、280
Cで限外濾過することにより酵素群を固定化カラムから
漏出しないようにした。酵素群には、上記の方法で調製
した乾燥菌体50gをそのまま加えて使用した。
As the enzyme reactor, an ultrafiltration device with a capacity of ff1l12 was used, an ultrafiltration membrane with a molecular fraction of ff11,000 and a membrane area of 200cm' was used, and the gauge pressure was 5Kg/cn+'', 280cm.
The enzyme group was prevented from leaking out from the immobilized column by ultrafiltration with C. For the enzyme group, 50 g of dried bacterial cells prepared by the above method were added as they were.

固定化カラムから出た反応液(pl−17、5)は、1
IIIQ/1Ilinの速度で擬似移動床カラムに供給
した。
The reaction solution (pl-17, 5) coming out of the immobilized column was 1
The simulated moving bed column was fed at a rate of IIIQ/1Ilin.

擬似移動床は内径2 cm、長さ20cmのカラム16
本からなるものを用い、吸着担体としてアンバーライト
IRA−401を用いた。脱着液として500mMリン
酸バッフy −(pi−(7,5)、30mMM g 
S O4溶液を用いた。
The simulated moving bed is a column 16 with an inner diameter of 2 cm and a length of 20 cm.
A material made of books was used, and Amberlite IRA-401 was used as the adsorption carrier. 500mM phosphate buffer y-(pi-(7,5), 30mM g
A SO4 solution was used.

擬似移動床により分画した補酵素としてのXAD;未反
応のア、デノンンニリン酸(以下ADPと呼ぶ)、アデ
ノシン−リン酸(以下AMPと呼ぶ)およびアデノシン
のうちのADP、反応生成物としてのATPの計3成分
をそれぞれ連続的に分離し、NADおよびADPは再び
固定化カラムにリサイクルした。得られたATPをAT
Pフォトメーター及び高速液体クロマトグラフィーによ
り分析した結果、アデノシンから95%以上の収率でA
TPが連続的に得られたことが分かった。また、擬似移
動相におけるNADの回収率は98%以上であり。少く
とらパン酵母の酵素群が失活するまでは、再利用できた
XAD as a coenzyme fractionated by a simulated moving bed; unreacted adenone diphosphate (hereinafter referred to as ADP), adenosine-phosphate (hereinafter referred to as AMP) and ADP of adenosine, ATP as a reaction product A total of three components were successively separated, and NAD and ADP were recycled to the immobilization column again. The obtained ATP is AT
As a result of analysis using a P photometer and high performance liquid chromatography, A was obtained from adenosine in a yield of over 95%.
It was found that TP was obtained continuously. Moreover, the recovery rate of NAD in the pseudo mobile phase was 98% or more. It could be reused until the enzymes of Tora Baker's Yeast were deactivated.

実施例2 パン酵@(鐘淵化学工業(昧)製)100gを30%塩
化カリウムに懸澗し、このI!!濁液に、アクリルアミ
ドモノマー25g及びN、N’−メチレン−ビスアクリ
ルアミド1.25gを水75mf2に溶かした溶液を加
えた。これに5%のβ−(ジメチルアミノ)プロピオニ
トリル30m12を加え、更に過硫酸カリウム2.0g
を水30mQに溶かした溶液を加えてゲル化し、ゲル2
20gを得た。
Example 2 100 g of bread yeast @ (manufactured by Kanebuchi Kagaku Kogyo (Mai)) was suspended in 30% potassium chloride, and this I! ! A solution of 25 g of acrylamide monomer and 1.25 g of N,N'-methylene-bisacrylamide dissolved in 75 mf2 of water was added to the turbid solution. Add 30ml of 5% β-(dimethylamino)propionitrile to this, and further add 2.0g of potassium persulfate.
A solution of 30mQ of water was added to form a gel, resulting in gel 2.
20g was obtained.

こうして得られたゲル220gを内径5cmのカラムに
充填し、酵素反応器を作成した。このカラムに、組成し
一グルタミン酸、し−ノスティン及びグリシン各20m
M、MgCQI OmM、リン酸緩衝液(pH7,5)
200mM、グルコースIMの反応液を、空間速変約0
.2で連続的に供給した。
220 g of the gel thus obtained was packed into a column with an inner diameter of 5 cm to prepare an enzyme reactor. Into this column, 20 m each of monoglutamic acid, cyanostine and glycine were added.
M, MgCQI OmM, phosphate buffer (pH 7,5)
The reaction solution of 200mM glucose IM was mixed with a space velocity of 0.
.. 2 was continuously fed.

酵素反応器出口液の組成から、95%の収率でアミノ酸
からグルタチオン(以下G S Hと呼ぶ)が生成して
いることが分かった。
From the composition of the enzyme reactor outlet liquid, it was found that glutathione (hereinafter referred to as GSH) was produced from amino acids with a yield of 95%.

該出口液をアンバーライト[RA−401を吸着担体と
する擬似移動床に連続的に供給した。脱離液として20
0mMリン酸緩衝液(pH7、5)。
The outlet liquid was continuously supplied to a simulated moving bed using Amberlite [RA-401 as an adsorption carrier. 20 as desorption liquid
0mM phosphate buffer (pH 7,5).

10mM  MgCl2を水溶液を用いた。GSH,ノ
スティンおよびNADを回収し、ンスティンとN AD
は酵素反応器に連続的にリサイクルした。
A 10mM MgCl2 aqueous solution was used. Collect GSH, Nostin and NAD, and combine Nostin and NAD.
was continuously recycled to the enzyme reactor.

これにより、システィン収率98%以上のGSHが得ら
れた。また、リン酸およびマグネンウム以外の不純物は
ほとんどなく、精製も同時に行なえた。
As a result, GSH with a cysteine yield of 98% or more was obtained. Furthermore, there were almost no impurities other than phosphoric acid and magnenium, and purification could be performed at the same time.

さらにこの反応は、少くとも7日は連続的に行なうこと
ができた。
Moreover, this reaction could be carried out continuously for at least 7 days.

発明の効果 本発明の効果は次の通りである。Effect of the invention The effects of the present invention are as follows.

(a)擬似移動床を利用するため、補酵素、未反応基質
、反応生成物の分離回収が、従来のカラム操作よりも容
易であり、しかも−度に行ない得る。
(a) Since a simulated moving bed is used, the separation and recovery of coenzymes, unreacted substrates, and reaction products is easier than in conventional column operations, and can be carried out more frequently.

(b)補酵素を、固定化または高分子化しないので操作
が容易であり、極めて安価であ。
(b) Since the coenzyme is not immobilized or polymerized, it is easy to operate and is extremely inexpensive.

(c)擬似移動床の採用により補酵素および/または未
反応基質の反応系へのリサイクルおよび反応生成物の回
収を連続的に行なうことが極めて容易である。
(c) By employing a simulated moving bed, it is extremely easy to continuously recycle coenzymes and/or unreacted substrates to the reaction system and recover reaction products.

(d)反応疎害物質の除去も容易で、連続的に系外に除
去できる。
(d) Reaction-hazardous substances can be easily removed and removed continuously from the system.

(e)対象となる系の選択範囲が極めて広い。(e) The selection range of target systems is extremely wide.

本発明を用いれば、補酵素を何度らくり返し使用可能で
あり、且つ補酵素か関与するほとんどすべての系に適用
することかできる。このため食品、医薬品、化粧品、化
学製品など数多くの分野で利用でき、利用価値は極めて
高い。
Using the present invention, coenzymes can be used repeatedly and can be applied to almost all systems involving coenzymes. Therefore, it can be used in many fields such as food, medicine, cosmetics, and chemical products, and its utility value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で用いたプロセスの概略説明図であ
る。
FIG. 1 is a schematic explanatory diagram of the process used in Example 1.

Claims (1)

【特許請求の範囲】 1、補酵素を含む反応混合物から擬似移動床により補酵
素を分離することを特徴とする補酵素の回収方法。 2、補酵素を擬似移動床により回収する際、反応生成物
および/または未反応物質および/または反応阻害物質
を同時に分離することを特徴とする特許請求範囲第1項
記載の補酵素の回収方法。
[Scope of Claims] 1. A method for recovering a coenzyme, which comprises separating the coenzyme from a reaction mixture containing the coenzyme using a simulated moving bed. 2. A method for recovering a coenzyme according to claim 1, which comprises simultaneously separating a reaction product and/or an unreacted substance and/or a reaction inhibitor when recovering the coenzyme using a simulated moving bed. .
JP15048386A 1986-06-25 1986-06-25 Recovering method for coenzyme Granted JPS637788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15048386A JPS637788A (en) 1986-06-25 1986-06-25 Recovering method for coenzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15048386A JPS637788A (en) 1986-06-25 1986-06-25 Recovering method for coenzyme

Publications (2)

Publication Number Publication Date
JPS637788A true JPS637788A (en) 1988-01-13
JPH0577393B2 JPH0577393B2 (en) 1993-10-26

Family

ID=15497863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15048386A Granted JPS637788A (en) 1986-06-25 1986-06-25 Recovering method for coenzyme

Country Status (1)

Country Link
JP (1) JPS637788A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513213A (en) * 2008-12-22 2012-06-14 グレーンライト バイオサイエンシーズ インコーポレーテッド Compositions and methods for the preparation of compounds
US9611487B2 (en) 2012-12-21 2017-04-04 Greenlight Biosciences, Inc. Cell-free system for converting methane into fuel and chemical compounds
US9637746B2 (en) 2008-12-15 2017-05-02 Greenlight Biosciences, Inc. Methods for control of flux in metabolic pathways
US9688977B2 (en) 2013-08-05 2017-06-27 Greenlight Biosciences, Inc. Engineered phosphoglucose isomerase proteins with a protease cleavage site
US10006062B2 (en) 2010-05-07 2018-06-26 The Board Of Trustees Of The Leland Stanford Junior University Methods for control of flux in metabolic pathways through enzyme relocation
US10036001B2 (en) 2010-08-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Recombinant cellular iysate system for producing a product of interest
US10858385B2 (en) 2017-10-11 2020-12-08 Greenlight Biosciences, Inc. Methods and compositions for nucleoside triphosphate and ribonucleic acid production
US10954541B2 (en) 2016-04-06 2021-03-23 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid
US11274284B2 (en) 2015-03-30 2022-03-15 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9637746B2 (en) 2008-12-15 2017-05-02 Greenlight Biosciences, Inc. Methods for control of flux in metabolic pathways
JP2012513213A (en) * 2008-12-22 2012-06-14 グレーンライト バイオサイエンシーズ インコーポレーテッド Compositions and methods for the preparation of compounds
US10006062B2 (en) 2010-05-07 2018-06-26 The Board Of Trustees Of The Leland Stanford Junior University Methods for control of flux in metabolic pathways through enzyme relocation
US10036001B2 (en) 2010-08-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Recombinant cellular iysate system for producing a product of interest
US9611487B2 (en) 2012-12-21 2017-04-04 Greenlight Biosciences, Inc. Cell-free system for converting methane into fuel and chemical compounds
US9688977B2 (en) 2013-08-05 2017-06-27 Greenlight Biosciences, Inc. Engineered phosphoglucose isomerase proteins with a protease cleavage site
US10421953B2 (en) 2013-08-05 2019-09-24 Greenlight Biosciences, Inc. Engineered proteins with a protease cleavage site
US11274284B2 (en) 2015-03-30 2022-03-15 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid
US10954541B2 (en) 2016-04-06 2021-03-23 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid
US10858385B2 (en) 2017-10-11 2020-12-08 Greenlight Biosciences, Inc. Methods and compositions for nucleoside triphosphate and ribonucleic acid production

Also Published As

Publication number Publication date
JPH0577393B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
ES2593811T3 (en) Microbial production of L-ascorbic acid
CA2225313A1 (en) Combinatorial libraries of labeled biochemical compounds and methods for producing same
JPS637788A (en) Recovering method for coenzyme
JPS6172797A (en) Purification of synthetic oligonucleotides and apparatus therefor
KR890003956A (en) Method for recovering L-amino acid from L-amino acid-containing fermentation broth
CN104774881A (en) Method for producing L-2-aminobutyric acid by virtue of biological catalysis
WO2007105789A1 (en) Method for purification of nucleoside or nucleotide
WO2007034673A1 (en) Process for producing 5-aminolevulinic acid hydrochloride
CA1228601A (en) Purification of l-phenylalanine
US4649111A (en) Process for the preparation of 5'-ribonucleotides
Narang et al. Studies on Polynucleotides. XLV. 1 The Synthesis of Dodecanucleotides Containing the Repeating Trinucleotide Sequence Thymidylyl-(3'→ 5')-thymidylyl-(3'→ 5')-deoxyinosine2
Frisch et al. 5-Bromodeoxycytidine and 5-Chlorodeoxycytidine1
EP1091001B1 (en) Process for the purification of S-adenosyl-L-methionine and for the preparation of the pharmaceutically acceptable salts thereof
JP2001011034A (en) Separation and recovery of optically active amino acid and optically active amino acid amide
WO2023027178A1 (en) Method for producing cytidine-5'-diphosphate compound
JPS5929700A (en) Purification of s-adenosyl-l-methionine
CN117720601A (en) Improved method for separating and purifying beta-nicotinamide mononucleotide by macroporous adsorption resin
CN114213276B (en) Method for extracting and purifying theanine from enzyme catalytic reaction
JP2020066604A (en) Production method of trihydroxybenzene
JPH0751085A (en) Production of diadenosine tetraphosphate
JPS6337635B2 (en)
CN117964672A (en) Macroporous adsorption resin separation and purification method for beta-nicotinamide mononucleotide
KR101744134B1 (en) A method of preparing L-nucleic acid derivatives comprising nanofiltration
JPH03200766A (en) Method for separating l-tryptophan
US3461113A (en) Process for recovering flavin-adenine dinucleotide