JPS6376971A - Solenoid valve for flow rate regulating - Google Patents

Solenoid valve for flow rate regulating

Info

Publication number
JPS6376971A
JPS6376971A JP22252886A JP22252886A JPS6376971A JP S6376971 A JPS6376971 A JP S6376971A JP 22252886 A JP22252886 A JP 22252886A JP 22252886 A JP22252886 A JP 22252886A JP S6376971 A JPS6376971 A JP S6376971A
Authority
JP
Japan
Prior art keywords
valve
plunger
spring
load
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22252886A
Other languages
Japanese (ja)
Inventor
Kazusato Kasuya
糟谷 一郷
Katsuyoshi Fukaya
深谷 勝義
Nobuo Suzuki
鈴木 伸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP22252886A priority Critical patent/JPS6376971A/en
Publication of JPS6376971A publication Critical patent/JPS6376971A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To securely carry out control over the plural stages of the flow rate of fluid by providing plural springs for increasing a valve closing load by stages during the move of a valve stem which is integrally formed with a plunger which is moved by electromagnetic force, from a totally closed condition to a fully opened condition. CONSTITUTION:A stator 3 is provided on the center part of an exciting coil 2 housed inside a case 1, and a plunger 4 which is movable back and force along an axial direction is provided on the coaxial line of the stator 3. A valve part 6 is integrally provided on the end of a valve stem 5, which is fixed to the axis of the plunger 4 and the valve stem 5 is energized in a valve closing direction by a valve closing spring 11 provided in between the stator 3 and the plunger 4. Also, a valve opening spring 13 is provided in between a movable spring bearing 12 which is fitted over the outer peripheral part of the valve stem 5 on the valve seat 8 side from the plunger 4 and the outer peripheral part of the valve seat 8, energizing the valve stem 5 in the valve opening direction. And, the valve closing load of the valve closing spring 11 is set larger than the valve opening load of the valve opening spring 13, to maintain a valve closing condition when the exciting coil 2 is not electrified.

Description

【発明の詳細な説明】 イ2発明の目的 イー1.産業上の利用分野 本発明は流量調整用電磁弁に関する。[Detailed description of the invention] B2 Purpose of the invention E1. Industrial applications The present invention relates to a solenoid valve for adjusting flow rate.

イー2.従来技術 従来、流体の流量を2段階に調整する電磁弁として、第
10図に示す如(、励磁コイル(30)の通電による電
磁力によって開弁方向に吸引移動するプランジャ(31
)に、弁部(32)を設けた弁軸(33)を固着し、前
記弁部(32)には、これを常時開弁方向へ付勢する第
1ばね(34)を圧縮介在し、更に前記弁軸(33)の
先部には、該弁軸(33)の閉弁方向に対する移動途中
において、該弁軸(33)に閉弁方向への荷重を作用さ
せる第2ばね(35)を備えると共に、該第2ばね(3
5)が、閉弁状態においては非圧縮状態におかれて押圧
荷重が零に設定されているものが例えば特公昭58−1
5661号公報に開示されている。
E2. BACKGROUND ART Conventionally, as shown in FIG. 10, a solenoid valve that adjusts the flow rate of fluid in two stages has been used, as shown in FIG.
), a valve shaft (33) provided with a valve part (32) is fixed to the valve part (32), and a first spring (34) is compressed and interposed in the valve part (32) to bias the valve part (32) in the valve-opening direction at all times; Furthermore, a second spring (35) is provided at the tip of the valve stem (33) to apply a load in the valve closing direction to the valve stem (33) during the movement of the valve stem (33) in the valve closing direction. and the second spring (3
5), but in the closed state, the valve is in an uncompressed state and the pressing load is set to zero, for example, in the Japanese Patent Publication No. 58-1.
It is disclosed in Japanese Patent No. 5661.

イー30本発明が解決しようとする問題点前記従来のも
のにおいては、開弁後に作用する第2ばね(35)は、
その初期作動荷重が零に設定されているため、開弁後に
おいて、第2ばね(35)の開弁荷重が作用するつなぎ
域では、第2ばねの閉弁荷重が零から作用する。 その
ため開弁後より第2ばねが作用する時点及び全開に至る
道中におけるばねの閉弁荷重特性は、弁軸の移動に応じ
た緩やかな曲線となる。 したがって、この閉弁荷重に
抗して開方向に移動する弁軸の移動特性も励磁コイルに
流す電流値に比例して増大する第11図に示すような緩
やかな曲線となる。 このことは、電流値に対する電磁
弁の流量特性が第11図(A)の如くアナログ的に変化
することになる。
E30 Problems to be Solved by the Present Invention In the conventional device, the second spring (35) that acts after opening the valve is
Since the initial operating load is set to zero, after the valve is opened, the valve-closing load of the second spring acts from zero in the transition area where the valve-opening load of the second spring (35) acts. Therefore, the valve-closing load characteristics of the spring at the time when the second spring acts after the valve is opened and on the way to full opening form a gentle curve that corresponds to the movement of the valve stem. Therefore, the movement characteristic of the valve shaft that moves in the opening direction against the valve closing load also becomes a gentle curve as shown in FIG. 11, which increases in proportion to the value of the current flowing through the exciting coil. This means that the flow rate characteristics of the solenoid valve with respect to the current value change in an analog manner as shown in FIG. 11(A).

そのため、中間域において、第11図の(Y)の幅で電
流値にバラツキが生じると、電磁弁を通過する流体の流
量にも(X)の幅のバラツキが生じる問題がある。
Therefore, if the current value varies in the width (Y) in FIG. 11 in the intermediate region, there is a problem in that the flow rate of the fluid passing through the electromagnetic valve also varies in the width (X).

そこで本発明は、電流値の増加に伴なう弁軸の開弁方向
への移動を複数段階に停止させて流体の流量を複数段階
に制御すると共に、特に、その段階的な停止位置におい
ては電流値が所定の範囲において変動しても弁軸が変動
しないようにして、その弁軸の停止状態において電流値
にバラツキが生じても、流体の流量のバラツキを生じな
い流量調整用電磁弁を提案することを目的とするもので
ある。
Therefore, the present invention controls the fluid flow rate in multiple stages by stopping the movement of the valve stem in the valve opening direction as the current value increases, and in particular, in the stepwise stop position. A solenoid valve for flow adjustment that prevents the valve stem from changing even if the current value fluctuates within a predetermined range, and that does not cause variations in the fluid flow rate even if the current value varies when the valve stem is stopped. The purpose is to make suggestions.

口9発明の構成 ロー10問題点を解決するための手段 本発明は前記の問題点を解決するために、励磁コイルへ
の通電による電磁力によって開弁方向へ吸引移動するプ
ランジャと、該プランジャに固着されて該プランジャと
共に移動する弁軸と、該弁軸に設けた弁部より開閉され
る弁座と、前記弁軸が、その全閉状態から全開状態に移
動する道中において、その弁軸に閉弁荷重を複数回、段
階的に増加させるための複数個のばね及び該ばねと前記
弁軸に係合する可動ばね受けとによりなり、しかも前記
複数個のばねを、その初期状態において押圧荷重を有す
るように圧縮状態で設置したことを特徴とするものであ
る。
9. Structure of the Invention 10. Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a plunger that is attracted and moved in the valve opening direction by an electromagnetic force generated by energizing an excitation coil, and A valve stem that is fixed and moves together with the plunger, a valve seat that is opened and closed by a valve section provided on the valve stem, and a valve seat that is attached to the valve stem while moving from a fully closed state to a fully open state. It consists of a plurality of springs for increasing the valve closing load stepwise multiple times and a movable spring receiver that engages the springs and the valve shaft, and furthermore, the plurality of springs are subjected to a pressing load in their initial state. It is characterized in that it is installed in a compressed state so that it has .

ロー20作 用 電磁力の増加により弁軸が次段の開弁状態に移行すると
きは、その弁軸は次段用のばねの閉弁荷重を受ける。 
このとき、その次段用のばねは、その初期状態において
押圧荷重を有するように圧縮状態に設置されているため
、電磁力がこのばねの押圧荷重の閉弁荷重に打ち勝つま
で増加するまでは弁軸は開弁方向に移動しない。 した
がって、この次段用のばね荷重の作用時点から次段用の
ばね荷重に打ち勝つ間においては、その間の電流値が変
化しても弁軸は移動せず、流体の流量のバラツキも生じ
ない。
When the valve stem shifts to the next stage's open state due to an increase in the electromagnetic force acting on the low 20, the valve stem receives the valve closing load of the spring for the next stage.
At this time, since the spring for the next stage is installed in a compressed state so that it has a pressing load in its initial state, the valve is closed until the electromagnetic force increases until the pressing load of this spring overcomes the valve closing load. The shaft does not move in the valve opening direction. Therefore, from the time when the spring load for the next stage is applied to the time when the spring load for the next stage is overcome, the valve stem does not move even if the current value changes during that time, and there is no variation in the fluid flow rate.

ロー3.実施例 次に第1図乃至第3図に示す本発明の実施例について説
明する。
Row 3. Embodiment Next, an embodiment of the present invention shown in FIGS. 1 to 3 will be described.

(1)はケースで、その内部に励磁コイル(2)が内蔵
設置されている。 (3)は前記励磁コイル(2)の中
心部に設けたステータである。 (4)は前記励磁コイ
ル(2)の軸心に沿って進退可能に設けたプランジャで
、その後端面が前記ステータ(3)に対向している。
(1) is a case in which an excitation coil (2) is installed. (3) is a stator provided at the center of the excitation coil (2). (4) is a plunger provided so as to be movable back and forth along the axis of the excitation coil (2), and its rear end face faces the stator (3).

該プランジャ(4)の軸心には弁軸(5)が固着され、
その先端部には弁部(6)が一体形成され、後端面は、
前記ステータ(3)に当接して弁軸(5)の後退勤を規
制するストッパ面(7)が形成されている。 (8)は
前記弁部(6)と対向して設けられた弁座で、弁部(6
)が該弁座(8)より離間することにより、該離間流通
面積に応じた流量の流体が、流体入口(9)より流体出
口0ωに流通するようになっている。  (11)は前
記ステータ(3)とプランジャ(4)間に圧縮状態で介
在した閉弁用ばねで、プランジャ(4)を介して常時弁
軸(5)を、閉弁方向に付勢している。  (12)は
可動ばね受けで、前記プランジャ(4)より弁部(8)
側における弁軸(5)の外周部において、弁軸(5)の
軸方向に対して摺動可能にケース(1)内に収納されて
いる。
A valve stem (5) is fixed to the axis of the plunger (4),
A valve part (6) is integrally formed at the tip part, and the rear end face is
A stopper surface (7) is formed that comes into contact with the stator (3) to restrict the backward movement of the valve stem (5). (8) is a valve seat provided facing the valve portion (6);
) is spaced apart from the valve seat (8), so that a flow rate of fluid corresponding to the separated flow area flows from the fluid inlet (9) to the fluid outlet 0ω. (11) is a valve-closing spring interposed in a compressed state between the stator (3) and the plunger (4), which constantly biases the valve shaft (5) in the valve-closing direction via the plunger (4). There is. (12) is a movable spring receiver, which is connected to the valve part (8) from the plunger (4).
The outer peripheral portion of the valve stem (5) on the side is housed in the case (1) so as to be slidable in the axial direction of the valve stem (5).

(13)は前記弁座(8)の外周部と前記可動ばね受け
(12)間に圧縮状態で介在した開弁用ばねで、その可
動ばね受け(12)を開弁方向に常時付勢している。 
該可動ばね受け(12)の後面は前記プランジャ(4)
の前面に分離可能に当接している。  (14)は前記
可動ばね受け(12)の後面が当接するばねストッパで
、ケース(1)側に固着されている。
(13) is a valve opening spring interposed in a compressed state between the outer circumference of the valve seat (8) and the movable spring receiver (12), and constantly biases the movable spring receiver (12) in the valve opening direction. ing.
The rear surface of the movable spring receiver (12) is attached to the plunger (4).
is in separable contact with the front surface of the (14) is a spring stopper against which the rear surface of the movable spring receiver (12) comes into contact, and is fixed to the case (1) side.

尚、前記閉弁用ばね(11)の閉弁荷重は、開弁用ばね
(13)の開弁荷重より大きく設定され、励磁コイル(
2)に対する非通電状態においては、閉弁用ばね(11
)の閉弁荷重が開弁用ばね(13)の開弁荷重に打ち勝
って、第1図に示すような閉弁状態を維持している。 
この閉弁状態における可動ばね受け(12)とばねスト
ッパ(14)との間隙(旧)と、弁軸(5)におけるス
トッパ面(7)とステータ(3)との間隙(Dz)と、
プランジャ(5)とステータ(3)との対向間隙(D3
)との関係は、D、<D、<D、に設定されている。 
図中(15)は励磁コイル(2)への通電用コードであ
る。
The valve-closing load of the valve-closing spring (11) is set larger than the valve-opening load of the valve-opening spring (13), and the excitation coil (
2), the valve closing spring (11
The valve closing load of ) overcomes the valve opening load of the valve opening spring (13) to maintain the valve closed state as shown in FIG.
The gap (old) between the movable spring receiver (12) and the spring stopper (14) in this valve closed state, and the gap (Dz) between the stopper surface (7) and the stator (3) on the valve shaft (5),
Opposing gap (D3) between plunger (5) and stator (3)
) is set to D, <D, <D.
In the figure, (15) is a cord for energizing the excitation coil (2).

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

励磁コイル(2)に通電されていない状態では、閉弁用
ばね(11)の閉弁荷重が開弁用ばね(13)の開弁荷
重に打ち勝って、第1図の如く閉弁状態にある。 この
状態における電流と弁軸(5)の移動ストロークとの関
係は第6図の(A)点にあり、また、流体の流量は第7
図の(A)の位置で零である。 次に励磁コイル(2)
に通電され、その電流値が増加されてゆき、その電流値
が、閉弁用ばね(11)の閉弁荷重より開弁用ばね(1
3)の開弁荷重を差し引いた残りの閉弁荷重と同等な電
磁力が作用する第6図の(B)点に達するまでは、プラ
ンジャ(4)はステータ(3)に吸引されず、弁部(6
)は閉弁状態にあり、流体の流量は第7図の(B)点ま
で零である。 次で、前記電流値が前記(B)点より更
に増加し、その電磁力によるプランジャ(4)の開弁方
向への吸引力と開弁用ばね(13)の開弁荷重との総和
荷重が閉弁用ばね(11)の閉弁荷重より打ち勝つと、
プランジャ(4)と共に弁軸(5)が開弁方向に移動し
てその弁部(6)のストローク、すなわち開弁面積は増
大し、第6図の(C)点に達する。
When the excitation coil (2) is not energized, the valve-closing load of the valve-closing spring (11) overcomes the valve-opening load of the valve-opening spring (13), and the valve is in the closed state as shown in Figure 1. . The relationship between the current and the movement stroke of the valve stem (5) in this state is at point (A) in Figure 6, and the flow rate of the fluid is at point (A) in Figure 6.
It is zero at the position (A) in the figure. Next, excitation coil (2)
is energized, the current value is increased, and the current value becomes higher than the valve closing load of the valve closing spring (11).
The plunger (4) is not attracted to the stator (3) until it reaches point (B) in Fig. 6, where an electromagnetic force equivalent to the remaining valve-closing load after subtracting the valve-opening load in step 3) acts. Part (6
) is in a closed state, and the fluid flow rate is zero up to point (B) in FIG. Next, the current value further increases from the point (B), and the total load of the attraction force of the plunger (4) in the valve opening direction due to the electromagnetic force and the valve opening load of the valve opening spring (13) increases. When the valve closing load of the valve closing spring (11) is overcome,
The valve shaft (5) moves together with the plunger (4) in the valve opening direction, and the stroke of the valve portion (6), that is, the valve opening area increases, reaching point (C) in FIG. 6.

この状態は第2図に示す如く、可動ばね受け(12)か
ばねストッパ(14)に当接した状態にあり、その流体
の流量は第7図の(B)点より (C)点まで増量され
る。 尚、この第6図における(B)点より(C)点へ
の立上りは、前記(Dl)の間隙が小さいことから、は
ぼ鉛直状に立上るが、弁軸の摺動摩擦等により幾分図示
の如く傾斜する。
In this state, as shown in Fig. 2, the movable spring receiver (12) is in contact with the spring stopper (14), and the flow rate of the fluid is increased from point (B) to point (C) in Fig. 7. Ru. Note that the rise from point (B) to point (C) in Fig. 6 is almost vertical because the gap (Dl) is small, but due to sliding friction of the valve stem, etc. Tilt as shown.

次で前記電流値を前記(C)点より更に増加すると、そ
の電磁力による開弁力は増加するが、前記(B)点以降
においては、開弁用ばね(13)による開弁荷重は不作
用状態になり、プランジャ(4)に対する開弁用ばね(
13)による閉方向の助けは消滅する。したがって、プ
ランジャ(4)を更に開弁方向へ移動させるには、前記
消滅した開弁用ばね(13)と同等の開弁荷重が必要に
なる。 そのため、電流値が、前記(C)点より更に前
記開弁用ばね(13)の開弁荷重と同等の電磁力が付加
される(D)点まで増加するまでは、プランジャ(4)
は開弁方向に吸引されず、弁軸(5)の開弁方向のスト
ロークは(C)点より増加しない。 そのため、電流値
が(D)点に増加しても流体の流量は第7図の(D)点
に至るまでは増量しない。 次で、電流値が第6図(D
)点より更に増加して電磁力により開弁荷重が増加する
と、該開閉荷重が閉弁用ばね(11)の閉弁荷重に打ち
勝ち、プランジャ(4)が開弁方向へ吸引移動され、弁
軸(5)の開弁方向へのストロークが第6図の(E)点
まで増加する。
Next, when the current value is further increased from the point (C), the valve opening force due to the electromagnetic force increases, but after the point (B), the valve opening load due to the valve opening spring (13) is unchanged. The valve opening spring (
The help in the closing direction due to 13) disappears. Therefore, in order to further move the plunger (4) in the valve opening direction, a valve opening load equivalent to that of the extinguished valve opening spring (13) is required. Therefore, until the current value increases from the point (C) to the point (D) where an electromagnetic force equivalent to the valve opening load of the valve opening spring (13) is applied, the plunger (4)
is not attracted in the valve opening direction, and the stroke of the valve shaft (5) in the valve opening direction does not increase beyond point (C). Therefore, even if the current value increases to point (D), the fluid flow rate does not increase until it reaches point (D) in FIG. Next, the current value is shown in Figure 6 (D
) When the valve opening load increases due to electromagnetic force, the opening/closing load overcomes the valve closing load of the valve closing spring (11), the plunger (4) is attracted and moved in the valve opening direction, and the valve shaft The stroke in the valve opening direction (5) increases to point (E) in FIG.

そのため、流体の流量は第7図の(E)点まで増量され
る。この(E)点の状態は第3図に示す状態である。 
この第6図における(D)点より (E)点までの立上
り状態も前記(B)点より(C)点までの立上り状態と
同様である。 この(E)点の状態では、弁軸(5)に
おける後端のストッパ面(7)がステータ(3)に当接
するため、前記以上に電流値が(F)へ増加しても弁部
(6)は更に移動せず、流体の流量は変化しない。 こ
のような閉弁作動中における弁軸(5)の開弁方向スト
ロークとばねによる閉弁力との関係は第8図の実線(イ
)で示すようになる。
Therefore, the flow rate of the fluid is increased to point (E) in FIG. The state of this point (E) is the state shown in FIG.
The rising state from point (D) to point (E) in FIG. 6 is the same as the rising state from point (B) to point (C). In this state at point (E), the stopper surface (7) at the rear end of the valve stem (5) contacts the stator (3), so even if the current value increases to (F) above, the valve portion ( 6) does not move further and the fluid flow rate remains unchanged. The relationship between the stroke of the valve shaft (5) in the valve-opening direction and the valve-closing force exerted by the spring during such a valve-closing operation is shown by the solid line (A) in FIG.

次に前記の開弁状態より電流値を減少する場合の状態を
説明する。 電流値が第6図の(F)点より(E)点に
減少するまでは前記と同様に弁部(6)のストロークは
変化せず、流体の流量も第7図の如く変化しない。 電
流値が(E)点より減少する場合は、電流値の減少と共
に直ちに弁軸(5)のストロークが減少せず、電流値が
破線の如く (G)点まで減少した後に弁軸(5)のス
トロークが破線の如く (H)点まで減少する。 この
ように弁軸(5)のストロークの変化点が、電流値の増
加時に比べてずれるのは、プランジャ(4)に働く電磁
力は、プランジャ(4)とステータ(3)との離間距離
の2乗に比例するが、閉弁用ばね(11)の閉弁力はプ
ランジャ(4)とステータ(3)との離間距離に比例す
るからである。 次に電流値が(H)点より(C)点ま
で減少する間は、前記電流値の増加時と同様な力関係に
より弁軸(5)のストロークは変化せず、流体の流量も
変化しない。 次で、電流値が(1)点に減少した時点
において弁軸(5)のストロークは破線の如く (J)
点まで減少する。 弁軸(5)のストロークの変化点が
増加時の(C)点に比べて(1点までずれるのは前記(
E)点より(G)点までずれるのと同様な理由である。
Next, a state in which the current value is decreased from the above-mentioned valve open state will be explained. Until the current value decreases from point (F) to point (E) in FIG. 6, the stroke of the valve portion (6) does not change as described above, and the flow rate of the fluid does not change as shown in FIG. 7. When the current value decreases from point (E), the stroke of the valve stem (5) does not immediately decrease as the current value decreases, and the stroke of the valve stem (5) does not decrease immediately after the current value decreases to point (G) as shown by the broken line. The stroke decreases to point (H) as shown by the broken line. The reason why the stroke change point of the valve stem (5) shifts compared to when the current value increases is because the electromagnetic force acting on the plunger (4) is proportional to the distance between the plunger (4) and the stator (3). This is because the valve-closing force of the valve-closing spring (11) is proportional to the distance between the plunger (4) and the stator (3), although it is proportional to the square of the square. Next, while the current value decreases from point (H) to point (C), the stroke of the valve stem (5) does not change due to the same force relationship as when the current value increases, and the flow rate of the fluid also does not change. . Next, when the current value decreases to point (1), the stroke of the valve stem (5) is as shown by the broken line (J)
decreases to a point. The reason why the stroke change point of the valve stem (5) deviates by 1 point compared to point (C) when increasing is due to (
This is the same reason why point (G) is shifted from point E).

 この(J)点まで電流値が減少すると、弁軸(5)の
ストロークは零になって閉弁状態になり、電流値が(A
)点まで減少するまでその閉弁状態が続き、流体の流量
は第7図の如く零になる。
When the current value decreases to this point (J), the stroke of the valve stem (5) becomes zero and the valve is closed, and the current value becomes (A
The closed state continues until the flow rate decreases to a point ), and the fluid flow rate becomes zero as shown in FIG.

第4図は本発明の第2実施例を示すもので、前記実施例
における開弁用ばね(13)の代りに第2閉弁用ばね(
16)を用いると共に前記可動ばね受け(12)を弁軸
(5)の後部に設けたものである。
FIG. 4 shows a second embodiment of the present invention, in which a second valve-closing spring (13) is used instead of the valve-opening spring (13) in the previous embodiment.
16) and the movable spring receiver (12) is provided at the rear of the valve shaft (5).

すなわち、弁軸(5)におけるストッパ面(7)に対向
して可動ばね受け(17)をステータ(3)内に摺動可
能に設け、該可動ばね受け(17)の後面とケース(1
)に螺設した調整スクリュ(18)との間に第2閉弁用
ばね(16)を圧縮して介在したものである。
That is, a movable spring receiver (17) is slidably provided in the stator (3) facing the stopper surface (7) of the valve shaft (5), and the rear surface of the movable spring receiver (17) and the case (1) are slidably provided in the stator (3).
), and a second valve closing spring (16) is compressed and interposed between the adjusting screw (18) and the adjustment screw (18) screwed into the valve.

その他の構造は前記実施例と同様である。The rest of the structure is the same as that of the previous embodiment.

この第2実施例において、第4図の閉弁状態より励磁コ
イル(2)の電流値が増加すると、開弁作用する電磁力
が閉弁用ばね(11)の初期設定荷重より打ち勝つまで
はプランジャ(4)が吸引されず、弁部(6)は開弁状
態にある。 次で電流値が更に増加して閉弁用ばね(1
1)の閉弁荷重に打ち勝つと、プランジャ(4)が吸引
移動し、弁部(6)が開弁する。
In this second embodiment, when the current value of the exciting coil (2) increases from the valve closed state shown in FIG. (4) is not suctioned, and the valve portion (6) is in an open state. Next, the current value increases further and the valve closing spring (1
When the valve closing load of 1) is overcome, the plunger (4) moves by suction and the valve portion (6) opens.

更に電流値が増加し、弁軸(5)のストッパ面(力が可
動ばね受け(17)に当接すると、第2閉弁用ばね(1
6)の閉弁荷重により弁軸(5)は停止する。 電磁力
が前記閉弁用ばね(11)と第2閉弁用ばね(16)の
両閉弁荷重に打ち勝つまでは電流値が増加しても弁軸(
5)は停止し、電流値が、前記閉弁荷重に打ち謄つ電磁
力を生ずるまで増加すると、可動ばね受け(17)は第
2閉弁用ばね(16)の閉弁荷重に抗して移動し、弁軸
(5)の開弁方向のストロークは増大する。 このよう
な電流値に対する弁軸(5)のストローク特性は前記第
6図の特性と同様であり、また、流量特性も第7図と同
様である。
When the current value further increases and the force comes into contact with the movable spring receiver (17) on the stopper surface (force) of the valve stem (5), the second valve closing spring (1
The valve shaft (5) stops due to the valve closing load of 6). Even if the current value increases, the valve stem (
5) stops and the current value increases until it generates an electromagnetic force that overcomes the valve closing load, the movable spring receiver (17) resists the valve closing load of the second valve closing spring (16). The stroke of the valve stem (5) in the valve opening direction increases. The stroke characteristics of the valve stem (5) with respect to such current values are similar to those shown in FIG. 6, and the flow rate characteristics are also similar to those shown in FIG. 7.

ただ、ばねによる閉弁力は、第8図の破線(ロ)で示す
ように、その傾きが前記実施例と異なる。
However, the slope of the valve-closing force by the spring is different from that of the embodiment described above, as shown by the broken line (b) in FIG.

第5図は本発明の第3実施例を示すもので、前記第4図
に示す如く第2実施例の可動ばね受け(17)の外周に
第2可動ばね受け(19)を摺動可能に設けると共に該
第2可動ばね受け(19)の後面とケース(1)間に第
3閉弁用ばね(20)を圧縮して介在したものである。
FIG. 5 shows a third embodiment of the present invention, and as shown in FIG. 4, a second movable spring receiver (19) is slidable on the outer periphery of the movable spring receiver (17) of the second embodiment. In addition, a third valve-closing spring (20) is compressed and interposed between the rear surface of the second movable spring receiver (19) and the case (1).

 他の構造は前記第2実施例と同様である。The other structure is the same as the second embodiment.

この第3実施例においては、電流値の増加に対して流体
の流量が3段階に変化すると共にその変化時点において
は、前記と同様に、電流値の変化に対しても弁軸(5)
のストロークは変化しない。
In this third embodiment, the fluid flow rate changes in three stages as the current value increases, and at the time of the change, the valve stem (5)
The stroke of will not change.

第9図は本発明の第4実施例を示すもので、前記第2実
施例における弁部の変形例である。 すなわち、弁座(
21)を円筒状に形成すると共にこれに流体の流入口(
22)を形成し、円筒状の弁部(23)を前記弁座(2
1)内に摺動可能に嵌合すると共にこれに前記流入口(
22)と係合する開閉口(24)を形成し、弁部(23
)の摺動による開閉口(24)の流入口(22)に対す
る重合量によって流体の流量を制御するようにしたもの
である。  (25)は圧力伝達通路である。 その他
の構造は第4図の実施例とほぼ同様である。 この実施
例によれば、流体の流れによる圧力が、ばねの閉弁荷重
に対し影響しにくい特長がある。
FIG. 9 shows a fourth embodiment of the present invention, which is a modification of the valve portion in the second embodiment. In other words, the valve seat (
21) is formed into a cylindrical shape, and a fluid inlet (
22), and a cylindrical valve part (23) is attached to the valve seat (22).
1), and the inlet port (
It forms an opening/closing opening (24) that engages with the valve part (23).
) The flow rate of the fluid is controlled by the amount of polymerization of the opening/closing port (24) relative to the inlet (22) by sliding. (25) is a pressure transmission passage. The rest of the structure is almost the same as the embodiment shown in FIG. This embodiment has the advantage that the pressure caused by the fluid flow hardly affects the valve closing load of the spring.

ハ1発明の効果 以上のように本発明によれば、流体の流量を複数段階に
変化できるは勿論、特に、電流値に対する弁軸の移動特
性、すなわち流体の流量特性が第11図(B)の如く、
前段の流量変化点と後段の流量変化点との間において、
電流値が変化しても流量は変化しないようなデジタル的
な変化となるため、その前段の流量変化点と後段の流量
変化点との間において、第11図(B)に示す如く、励
磁コイルの電流値に(Y)幅のバラツキが生じても弁軸
の移動、すなわち流体の流量のバラツキ幅(Z)は第1
1図(A)に示す従来のバラツキ幅(X)に比べて大幅
に小さくなる。 そのため、電磁弁による複数段階の流
量調整が電流値にバラツキを生じても精度良く行なえる
特長がある。
C1 Effects of the Invention As described above, according to the present invention, the flow rate of the fluid can of course be changed in multiple stages, and in particular, the movement characteristics of the valve stem with respect to the current value, that is, the flow rate characteristics of the fluid can be changed as shown in FIG. 11(B). Like,
Between the flow rate change point in the first stage and the flow rate change point in the second stage,
Even if the current value changes, the flow rate does not change in a digital manner, so between the flow rate change point in the previous stage and the flow rate change point in the latter stage, as shown in Fig. 11 (B), the excitation coil Even if there is a variation in (Y) width in the current value, the movement of the valve stem, that is, the variation width (Z) in the fluid flow rate will be
This is significantly smaller than the conventional variation width (X) shown in FIG. 1 (A). Therefore, the solenoid valve has the advantage of being able to adjust the flow rate in multiple stages with high precision even if there are variations in the current value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す側断面図、第2図及
び第3図はその作動状態を示す各側断面図、第4図、第
5図及び第9図は本発明の他の3つの実施例を示す各側
断面図、第6図は電流値と弁軸のストロークとの関係を
示す特性図、第7図は流量特性図、第8図は弁軸のスト
ロークに対するばねの閉弁力の特性図、第10図は従来
の電磁弁を示す断面図、第11図は電流値に対する流量
特性の従来のものと本発明のものとの比較図で、その(
A)は従来、(B)は本発明のものを示す。 (2)・・・励磁コイル (3)・・・ステータ (4)・・・プランジャ (5)・・・弁軸 (6)・・・弁部 (8)・・・弁座
FIG. 1 is a side sectional view showing the first embodiment of the present invention, FIGS. 2 and 3 are side sectional views showing its operating state, and FIGS. 4, 5, and 9 are side sectional views showing the first embodiment of the present invention. Each side sectional view showing the other three embodiments, Fig. 6 is a characteristic diagram showing the relationship between current value and valve stem stroke, Fig. 7 is a flow rate characteristic diagram, and Fig. 8 is a spring versus valve stem stroke. Figure 10 is a sectional view showing a conventional solenoid valve, and Figure 11 is a comparison diagram of the flow rate characteristics with respect to current value between the conventional type and the present invention.
A) shows the conventional one, and (B) shows the one of the present invention. (2)...Excitation coil (3)...Stator (4)...Plunger (5)...Valve shaft (6)...Valve part (8)...Valve seat

Claims (1)

【特許請求の範囲】[Claims] 励磁コイルへの通電による電磁力によって開弁方向へ吸
引移動するプランジャと、該プランジャに固着されて該
プランジャと共に移動する弁軸と、該弁軸に設けた弁部
より開閉される弁座と、前記弁軸が、その全閉状態から
全開状態に移動する道中において、その弁軸に閉弁荷重
を複数回、段階的に増加させるための複数個のばね及び
該ばねと前記弁軸に係合する可動ばね受けとによりなり
、しかも前記複数個のばねを、その初期状態において押
圧荷重を有するように圧縮状態で設置したことを特徴と
する流量調整用電磁弁。
A plunger that is attracted and moved in the valve opening direction by electromagnetic force caused by energizing an excitation coil, a valve shaft that is fixed to the plunger and moves together with the plunger, and a valve seat that is opened and closed by a valve section provided on the valve shaft. A plurality of springs and the springs engage with the valve stem to gradually increase a valve-closing load on the valve stem multiple times while the valve stem moves from a fully closed state to a fully open state. 1. A solenoid valve for adjusting a flow rate, characterized in that the plurality of springs are installed in a compressed state so as to have a pressing load in an initial state.
JP22252886A 1986-09-19 1986-09-19 Solenoid valve for flow rate regulating Pending JPS6376971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22252886A JPS6376971A (en) 1986-09-19 1986-09-19 Solenoid valve for flow rate regulating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22252886A JPS6376971A (en) 1986-09-19 1986-09-19 Solenoid valve for flow rate regulating

Publications (1)

Publication Number Publication Date
JPS6376971A true JPS6376971A (en) 1988-04-07

Family

ID=16783846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22252886A Pending JPS6376971A (en) 1986-09-19 1986-09-19 Solenoid valve for flow rate regulating

Country Status (1)

Country Link
JP (1) JPS6376971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107586U (en) * 1991-02-08 1992-09-17 エヌオーケー株式会社 solenoid valve
JP2014181838A (en) * 2013-03-19 2014-09-29 Harman Co Ltd Gas cooking stove
JP2014231969A (en) * 2013-05-30 2014-12-11 株式会社ハーマン Gas cooking stove
JP2015007494A (en) * 2013-06-25 2015-01-15 株式会社ハーマン Gas stove
US9366354B2 (en) 2012-06-12 2016-06-14 Toyota Jidosha Kabushiki Kaisha Normally closed solenoid valve
CN107146678A (en) * 2016-03-01 2017-09-08 阿尔卑斯电气株式会社 Solenoid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107586U (en) * 1991-02-08 1992-09-17 エヌオーケー株式会社 solenoid valve
US9366354B2 (en) 2012-06-12 2016-06-14 Toyota Jidosha Kabushiki Kaisha Normally closed solenoid valve
JP2014181838A (en) * 2013-03-19 2014-09-29 Harman Co Ltd Gas cooking stove
JP2014231969A (en) * 2013-05-30 2014-12-11 株式会社ハーマン Gas cooking stove
JP2015007494A (en) * 2013-06-25 2015-01-15 株式会社ハーマン Gas stove
CN107146678A (en) * 2016-03-01 2017-09-08 阿尔卑斯电气株式会社 Solenoid

Similar Documents

Publication Publication Date Title
US5462253A (en) Dual slope flow control valve
US6619615B1 (en) Propotional control pressure valve
US4546795A (en) Solenoid valve
JPH05126106A (en) Electromagnetic solenoid valve with variable force valve
US9366354B2 (en) Normally closed solenoid valve
JP4312390B2 (en) Proportional pressure regulating valve
JPS6376971A (en) Solenoid valve for flow rate regulating
JPS63163516A (en) Gas controller with servo pressure regulator
KR0148499B1 (en) Valve device
US5810030A (en) Fluid control solenoid valve
EP0434092A2 (en) Flow control valve
JPH0473036B2 (en)
JP4492649B2 (en) Bleed valve device
EP0628460A1 (en) Changeover valve and flow control valve assembly having the same
JP2001041340A (en) Solenoid valve
US11499726B2 (en) Coaxial gas valve assemblies including electronically controlled solenoids
JPH06249094A (en) Pressure controlling valve
JPH06137453A (en) Electromagnetic needle valve
JPH06331050A (en) Proportional solenoid-operated pressure control valve
JPH0740784Y2 (en) Valve for pressure control
JP3070079B2 (en) Flow control valve
JP2895730B2 (en) Proportional flow control valve
JPH0410403Y2 (en)
JPS63243582A (en) Electromagnetic actuator for fluid control purpose
JPH0454493Y2 (en)