JPS6377579A - Method for lining and repairing inside surface of pipe - Google Patents

Method for lining and repairing inside surface of pipe

Info

Publication number
JPS6377579A
JPS6377579A JP21997586A JP21997586A JPS6377579A JP S6377579 A JPS6377579 A JP S6377579A JP 21997586 A JP21997586 A JP 21997586A JP 21997586 A JP21997586 A JP 21997586A JP S6377579 A JPS6377579 A JP S6377579A
Authority
JP
Japan
Prior art keywords
resin
pipe
lining
pressure
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21997586A
Other languages
Japanese (ja)
Other versions
JPH0649184B2 (en
Inventor
Motoyuki Koga
基之 古賀
Nobukatsu Ike
宣勝 池
Toshihiko Osawa
大沢 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakko Co Ltd
Original Assignee
Hakko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakko Co Ltd filed Critical Hakko Co Ltd
Priority to JP61219975A priority Critical patent/JPH0649184B2/en
Publication of JPS6377579A publication Critical patent/JPS6377579A/en
Publication of JPH0649184B2 publication Critical patent/JPH0649184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To permit formation of a coated film having a uniform film thickness in spite of a decrease in a resin amt. by controlling a blast controller by the signals detecting the pressure in the pipe on a discharge side and a discharge air quantity in such a manner that the constant flowing speed of the lining resin in the pipe is maintained. CONSTITUTION:A launcher 2 having the blast controller 7 provided with a throttle valve 12 for controlling the flow rate of the pneumatic air to be introduced into the pipe and a stop valve 14, etc. is connected to the end of the pipe on the side where a packing resin is to be fed. A receiver 3 provided with a pressure gage 20 and flow meter 21, etc., for detecting the pressure in the pipe on the discharge side and the discharge air quantity according to the flow of the packed resin in the pipe is connected to the other end of the pipe on the outlet side. The blast controller 7 is controlled by the signals detecting the pressure in the pipe on the discharge side and the discharge air quantity in such a manner that the constant flowing speed of the lining resin is maintained. As a result, the lining coated film having the uniform film thickness is formed in spite of a decrease in the resin amt.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、地下に布設されたガス管、水道管などの既設
配管で、特に供給管、支管と称されている小口径の既設
配管に対し、その管内面に布設状態のまま樹脂のライニ
ング塗膜を形成するように補修を施す管内面ライニング
補修工法に関するものである。 【従来の技術】 一般にガス管、水道管などの地下に布設されている既設
配管は、経年により管に腐蝕孔や亀裂が生じて、これに
より漏洩が起るおそれがあることから、その漏洩補修ま
たは予防保全のために布設状態のまま管内面に樹脂のラ
イニング塗膜を形成するような補修が行なわれている。 その補修工法として、従来、小口径の既設配管では、 ■ 例えば特開昭54−31622号公報、特開昭55
−39274号公報などにみられるように樹脂を、圧送
空気流と混合して微粒化しつつ管内に圧送して内壁面に
付着または引き伸ばすようにライニングするもの(気相
法) ■ また例えば特開昭55−44320号公報にみられ
るように樹脂を液状のまま、ビグにより管内に移動しつ
つビグ周面から後方へ樹脂を流出さ拷て管内面に付着さ
せるもの(液相法・ビグ移動法)等が知られている。 上記「液相法」「ビグ移動法」による補修の場合、液状
の樹脂を、ビグにより管内移動する関係から、配管途中
に口径変化部や曲管部等が介在する供給管のような小口
径管の補修の際に、ビグがその管路の口径変化部や曲管
部などに引掛って流通不能、補修不能の事態に陥る不都
合があるところより、従来、小口径管の補修には、一般
的に上記「気相法」によるライニング補修が主流をなし
ている。
[Industrial Application Field 1] The present invention is applicable to existing pipes such as gas pipes and water pipes installed underground, especially small-diameter existing pipes called supply pipes and branch pipes. This invention relates to a method for repairing the inner surface of a pipe by forming a resin lining film in its original state. [Prior Art] Existing pipes such as gas pipes and water pipes that are installed underground generally develop corrosion holes and cracks in the pipes over time, which may cause leakage, so leakage repair is necessary. Alternatively, for preventive maintenance, repairs such as forming a resin lining film on the inner surface of the pipe are carried out while the pipe is still in its installed state. Conventionally, as a repair method for existing piping of small diameter,
- As seen in Japanese Patent Publication No. 39274, a resin is mixed with a forced air flow, atomized, and then forced into a pipe and lining it by adhering to or stretching the inner wall surface (vapor phase method). As seen in Publication No. 55-44320, a method in which the resin is moved in a liquid state into the pipe by a VIG, and the resin is forced to flow backward from the circumference of the VIG and adhere to the inner surface of the pipe (liquid phase method/VIG transfer method) etc. are known. In the case of repair using the above-mentioned "liquid phase method" or "VIG transfer method", since the liquid resin is moved inside the pipe by the VIG, small diameter supply pipes such as supply pipes with diameter changing parts or curved pipe parts in the middle of the pipe, etc. When repairing pipes, there is an inconvenience that the vig gets caught in the diameter change part or bent pipe part of the pipe, making it impossible to flow or repair, so conventionally, when repairing small diameter pipes, Generally, lining repair using the above-mentioned "vapor phase method" is mainstream.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかし従来の[気相法Jによるライニング工法の場合、
次に述べるような問題点があった。 (1)  まず従来の「気相法」によるライニング工法
では、空気流速、空気粘性を利用して樹脂を所定長さの
補修区間内において長く搬送または引き伸ばさなりれば
ならないことから、樹脂粘度は低粘度〈例えば15,0
OOcps以下)の樹脂を使用しなければならないとい
う制約があり、このため、管内面に付着されたライニン
グ塗膜は、その塗膜の厚さが殆ど0.5mm以下で薄く
、しかもライニング塗膜は、管内壁の下面側が厚く、上
面側が薄くなるなどの膜厚が不均一になる上、また、エ
ルボ等の曲管部では、腐蝕の起り易い管の外周曲面側の
膜厚が極めて薄くなるという現象を避けることができな
い等の問題点があった。 (2)  また従来の「気相法」によるライニング工法
では、膜厚を厚く旦つ厚さをできるだけ均一にしようと
すると、高粘度の樹脂を使用しなければならず、高粘度
の樹脂を所定長さの補修区間の管内にW1送するには、
多量の空気量と高速の気流が必要となることから一般に
2 kg/ Cm2以上の圧力空気を必要とされるので
、機器設備(例えばコンプレッサ等)が大型化となり、
設備コストが高くなる上に、作業場所によっては機器設
備の搬入が不能で補修作業が行なえないところも発生し
、また騒音も大きく、住居地域では作業環境を著しく悪
化する等の問題点があった。 くっ〉  さらに従来の「気相法」によるライニング工
法では、樹脂の圧送気流が、管の内壁面に直接に接触し
ながら流通し、また管内に2k(+/Cl112以上の
圧力空気が付加される関係から、例えば管にピンホール
状の腐蝕孔が生じている場合などにその腐蝕孔より管の
外に吹扱レノ現象が起り、腐蝕孔の確実な孔埋めが期待
できないばかりか、腐蝕孔を更に拡大して管を破損する
現象がみられる等の問題点もあった。 (4)  さらにまた従来の「気相法」によるライニン
グ工法では、管内に充填された樹脂油が流動につれて減
少しても、充填樹脂を押圧している圧送空気流量が一定
であると、充填樹脂の流動速度が後方に行くにつれて次
第に速くなり、均一なライニング塗膜が形成されないと
いう問題があった。
However, in the case of the conventional lining method using the gas phase method,
There were problems as described below. (1) First, in the conventional lining method using the "vapor phase method", the resin must be conveyed or stretched for a long time within a repair section of a predetermined length using air flow velocity and air viscosity, so the resin viscosity is low. Viscosity (e.g. 15,0
Therefore, the lining coating film attached to the inner surface of the tube is thin, with a thickness of 0.5 mm or less, and the lining coating film is In addition, the film thickness becomes uneven, with the inner wall of the pipe being thicker on the lower surface and thinner on the upper surface.In addition, in curved pipe parts such as elbows, the film thickness is extremely thin on the outer curved surface of the pipe, where corrosion is likely to occur. There were problems such as unavoidable phenomena. (2) In addition, in the conventional lining method using the "vapor phase method," in order to increase the film thickness and make it as uniform as possible, it is necessary to use a high-viscosity resin. To send W1 into the pipe of the length repair section,
Since a large amount of air volume and high-speed airflow are required, a pressure of 2 kg/cm2 or more is generally required, so equipment (such as compressors) becomes larger.
In addition to higher equipment costs, there were also problems such as the equipment being unable to be transported to some work locations and repair work being impossible, and the noise being loud, which significantly worsened the work environment in residential areas. . Furthermore, in the conventional lining method using the "vapor phase method," the pressurized airflow of resin flows while directly contacting the inner wall surface of the pipe, and pressurized air of 2k (+/Cl112 or more) is added to the inside of the pipe. For example, when a pinhole-like corrosion hole occurs in a pipe, a blow-out phenomenon occurs outside the pipe from the corrosion hole, and not only is it impossible to expect the corrosion hole to be reliably filled, but the corrosion hole is There were also problems such as the phenomenon of further expansion and damage to the pipe. (4) Furthermore, in the conventional lining method using the "vapor phase method", the resin oil filled inside the pipe decreases as it flows. However, if the flow rate of the compressed air pressing the filled resin is constant, the flow rate of the filled resin gradually increases toward the rear, resulting in a problem that a uniform lining coating film cannot be formed.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、上述の問題点を解消すべく提案された新しい
管内面のライニング補修工法を提供することを目的とす
るもので、この目的を達成するため本発明による補修工
法は、 (→ 既設配管の一端側の管内に、その開口部から所要
長さにわたって管路内を充満閉塞するように樹脂を液状
のまま充填し、 (2)該充填樹脂が、管径、樹脂粘度、充填樹脂長など
の関係条件から管内面に所要の膜厚を形成するに必要な
設定速度で管内を団塊状に流動するよう上記充填樹脂の
後端面に所要静圧の押圧力を付与して樹脂団に流動性を
与え、 ぐ9 且つ樹脂団が管内を流動走行する際、塗膜の形成
による84脂吊の減少に応じて上記押圧力を減衰させて
樹脂団の管内流動速度を略一定に保持するように原初制
御してなるものにおいて、に) 上記充填樹脂の注入側
管端に、管内に導入される圧送空気の空気流量を制御す
る絞り弁および開閉弁などを具備した送風制御装置を有
するランチャ−を接続し、 θ9 他方の出口側管端に、充填樹脂の管内流動につれ
て変化する排出側管内圧力および排出空気量を検知する
圧力計J3よび流量計などを具備したレシーバを接続し
、 (へ)上記排出側管内圧力および排出空気量を検知した
信号により、管内におけるライニング樹脂の流動速度を
一定に保持するよう上記送風制御装置を制御してなる、 ことを特徴とするものである。 このような補修工法では、管内に導入されろうイニング
樹脂が、静圧の押圧力により押されて管内を流動し、こ
の流動時、管内面に接触しながら流動する時の壁面に対
する付着力で樹脂が管内面に残留し、この残留樹脂で管
内面のライニング塗膜が形成されるようになる。 かかる塗膜の形成では、後述の実験結果からも明らかな
ように管内面に接触付着して残る樹脂の■(塗膜厚さ〉
を、樹脂の流動速度、樹脂粘度等の選定により自由にコ
ントロールできるから、ライニング塗膜の厚さを所望(
1mm〜10mmPi2度)の膜厚に調整することがで
き、また、樹脂の通過後に残留形成される塗膜は、ライ
ニング用樹脂が管内を流動する際にその後端面に作用す
る押圧力が端面全体に均等に分布するから、管周方向全
体に均一膜厚の塗膜を形成することが可能となる。 さらに充填樹脂の注入側管端に接続されたランチャ−よ
り、所要長さにわたって充填された樹脂は、チクソトロ
ピー性の樹脂が使用され、この樹脂は外力を加えた場合
、その構造が破壊されて軟化現象を起し、流動しながら
管内に塗膜を形成するものであり、上記充填樹脂に流動
性を付与する初期押圧力をランチャ一部で高目に設定し
、一旦流動後の管内走行時における押圧力は、これを小
さく使用空気攪も少なくできるから、コンプレッサ等の
設備機器は、これを大巾に小形化することが可能となり
、且つ樹脂の抑圧空気が、常に低い圧力(静圧)で、し
かも残留樹脂による塗膜形成1後のライニング処理管内
を流通し、空気流が、塗膜の介在により管自体の内壁面
に直接に接触しないから、腐蝕孔からの吹恢は現象も確
実に防止することが可能となる。
The purpose of the present invention is to provide a new method for repairing the lining of the inner surface of pipes, which has been proposed to solve the above-mentioned problems.To achieve this purpose, the repair method according to the present invention is Fill the pipe at one end with resin in a liquid state so as to fill and close the pipe from its opening over the required length; Based on the related conditions, a required static pressure is applied to the rear end surface of the filled resin so that it flows in a nodular shape within the pipe at a set speed necessary to form the required film thickness on the inner surface of the pipe, thereby making the resin mass fluid. and when the resin group flows in the pipe, the above-mentioned pressing force is attenuated in accordance with the reduction in the 84 fat suspension due to the formation of the coating film, so that the flow rate of the resin group in the pipe is kept approximately constant. (2) A launcher having an air blowing control device equipped with a throttle valve, an on-off valve, etc. for controlling the air flow rate of the pressurized air introduced into the pipe at the end of the injection side pipe of the filled resin; θ9 Connect a receiver equipped with a pressure gauge J3 and a flow meter to detect the pressure inside the discharge side pipe and the amount of discharged air that change as the filled resin flows in the pipe to the other outlet side pipe end, and (to) the above The present invention is characterized in that the air blowing control device is controlled to maintain a constant flow rate of the lining resin in the pipe based on a signal that detects the pressure inside the discharge side pipe and the amount of discharged air. In this type of repair method, the soldering resin introduced into the pipe is pushed by static pressure and flows inside the pipe, and during this flow, the resin adheres to the wall surface as it flows while contacting the inner surface of the pipe. remains on the inner surface of the tube, and this residual resin forms a lining coating on the inner surface of the tube. In the formation of such a coating film, as is clear from the experimental results described below, the amount of resin remaining in contact with the inner surface of the tube (coating film thickness)
can be freely controlled by selecting the resin flow rate, resin viscosity, etc., so the thickness of the lining coating can be adjusted to the desired thickness (
The film thickness can be adjusted to between 1mm and 10mm (Pi2 degrees), and the coating film that remains after the resin passes through is caused by the pressing force that acts on the rear end surface when the lining resin flows inside the pipe, and the pressure applied to the entire end surface. Since it is evenly distributed, it is possible to form a coating film with a uniform thickness all over the circumferential direction of the tube. Furthermore, a launcher connected to the injection side tube end of the filled resin fills the resin over the required length using thixotropic resin, and when external force is applied to this resin, its structure is destroyed and softens. The initial pressing force that gives fluidity to the filled resin is set high on a part of the launcher, and once it flows, it forms a coating film inside the pipe while flowing. Since the pressing force can be reduced and the air agitation required can be reduced, equipment such as compressors can be significantly downsized, and the compressed air of the resin can be kept at a constant low pressure (static pressure). Moreover, since the air flow flows through the lining treated pipe after the coating film is formed by the residual resin and does not come into direct contact with the inner wall surface of the pipe itself due to the interposition of the coating film, blowing from corrosion holes is guaranteed. It becomes possible to prevent this.

【実 施 例】 以下本発明による実施例を添付した図面に基いて説明す
る。 図面において、第1図は、本発明による補性工法の1例
を概略的に示すもので、符号1は補修対象の既設配管で
ある。この既設配管1は、地下や建物内部等に布設され
ているガス管、水道管のような既設配管であり、特に本
発明によって補すrしようとする対象の既設配管は、ガ
ス管についていうと一般に口径15〜32m巾程度の供
給管、また口径40〜100mm程度の支管と呼ばれて
いる比較的に管径の小さい既設配管を対象としている。 この既設配管1は、補修に際して、所定長さの補修区間
に区切られているもので、その一端開口部には所定長さ
を右するランチャ−2が接続され、また他端開口部には
、内部を透視できるレシーバ3が接続されている。 上記ランチャ−2には、樹脂供給手段である開閉電磁弁
5を介して樹脂注入器4が接続され、この樹脂注入器4
から所要長さにわたって管路内を充満閉塞するように液
状のライニング樹脂Aがランチャ−2内に導入されるよ
うにしである。ここにライニング樹脂Aは、主剤と硬化
剤を調合した常温2液硬化型の樹脂でチクソトロピー性
をイ〒する樹脂が使用される。なお上記樹脂注入器4に
は、予め主剤ど硬化剤を混合した樹脂を空気加圧式注入
器により圧送供給してもよく、また主剤と硬化剤を別々
のポンプにより圧送しつつその過程でスタティックミキ
サーにより雨音を混合供給するようにしてもよい。 またランチャ−2には、その先端部に送風f、II御装
置7を介して小型コンプレッサ6が接続されてあり、こ
のコンプレッサ6からの圧送空気が送風制御装置7で流
量規制されてランチャ−2内に導入され、既設配管1内
に向けて送り込まれるようにしている。 なお上記コンプレッサ6からの圧送空気は送風制御装置
7と連動する切y)電磁弁8.ガバナ9を介して前記樹
脂注入器4内にも導入され、樹脂注入器4内に設けた加
圧摺動板10を介してライニング樹脂八が、送風制御装
置7と連動して開放動作される開閉電磁弁5から一定圧
力で液状のままランチャ−2内に所定量押出し充填され
るようにしである。 また前記した送風制all装置7は、コンブレラV6か
らの圧送空気を清浄化するフィルタ11と、圧送空気の
流量をυ1goする絞り弁12を備えた流量制御部13
と、圧送空気の供給、遮断を制御する開閉弁14とを有
し、また、その送風系路には圧力計15と、上記開閉弁
14.レリーフ弁18.絞り弁12等を制御する流量コ
ントローラ16とを備えている。この流量コントローラ
1Gは、後述する樹脂への管内流動速度等の信号をアン
テナ17により受信すると共に、圧力計15による空気
圧の検知に褪いて絞り弁12.レリーフ弁18.開閉弁
14を制御するものである。 一方、双設配管1の他方の開口部に接続されたレシーバ
3には、遮断弁28.圧力計20.流量計21等が接続
されてあり、この圧り計20.1%Hf14t21によ
ってライニング樹脂Aの流動につれて変化する排出側の
管内圧力および管内からの排出空気mが検知されて、こ
れらの検知により、管内におけるライニング樹脂△の流
動速度が検知され、この検知信号が発信器22.アンテ
ナ25を介して前記始端側のアンテナ17に送信されて
、前述の送風制御Il装置7による制御が行なわれるよ
うにしである。 また上記レシーバ3の端部には、空気吐出弁27を備え
たサイクロン式の樹脂分離ホッパ26が接続されてあり
、ライニング樹脂Aが、内部を透視できるレシーバ3に
到達した際、予め閉ざされていた空気吐出弁27を開放
し、遮断弁28を閉じることで、残余の樹脂をこの樹脂
分離ホッパ26内に回収できるようにしている。 次に上述の装置による補修作業の作業工程を説明すると
、まず始端側のランチャ−2内に、開閉電磁弁5を開い
て樹脂注入器4内から所定量のライニング樹脂Aを液状
のまま注入する。この樹脂△の注入は、ライニング樹脂
Aが、ランチ1−−2内よりさらに既設配管1の始端側
の管路内に所定長さにわたって、その管路内を充満閉塞
するように充填される。 次に上記樹脂Aの充填が完了すると、開閉電磁弁5を閉
じ、送Ill系路側の開閉弁14を問いてコンプレッサ
Gからの圧送空気を、絞り弁12により流量制御しつつ
ランチャ−2の端部より管内に送り込む。 これにより圧送空気が、前記充填樹脂Aの後端面を後方
から圧縮するように作用し、その静圧の押圧力(圧縮力
)によりライニング樹脂Aに流動性が付与され、ライニ
ング樹脂△が、柱状の状態でランチt−−2内より既設
配管1内に向()で流動されて行き、既設配管1内を一
団となって流動進行する。この時の樹脂Aに作用させる
圧縮押圧力は、樹脂へに流チh性を付与する初期押圧力
を大気圧に対して略1.5kg/cm2以下とし、また
、流動性が付与されて樹脂Aが既設配管1内を流動進行
する時にはその押圧力を、レリーフ弁18により調圧し
て、大気圧に対し略0.6kg/ cm2以下の低圧に
下げる。 この樹脂△の流動進行により、流動時、管内面に接触し
ながら流動する時の壁面に対する付着力で、樹脂△が管
内面に残留されつつ進行し、樹脂団の通過後には、この
残留樹脂によって管内面に所要膜厚のライニング塗膜が
形成される。 ここに実験によると、既設配管1内に充填された樹脂A
を、後方より、静圧の圧縮押圧力により全体的に管内走
行させる場合、圧縮押圧力を作用させる加圧側の樹脂端
面形状は、第2図に示す押圧力aと、内壁面への付着力
影響係数すと、樹脂ズリ応力Cとの合力によって、樹脂
へが管内を流動進行する時には第S図に示すような形状
にて走行する。 この走行状態から、さらに上記樹脂端面に対する後方よ
りの圧縮押圧力aを大きく樹脂Aの走行速度Vを速くし
た場合は、上記の樹脂端面形状は第4図に示すような砲
弾形となり、一方、圧縮押圧力aを小さく樹脂△の走行
速度Vを遅くした場合は、第5図に示すようにその樹脂
端面形状は垂直に近い形態となることが実験の結果より
判明された。 また実験によると、樹脂Aの粘度CpSと、走行速度V
と、形成されるライニング膜厚tとの関係は、 ■ 走行速度Vを一定とした場合、樹脂粘度(5000
0cps〜500 、000cps )が高い方がライ
ニング塗膜の膜厚は薄膜となり、また粘度が低い方が厚
膜となる。 ■ また樹脂粘度を一定とした場合、樹脂の走行速度V
が速い方が厚膜となり、逆に走行速度が遅い方が薄膜と
なることが判明した。 以上の実験結果によると、 <i>  まず樹脂への走行速度Vを一定として、樹脂
粘度を変化させた場合、樹脂粘度が低い方が前記樹脂の
端面形状は第4図に示すような砲弾形となって膜厚は厚
く、また、粘度が高い方が第5図に示すような垂直形の
端面形状となって膜厚は薄くなる。 6i)  また樹脂粘度を一定にした場合、圧縮押圧力
を高くして樹脂Aの走行速度を速めると前記樹脂の端面
形状は第4図に示す砲弾形となって膜厚は厚く、また、
圧縮押圧力を低くして走行速度を遅くすると樹脂の端面
形状は第5図に示す垂直形の端面形状となって膜厚は薄
くなる。 つまり樹脂粘度と走行速度■の関係では、樹脂の端面形
状が、第4図に示すような砲弾形になるように樹脂へを
流動走行させてやれば膜厚は厚膜となり、また、第5図
に示すような垂直に近い端面形状になるように樹脂Aを
流動走行させてやると膜厚は薄膜となる。 これを理論的に考察するに、第4図、第5図におけるP
t、Pt点での圧力の分力関係は、端面形状が砲弾形(
第4図示)の場合は第6図に示すように押圧力は樹脂球
面の接線方向S1に対して直角なRO力方向働らき、そ
の力の分力は、樹脂を流動走行させる分力R1と、樹脂
を管内壁に押しつける分力R2とに分解される。 一方、樹脂の端面形状が垂直形(第5図示)の場合では
、第7図に示すように管内壁面から前記P1と等距離に
あるP?の押圧力は樹脂球面の接線方向S2に対して垂
直なQ○力方向作用し、その分力は樹脂を流動走行させ
る分力Q1と樹脂を管内壁に押しつける分力Q1とに分
解される。 上述の樹脂を流動走行させる分力R1,Qtと樹脂を管
内壁に押しつける分力Rz、Qzとを比較した場合、第
4図に示す砲弾形のものは樹脂を流動走行させる分力R
1が、第5図に示す垂直形のそれに対応する分力Q1よ
りも大巾に小さく、このR1の分力が樹脂ズリ応力と付
着力の影響係数の和とバランスした所から樹脂Aは厚膜
として管内壁に残ることが理解される。 以上の結果より、樹脂Aの加圧側の端面形状が砲弾形(
第4図示)となるようにライニング樹脂Aを流動走行さ
せれば、ライニング塗膜は、その膜厚がJ’7膜に形成
され、一方、垂直に近い端面形状(第5図示)となるよ
うにライニング樹脂△を流動走行させれば、ライニング
塗膜はその膜厚が薄膜に形成されることが実験的、理論
的にも確認され、ここに実験によると管径、樹脂粘度、
充填樹脂長、!1脂走行速度、初期押圧力と膜厚との関
係は第1表に示す結果が得られた。 上記第1表に示す管径、樹脂粘度、充填樹脂長の関係か
らすると、管内面に例えばNO2の2.Ommの膜厚を
形成しようとすると管内に流動させる樹脂を9 am/
 sacで走行させる必要があり、樹脂の走行速度を適
宜に選ぶことで、形成されるライニング塗膜の厚さを自
由にコントロールできる関係にあることが理解される。 したがって、本発明による補修工法では、まず目的とす
る既設配管1の管内面に形成すべきライニング塗膜の膜
厚を、どの程度の厚さに形成するかを選定し、この膜厚
の選定に基づいて、補修対象管の管仔、使用する樹脂粘
度、充填された樹脂圧などの補修関係条件から、所望す
る膜厚を形成するために必要な樹脂Aの流動速度を設定
し、この設定された流動速度でライニング樹脂入が管内
を流動走行するように、コンプレッサ6からの正進空気
を制御して充填樹脂への後端面に所要静圧の押圧力を付
与させる。 この場合、使用する樹脂Aは、前述したようにチクソト
ロピー性の樹脂が使用され、この種の樹脂は外力を加え
た場合、その塗料構造が破壊されて軟化現象を起し、外
力を取り去ると時間の経過と共に原状に回復する性質を
有するから、上記樹。 脂△の押圧力は、前述したように流動後の管内走行時に
おける押圧力< 150.6k(1/ cm2以下)に
対して、流動性を付与する初期押圧力を幾分高目に略1
.5kg/ cm2程度の圧力に設定する。 このような圧力設定の場合、その初期押圧力はランデ1
−−2の部分の管内に作用して既設管内には殆ど影響を
与えず、また、既設管内にお
[Embodiments] Examples according to the present invention will be described below with reference to the attached drawings. In the drawings, FIG. 1 schematically shows an example of the repair method according to the present invention, and reference numeral 1 indicates an existing pipe to be repaired. The existing piping 1 is an existing piping such as a gas pipe or water pipe installed underground or inside a building, and in particular, the existing piping to be supplemented by the present invention is a gas pipe. The target is existing pipes with relatively small pipe diameters, generally called supply pipes with a diameter of about 15 to 32 m wide, or branch pipes with a diameter of about 40 to 100 mm. This existing piping 1 is divided into repair sections of a predetermined length when repairing, and a launcher 2 that extends the predetermined length is connected to the opening at one end, and the opening at the other end is A receiver 3 through which the inside can be seen is connected. A resin injector 4 is connected to the launcher 2 via an on-off solenoid valve 5 which is a resin supply means.
The liquid lining resin A is introduced into the launcher 2 so as to fill and close the pipe for a required length. The lining resin A used here is a two-component curing resin at room temperature, which is a mixture of a main resin and a curing agent, and has thixotropic properties. Note that the resin injector 4 may be supplied with a resin in which the main resin and curing agent are mixed in advance using an air pressurized injector, or the main resin and curing agent may be pumped using separate pumps and a static mixer may be used in the process. It is also possible to supply a mixture of rain sounds. Further, a small compressor 6 is connected to the tip of the launcher 2 via a blower f, II control device 7, and the flow rate of compressed air from the compressor 6 is regulated by a blower control device 7. It is designed to be introduced into the interior and fed into the existing piping 1. Note that the compressed air from the compressor 6 is cut off by a solenoid valve 8 which is linked to the blower control device 7. The lining resin 8 is also introduced into the resin injector 4 via the governor 9, and is opened via a pressurized sliding plate 10 provided in the resin injector 4 in conjunction with the blower control device 7. A predetermined amount of liquid is extruded and filled into the launcher 2 under a constant pressure from the open/close solenoid valve 5. Further, the above-mentioned air blow control all device 7 includes a flow rate control section 13 equipped with a filter 11 that cleans the pressurized air from the combrella V6, and a throttle valve 12 that controls the flow rate of the pressurized air by υ1go.
and an on-off valve 14 for controlling supply and cutoff of pressurized air, and a pressure gauge 15 in the air supply path, and an on-off valve 14. Relief valve 18. The flow rate controller 16 controls the throttle valve 12 and the like. This flow rate controller 1G receives signals such as the flow rate of resin in a pipe, which will be described later, through an antenna 17, and also detects air pressure through a pressure gauge 15 and receives signals from a throttle valve 12. Relief valve 18. It controls the on-off valve 14. On the other hand, the receiver 3 connected to the other opening of the twin piping 1 has a shutoff valve 28. Pressure gauge 20. A flow meter 21, etc. is connected, and the pressure gauge 20.1%Hf14t21 detects the pressure inside the discharge side pipe and the discharge air m from the pipe, which change as the lining resin A flows, and by these detections, The flow velocity of the lining resin Δ in the pipe is detected, and this detection signal is sent to the transmitter 22. The signal is transmitted to the antenna 17 on the starting end side via the antenna 25, and is controlled by the air blow control Il device 7 described above. Furthermore, a cyclone type resin separation hopper 26 equipped with an air discharge valve 27 is connected to the end of the receiver 3, and when the lining resin A reaches the receiver 3 whose interior can be seen through, it is closed in advance. By opening the air discharge valve 27 and closing the cutoff valve 28, the remaining resin can be collected into the resin separation hopper 26. Next, to explain the work process of repair work using the above-mentioned device, first, open the on-off solenoid valve 5 and inject a predetermined amount of lining resin A in liquid form from the resin injector 4 into the launcher 2 on the starting end side. . The resin Δ is injected so that the lining resin A is filled and occluded over a predetermined length into the pipeline on the starting end side of the existing piping 1 from the inside of the launch 1--2. Next, when the filling of the resin A is completed, the on-off solenoid valve 5 is closed, and the on-off valve 14 on the feed Ill system side is operated to send the pressurized air from the compressor G to the end of the launcher 2 while controlling the flow rate with the throttle valve 12. into the pipe. As a result, the pressurized air acts to compress the rear end surface of the filled resin A from the rear, and the static pressure (compression force) imparts fluidity to the lining resin A, and the lining resin △ becomes columnar. In this state, the liquid flows from inside the lunch t-2 into the existing piping 1, and flows through the existing piping 1 as a group. The compressive pressure applied to the resin A at this time is such that the initial pressure to impart fluidity to the resin is approximately 1.5 kg/cm2 or less relative to atmospheric pressure, and the When A flows through the existing piping 1, its pressing force is regulated by the relief valve 18 to reduce the pressure to approximately 0.6 kg/cm2 or less relative to atmospheric pressure. As the resin △ flows, the adhesive force against the wall surface as it flows while contacting the inner surface of the tube causes the resin △ to remain on the inner surface of the tube as it progresses, and after passing through the resin group, this residual resin A lining coating film of the required thickness is formed on the inner surface of the tube. According to the experiment, resin A filled in the existing pipe 1
When the entire pipe is run from the rear by static compression pressure, the shape of the resin end face on the pressurizing side where compression pressure is applied is the pressure force a shown in Fig. 2 and the adhesion force to the inner wall surface. According to the influence coefficient, due to the resultant force with the resin shear stress C, when the resin flows in the pipe, it travels in a shape as shown in Fig. S. From this running state, if the compressive force a from the rear against the resin end face is increased and the running speed V of the resin A is increased, the resin end face shape becomes a bullet shape as shown in FIG. 4, and on the other hand, It has been found from the results of experiments that when the compressive pressing force a is reduced and the traveling speed V of the resin Δ is slowed, the end face shape of the resin becomes nearly vertical as shown in FIG. Also, according to experiments, the viscosity CpS of resin A and the running speed V
The relationship between the formed lining film thickness t is as follows: ■ When the traveling speed V is constant, the resin viscosity (5000
The higher the viscosity (0 cps to 500,000 cps), the thinner the lining coating film will be, and the lower the viscosity, the thicker the lining coating film will be. ■ Also, if the resin viscosity is constant, the traveling speed of the resin V
It was found that the faster the travel speed, the thicker the film, and conversely, the slower the travel speed, the thinner the film. According to the above experimental results, <i> First, when the traveling speed V to the resin is kept constant and the resin viscosity is changed, the lower the resin viscosity, the more the end face shape of the resin will be bullet-shaped as shown in Figure 4. Therefore, the film thickness is thicker, and the higher the viscosity, the more vertical the end face shape as shown in FIG. 5 is, and the film thickness is thinner. 6i) In addition, when the resin viscosity is kept constant, when the compression pressure is increased and the traveling speed of the resin A is increased, the end face shape of the resin becomes bullet-shaped as shown in FIG. 4, and the film thickness is thick.
When the compression pressure is lowered and the running speed is lowered, the end face shape of the resin becomes a vertical end face shape as shown in FIG. 5, and the film thickness becomes thinner. In other words, in terms of the relationship between resin viscosity and running speed (■), if the resin is flowed and run so that the end face shape of the resin becomes a bullet shape as shown in Fig. 4, the film thickness will be thick. When the resin A is fluidized and run so that the end face shape is nearly vertical as shown in the figure, the film thickness becomes thin. To consider this theoretically, P in Figures 4 and 5 is
The component force relationship of pressure at points t and Pt is that the end face shape is a bullet shape (
4), as shown in FIG. 6, the pressing force acts in the RO force direction perpendicular to the tangential direction S1 of the resin spherical surface, and the component force of that force is the component force R1 that causes the resin to flow. , and a component force R2 that presses the resin against the inner wall of the pipe. On the other hand, when the end face shape of the resin is vertical (as shown in Figure 5), as shown in Figure 7, P? The pressing force acts in the Q○ force direction perpendicular to the tangential direction S2 of the resin spherical surface, and the component force is divided into a component force Q1 that causes the resin to flow and travel and a component force Q1 that presses the resin against the inner wall of the pipe. When comparing the component forces R1 and Qt that cause the resin to flow and travel as described above and the component forces Rz and Qz that press the resin against the inner wall of the pipe, the bullet-shaped one shown in Fig. 4 has a component force R that causes the resin to flow and travel.
1 is much smaller than the component force Q1 corresponding to that of the vertical type shown in Fig. 5, and the component force R1 is balanced with the sum of the influence coefficients of the resin shear stress and the adhesive force, so the resin A has a thickness It is understood that it remains on the inner wall of the tube as a film. From the above results, the shape of the end face on the pressure side of resin A is bullet-shaped (
If the lining resin A is fluidized so that the thickness of the lining coating film becomes J'7 (as shown in Figure 4), the lining coating film will have a nearly vertical end face shape (as shown in Figure 5). It has been experimentally and theoretically confirmed that if the lining resin △ is flow-travelled, the lining coating film will be formed into a thin film.
Filled resin length,! The results shown in Table 1 were obtained regarding the relationship between the resin running speed, initial pressing force, and film thickness. Based on the relationships among the pipe diameter, resin viscosity, and filled resin length shown in Table 1 above, it is clear that the inner surface of the pipe contains, for example, NO2. When trying to form a film with a thickness of 0 mm, the resin flowed into the tube was 9 am/
It is understood that it is necessary to run at sac, and by appropriately selecting the running speed of the resin, the thickness of the lining coating film formed can be freely controlled. Therefore, in the repair method according to the present invention, first, the thickness of the lining coating film to be formed on the inner surface of the target existing pipe 1 is selected, and the selection of the film thickness is Based on this, the flow rate of resin A necessary to form the desired film thickness is set based on the repair-related conditions such as the tube of the pipe to be repaired, the viscosity of the resin used, and the pressure of the filled resin. The forward air from the compressor 6 is controlled to apply a required static pressure to the rear end surface of the filled resin so that the lining resin flows through the pipe at a flow rate that is as high as the flow rate. In this case, the resin A used is a thixotropic resin as mentioned above, and when external force is applied to this type of resin, the coating structure is destroyed and a softening phenomenon occurs, and when the external force is removed, it takes a long time. The tree mentioned above has the property of recovering to its original state over time. As mentioned above, the pressing force of fat △ is approximately 1, which is slightly higher than the initial pressing force that imparts fluidity, compared to the pressing force < 150.6 k (1/cm2 or less) during running in the pipe after flowing.
.. Set the pressure to about 5 kg/cm2. In the case of such a pressure setting, the initial pressing force is Lande 1
--It acts on the inside of the pipe in the section 2, has almost no effect on the inside of the existing pipe, and also has no effect on the inside of the existing pipe.

【ノる押圧力は、これが大
気圧に対し僅かな圧力差を右づるように略0.6kg/
 cm2以下の低圧に設定されていることで、老朽化し
た既設配管1においても腐蝕孔からの吹扱は現象が確実
に回避できる。 また上記押圧力により樹脂入が管内流動してライニング
塗膜の形成が進行し、その塗膜の形成により樹脂Aの流
動量が減少すると、その樹脂組の減少に対応して上記押
圧力を減資させ、ライニング樹脂Aの流動速度が一定と
なるように送風制御装置7によりコンプレツナ6からの
空気量を制御する。 すなわち、樹脂■が減少すると、それに伴って樹脂Aの
流動速度が速くなる傾向に変化し、この流動速度の変化
が、到達側のレシーバ3に設けられた圧力計20.流f
f1fff21によって検知される。これは樹脂Aの進
行方向前側における既設配管1内の管内圧力、および管
内からの滞留空気の排出間は、共にライニング樹脂への
流動速度の変化に関連して相対的に変化する関係にある
ものであるから、この変化の状態を圧力計20および流
量計21により検知することで樹脂Aの流動速度の変化
が検知され、この検知信号が、発信器22.アンテナ2
5を介して始端側の送風制御装置7のアンテナ17に受
信されることで、圧力計15からの圧力信号と共に@算
されて、樹脂Aの流動速度が一定となるような押圧力が
得られるようにレリーフ弁18.絞り弁12.開閉弁1
4がコントロールされて、これによりコンプレッサ6か
らランチャ−2を通して既設配管1内に導入される圧送
空気の空気流■がtll 611され、樹脂量の減少に
合せて樹脂Aの押圧力が自動的に減衰されるように制御
される。 かくしてライニング樹脂1脂八は、既設配管の注入側管
端に接続された所定長さのランチャ−より液状のまま充
満閉塞するように充填され、上記充填樹脂に流動性を付
与する初期押圧力をランチャ一部で高めるように制御す
ると共に、その管内Wt動速度が、管の始端側より、到
達側にかけて略一定に制御されつつ流動し、この流動に
よって既設配管の管内面に、その全長にわたって所要膜
厚のライニング塗膜が均一に形成される。 一方、本発明の補修施工にあたって、前記押圧力による
樹脂Aの管内流動量、および1回分の充填樹脂量による
塗膜形成の良さにもυ1約があるところより、補修対象
の既設配管1の長さが長い場合は、その長さに対応して
樹脂への充填、流動回数を複数回、繰り返寸ことにより
分割施工するものであり、これにより補修区間の長さを
所望に増大延長することが可能と<rる。 なお、樹脂△は、図示の実施例の場合、その後端面をコ
ンプレツナ6からの圧力空気で押圧するようにしたもの
を示したが、この樹脂Aの流動は例えば、樹脂の進行方
向前側の管内に負圧吸引力を作用させる等して管内に圧
力差を生起さV、この圧力差で樹脂Aの後端面に押圧力
を付与するようにしてもよい。 【発明の効果】 以上に説明したように本発明によるライニング補修工法
は、既設配管の注入側管端に、圧送空気の空気流量を制
御してなる絞り弁を設けたランチャ−を接続したことに
より管内に導入された樹脂Aに、流動性を付与する初期
押圧力をランチャ一部で高めると共に、管内を移動する
場合はく例えば0.6kg/ Cm’以下)樹脂量の減
少に対応して押圧力を減衰させ、ライニング樹脂の流動
速度を一定に保持した静圧の押圧力により流動させ、こ
の流動時、管内面に接触しながら流動する時の、壁面に
対する付着力で樹脂を管内面に残し、この残留樹脂で管
内面の塗膜を形成するようにライニングするものである
から、次に述べるような効果が得られる。 (1)  まず本発明によれば、ランチャ一部より充填
された樹脂は、高い初期押圧力によって流動性が付与さ
れ、樹脂の流動時は樹脂の後端面より付与される押圧力
を静圧に設定し、管内面に付性残留する樹脂の吊(塗膜
厚さ)を、樹脂の流動速度。 樹脂粘度等の選定により自由にコントロールすることが
できるから、ライニング塗膜の膜厚の厚さを所望(im
m〜10mm程度)の膜厚に形成することができる。 (2)  また上述のように静圧の押圧力で樹脂を流動
させる場合、樹脂の有するチクソトロピー性により流動
性が付与された後は、樹脂は、軟化現象を起して小さい
押圧力で且つ少ない空気量で流動するから、使用送風機
はベビーコンプレッサまたは小型ボンベ程度のものでよ
く、設備機器を大巾に小形化することができる。 (3)  さらに使用樹脂も、チクソトロピー性を右づ
る高粘度樹脂の使用が可能となることよりライニング塗
膜のダレ現象を少なくでき、nつ樹脂はこれを流動させ
る押圧力がその後端面全体に均等に分布するため、管の
上面側が薄く、下面側が厚い等の膜厚のバラツキをなく
し、管周方向において均一厚さの塗膜を形成することが
できる。 (4)  さらに樹脂を流動するため管内に送り込まれ
る空気流は、その圧力が低い上に、常に残留樹脂による
塗膜形成後のライニング処理管内を流通することで、そ
の管内面にはチクソトロピー性の樹脂による塗膜の介在
により空気流が管自体の内壁面に直かに接触しないから
、従来の気相法にみられるような腐蝕孔からの吹1友は
現象も確実に防止することができる。 (5)  さらにまた既設配管の出口側管端に、充填樹
脂の管内流動につれて変化する排出側管内圧力および排
出空気量を検知する圧力計J3よび流動計を具備したレ
シーバを接続し、上記排出側管内圧力と排出空気量を検
知した信号により、管内を流動するライニング樹脂の流
動速度を一定に保持するよう一ヒ記送風制御装置をυ制
御してなるものであり、樹脂量が減少しても均一な膜厚
のライニング塗膜が形成される。
[The pressing force is approximately 0.6 kg/cm, so as to maintain a slight pressure difference with respect to atmospheric pressure.
By setting the pressure to a low pressure of less than cm2, it is possible to reliably avoid the phenomenon of blowing from corroded holes even in the aged existing piping 1. In addition, when the resin filler flows in the pipe due to the above pressing force and the formation of the lining coating film progresses, and the flow rate of resin A decreases due to the formation of the coating film, the above pressing force is reduced in response to the decrease in the resin group. Then, the amount of air from the compressor 6 is controlled by the air blowing control device 7 so that the flow rate of the lining resin A is constant. That is, as resin (2) decreases, the flow rate of resin A tends to increase accordingly, and this change in flow rate is reflected by the pressure gauge 20. Flow f
Detected by f1fff21. This is because the pressure inside the existing pipe 1 on the front side in the direction of travel of resin A and the discharge of accumulated air from inside the pipe are both relatively changed in relation to changes in the flow rate to the lining resin. Therefore, by detecting this state of change using the pressure gauge 20 and the flow meter 21, a change in the flow rate of the resin A is detected, and this detection signal is sent to the transmitter 22. antenna 2
5 and is received by the antenna 17 of the air blowing control device 7 on the starting end side, and is calculated together with the pressure signal from the pressure gauge 15 to obtain a pressing force that keeps the flow speed of the resin A constant. Relief valve 18. Throttle valve 12. Open/close valve 1
4 is controlled, thereby the airflow of pressurized air introduced from the compressor 6 through the launcher 2 into the existing piping 1 is controlled to tll 611, and the pressing force of the resin A is automatically increased in accordance with the decrease in the amount of resin. Controlled to be attenuated. In this way, the lining resin 1 is filled with a launcher of a predetermined length connected to the injection side pipe end of the existing piping so as to be filled and closed in a liquid state, and an initial pressing force that imparts fluidity to the filled resin is applied. At the same time, the Wt dynamic velocity inside the pipe is controlled to be approximately constant from the starting end of the pipe to the reaching end, and this flow causes the required amount to be applied to the inner surface of the existing pipe over its entire length. A lining coating film of uniform thickness is formed. On the other hand, in the repair work of the present invention, the length of the existing pipe 1 to be repaired is approximately υ1 for the amount of flow of resin A in the pipe due to the pressing force and the quality of coating film formation due to the amount of resin filled in one time. If the length of the repair section is long, the repair section is divided into sections by filling the resin and flowing it multiple times depending on the length.This allows the length of the repair section to be increased and extended as desired. is possible. In addition, in the illustrated embodiment, the resin △ has its rear end surface pressed by pressurized air from the compressor 6, but the flow of the resin A is caused, for example, in the pipe on the front side in the direction of travel of the resin. A pressure difference may be created in the tube by applying a negative suction force, etc., and this pressure difference may be used to apply a pressing force to the rear end surface of the resin A. [Effects of the Invention] As explained above, the lining repair method according to the present invention is achieved by connecting a launcher equipped with a throttle valve that controls the air flow rate of pressurized air to the injection side pipe end of the existing pipe. In addition to increasing the initial pressing force to give fluidity to the resin A introduced into the tube, the initial pressing force that gives fluidity to the resin A introduced into the tube is increased at a part of the launcher, and when moving inside the tube, the pressing force is increased in response to a decrease in the amount of resin (e.g., 0.6 kg/cm' or less). The pressure is attenuated and the lining resin flows using static pressure that keeps the flow velocity constant. During this flow, the resin remains on the inner surface of the tube due to the adhesion force to the wall surface as it flows while contacting the inner surface of the tube. Since this residual resin is used to form a coating film on the inner surface of the tube, the following effects can be obtained. (1) First, according to the present invention, the resin filled from a part of the launcher is given fluidity by a high initial pressing force, and when the resin is flowing, the pressing force applied from the rear end surface of the resin is turned into static pressure. Set the amount of resin that remains on the inner surface of the tube (coating film thickness), and the flow rate of the resin. Since it can be freely controlled by selecting the resin viscosity, etc., the thickness of the lining coating film can be adjusted to the desired thickness.
It can be formed to a film thickness of about 10 mm to 10 mm. (2) In addition, when the resin is made to flow with static pressing force as described above, after the resin has been given fluidity due to its thixotropic property, the resin undergoes a softening phenomenon and the pressing force is small. Since the flow is based on the amount of air, the blower used can be a baby compressor or a small cylinder, and the equipment can be significantly downsized. (3) In addition, it is possible to use a high-viscosity resin that has good thixotropy, which reduces the sagging phenomenon of the lining coating. Therefore, it is possible to eliminate variations in film thickness such as being thinner on the upper surface side and thicker on the lower surface side of the tube, and to form a coating film with a uniform thickness in the circumferential direction of the tube. (4) Furthermore, the air flow sent into the pipe to flow the resin has a low pressure, and because it always flows through the pipe that has been lined with residual resin after the coating has been formed, the inner surface of the pipe has thixotropy. Due to the interposition of the resin coating, the air flow does not come into direct contact with the inner wall surface of the pipe itself, so it is possible to reliably prevent the phenomenon of blowing through corrosion holes that occurs in conventional gas phase methods. . (5) Furthermore, a receiver equipped with a pressure gauge J3 and a flow meter is connected to the outlet side pipe end of the existing pipe to detect the pressure inside the discharge side pipe and the amount of discharged air that changes as the filled resin flows in the pipe. Based on signals detected from the pressure inside the pipe and the amount of discharged air, the blower control device is controlled to maintain a constant flow rate of the lining resin flowing inside the pipe, even if the amount of resin decreases. A lining coating film of uniform thickness is formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による補修工法の1例を概略的に示す断
面図、第2図および第3図は本発明による樹脂流動時の
押圧力、付着力影響係数、および樹脂ズリ応力の関係を
示すベクトル図、第4図および第5図は同じく本発明に
よる樹脂流動時の樹脂押圧力と、ll9J9および走行
速度との関係を示す樹脂端面形状の説明図、第6図およ
び第7図はそれぞれ第4図および第5図における同一点
の圧力の分力関係を示す説明図である。 1・・・既設配管、2・・・ランチャ−13・・・レシ
ーバ、4・・・樹脂注入器、5・・・開閉制御弁、6・
・・コンプレツナ、7・・・送風制御装置、8・・・切
換電磁弁、11・・・フィルタ、12・・・絞り弁、1
3・・・流量制御部、14・・・開閉弁、15・・・圧
力計、16・・・流量コントローラ、17・・・アンテ
ナ、18・・・レリーフ弁、20・・・圧力計、21・
・・流但計、23・・・発信器、25・・・アンテナ、
26・・・樹脂分離ホッパ、28・・・遮断弁。 A・・・ライニング樹脂。
Fig. 1 is a cross-sectional view schematically showing an example of the repair method according to the present invention, and Figs. 2 and 3 show the relationship between the pressing force during resin flow, the adhesive force influence coefficient, and the resin shear stress according to the present invention. The vector diagram shown, FIGS. 4 and 5 are explanatory diagrams of the shape of the resin end face showing the relationship between the resin pressing force during resin flow according to the present invention, 119J9 and the running speed, and FIGS. 6 and 7 are respectively FIG. 6 is an explanatory diagram showing the component force relationship of pressure at the same point in FIGS. 4 and 5; FIG. DESCRIPTION OF SYMBOLS 1... Existing piping, 2... Launcher-13... Receiver, 4... Resin injector, 5... Opening/closing control valve, 6...
... Compressuna, 7... Air blow control device, 8... Switching solenoid valve, 11... Filter, 12... Throttle valve, 1
3... Flow rate control unit, 14... Opening/closing valve, 15... Pressure gauge, 16... Flow rate controller, 17... Antenna, 18... Relief valve, 20... Pressure gauge, 21・
... Ryutan meter, 23... Transmitter, 25... Antenna,
26...Resin separation hopper, 28...Shutoff valve. A... Lining resin.

Claims (1)

【特許請求の範囲】 既設配管の一端側の管内に、その開口部から所要長さに
わたって管路内を充満閉塞するように樹脂を液状のまま
充填し、 該充填樹脂が、管径、樹脂粘度、充填樹脂長などの関係
条件から管内面に所要の膜厚を形成するに必要な設定速
度で管内を団塊状に流動するよう上記充填樹脂の後端面
に所要静圧の押圧力を付与して樹脂団に流動性を与え、 且つ樹脂団が管内を流動走行する際、塗膜の形成による
樹脂量の減少に応じて上記押圧力を減衰させて樹脂団の
管内流動速度を略一定に保持するように流動制御してな
るものにおいて、 上記充填樹脂の注入側管端に、管内に導入される圧送空
気の空気流量を制御する絞り弁および開閉弁などを具備
した送風制御装置を有するランチャーを接続し、 他方の出口側管端に、充填樹脂の管内流動につれて変化
する排出側管内圧力および排出空気量を検知する圧力計
および流量計などを具備したレシーバを接続し、 上記排出側管内圧力および排出空気量を検知した信号に
より、管内におけるライニング樹脂の流動速度を一定に
保持するよう上記送風制御装置を制御してなることを特
徴とする管内面のライニング補修工法。
[Scope of Claims] A resin is filled in the pipe at one end of the existing pipe in a liquid state so as to fill and block the inside of the pipe for a required length from the opening thereof, and the filled resin has a diameter of the pipe, a resin viscosity of Based on related conditions such as the length of the filled resin, a required static pressure is applied to the rear end surface of the filled resin so that the filled resin flows in a block shape inside the tube at a set speed necessary to form the required film thickness on the inner surface of the tube. Gives fluidity to the resin group, and when the resin group flows in the pipe, the above-mentioned pressing force is attenuated in accordance with the decrease in the amount of resin due to the formation of a coating film, and the flow rate of the resin group in the pipe is maintained approximately constant. In the case where the flow is controlled as shown in FIG. Then, a receiver equipped with a pressure gauge, a flow meter, etc. for detecting the pressure inside the discharge side pipe and the amount of discharged air, which changes as the filled resin flows in the pipe, is connected to the other outlet side pipe end, A method for repairing lining on the inner surface of a pipe, characterized in that the air blowing control device is controlled to maintain a constant flow rate of the lining resin inside the pipe based on a signal detected by the amount of air.
JP61219975A 1986-09-17 1986-09-17 Pipe inner surface lining repair method Expired - Fee Related JPH0649184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219975A JPH0649184B2 (en) 1986-09-17 1986-09-17 Pipe inner surface lining repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219975A JPH0649184B2 (en) 1986-09-17 1986-09-17 Pipe inner surface lining repair method

Publications (2)

Publication Number Publication Date
JPS6377579A true JPS6377579A (en) 1988-04-07
JPH0649184B2 JPH0649184B2 (en) 1994-06-29

Family

ID=16743958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219975A Expired - Fee Related JPH0649184B2 (en) 1986-09-17 1986-09-17 Pipe inner surface lining repair method

Country Status (1)

Country Link
JP (1) JPH0649184B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174273A (en) * 1982-04-08 1983-10-13 Marubeni Setsubi Kk Method for painting inside surface of laid piping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174273A (en) * 1982-04-08 1983-10-13 Marubeni Setsubi Kk Method for painting inside surface of laid piping

Also Published As

Publication number Publication date
JPH0649184B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US3132062A (en) Method of in-place lining of conduit
US5089297A (en) Method for repairing interior portions of a pipeline
JPS6377579A (en) Method for lining and repairing inside surface of pipe
JPS6365983A (en) Method for lining and repairing of inner surface of pipe
JPS6377578A (en) Method for lining and repairing inside surface of pipe
JPS6377577A (en) Method for lining and repairing inside surface of pipe
JPS6377575A (en) Method for lining and repairing inside surface of pipe
JP2547997B2 (en) Resin composition for lining inner surface of pipe
JP2832316B2 (en) Lining method of pipe inner surface
JP2766908B2 (en) Pipe lining repair equipment
JP2598294B2 (en) Control method of resin pushing dynamic pressure in lining repair method of pipe inner surface
JPS63130171A (en) Method for controlling resin pushing pressure in lining repairing works of pipe inner surface
JP2665920B2 (en) Repair method for lining of pipe inner surface
JPH0546271B2 (en)
JP2977602B2 (en) Lining method of pipe inner surface
JP3090422B2 (en) Lining method of pipe inner surface
JPS6058274A (en) Method for lining pipe inner wall
JPH04298270A (en) Method for repairing inside surface lining of different diameter pipe
JPH03114577A (en) Method for lining inner surface of pipe
JPH0663504A (en) Method for lining inner face of manifold
JPH01189374A (en) Method for lining and repairing inside surface of pipe
JP2665922B2 (en) Repair method for lining of pipe inner surface
JP2665921B2 (en) Repair method for lining of pipe inner surface
JP2000051769A (en) Pig for lining inside of pipe and method of lining inside of pipe
JP3161627B2 (en) Inner pipe lining method using ice pig

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees