JPS6376655A - Communication method for data from underground - Google Patents

Communication method for data from underground

Info

Publication number
JPS6376655A
JPS6376655A JP61222837A JP22283786A JPS6376655A JP S6376655 A JPS6376655 A JP S6376655A JP 61222837 A JP61222837 A JP 61222837A JP 22283786 A JP22283786 A JP 22283786A JP S6376655 A JPS6376655 A JP S6376655A
Authority
JP
Japan
Prior art keywords
sine wave
receiver
wave
frequency
data transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61222837A
Other languages
Japanese (ja)
Inventor
Akiro Sanemori
実森 彰郎
Satoru Inoue
悟 井上
Takaaki Maekawa
隆昭 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61222837A priority Critical patent/JPS6376655A/en
Publication of JPS6376655A publication Critical patent/JPS6376655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To surely detect the synchronization of an electromagnetic wave whose phase is modulated and to improve the reliability of communications by transmitting a sine wave with a fixed frequency to a receiver from a transmitter prior to data transmission and acquiring the synchronization of a data transmission wave based on the frequency of the received sine wave. CONSTITUTION:Prior to data transmission, the sine wave with a fixed frequency is transmitted to the underground receiver 20 from the transmitter 90 in a pit. Receiving the wave, the receiver 20 acquries the synchronization of the data transmission wave based on the frequency of the received sine wave. Namely, the underground transmitter 90 first transmits the sine wave with a fixed frequency. The receiver 20, receiving that, stores information about the frequency. Then the transmitter 90 receives the data transmission wave. When receiving that, the receiver 20 detects the synchronization of the data transmission wave with the aid of the frequency of the having been received sine wave. Thus a reference for detection waves becomes precise. Therefore the detection is made more precisely, and the reliability of reception data is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、たとえば検層用計測装置、即ち主として石油
あるいは天然ガス等の採掘用縦坑、即ち油井、ガス井等
を掘削する際に、ドリルパイプ先端部に装着されて坑底
の性状を測定する装置、あるいはその他の地中に埋設さ
れた種々の計測装置等にて得られたデータを送信するた
めの通信方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, a measuring device for well logging, that is, a vertical shaft for mining oil or natural gas, that is, when drilling an oil well, a gas well, etc. The present invention relates to a communication method for transmitting data obtained from a device attached to the tip of a drill pipe to measure properties of the bottom of a pit, or various other measuring devices buried underground.

〔従来技術〕[Prior art]

たとえば従来、石油掘削用の油井等の縦坑を掘削する際
に、坑底付近の地質あるいは掘削1用ビットに関する種
々の情報を得るには、ドリルパイプを一旦地上に引き上
げて検査するか、検層用の計測装置を縦坑内に下ろして
計測するか、あるいは掘削中にドリルパイプ上端からビ
ット先端を経て縦坑内を上方へ循環している泥水(マッ
ド)の状態、成分を分析するマントロギング(泥水検層
)と呼ばれる手法等が採用されている。
For example, conventionally, when drilling a vertical shaft such as an oil well for oil drilling, in order to obtain various information about the geology near the bottom of the hole or the drilling bit used for drilling 1, the drill pipe was first raised above ground and inspected, or Measurements can be taken by lowering a layer measuring device into the shaft, or mant logging (which analyzes the state and components of the mud that circulates upward in the shaft from the top of the drill pipe through the tip of the bit during drilling). A method called mud logging (muddy water logging) has been adopted.

しかし、上述の各手法では、計測に比較的時間を要し、
また掘削中の坑底のデータをリアルタイムで計測するこ
とは困難であった。このような事情から、近年、MWD
(Measurement While Dril目n
g>と呼ばれる手法が開発されている。このMWDは端
的には、ドリルパイプの坑底に近い先端部にセンサを備
えた検層用計測装置を装着し、得られた種々のデータを
たとえば電磁波等を媒体として地上へ送信することによ
り、リアルタイムにて坑底の性状(ピントの状態を含む
)を計測し、そのデータを得んとするものである。
However, each of the above-mentioned methods requires a relatively long time to measure;
Furthermore, it was difficult to measure the bottom of the hole in real time during excavation. Due to these circumstances, in recent years MWD
(Measurement While Drill)
A method called g> has been developed. Simply put, this MWD is achieved by attaching a logging measurement device equipped with a sensor to the tip of a drill pipe near the bottom, and transmitting the various data obtained to the ground using electromagnetic waves as a medium. The purpose is to measure the properties of the bottom of the mine (including the focus state) in real time and obtain that data.

第4図は一例として、OGJ Report Feb、
21.1983に”5econd−Generatio
n MWD Tool Pa5ses FieldTe
s t”の表題で発表された装置の構成を示す模式図中
、Iは掘削1リグ、2は地層、3は掘削中の縦坑、即ち
油井、4は図示しない動力源にて回転されてその力をビ
ット5に伝達するためのドリルパイプであり、掘削深さ
に応して多数がそれぞれの連結部同士を連結されてドリ
ルストリングが構成されている。
Figure 4 shows, as an example, OGJ Report Feb.
21. In 1983 “5econd-Generation”
n MWD Tool Pa5ses FieldTe
In the schematic diagram showing the configuration of the equipment announced under the title "S T", I is a drilling rig, 2 is a stratum, 3 is a vertical shaft being excavated, that is, an oil well, and 4 is a machine that is rotated by a power source (not shown). This is a drill pipe for transmitting the force to the bit 5, and a drill string is constructed by connecting a large number of them at their respective connecting parts depending on the drilling depth.

5は上述の如く地層を掘削するためのビット、6は最先
端の、つまりビット5の直上のドリルパイプ40を底部
4Iと上部42とに分割して両者を電気的に絶縁するた
めの絶縁カラーである。
5 is a bit for drilling the stratum as described above, and 6 is an insulating collar that divides the most advanced drill pipe 40 directly above the bit 5 into a bottom portion 4I and an upper portion 42 and electrically insulates the two. It is.

また、第4図において破線にて囲繞した範囲7は、最先
端のドリルパイプ40の底部41と上部42及びそれ以
上の位置のドリルパイプ4と絶縁カラー6とにより形成
されるダイポールアンテナを示している。、そして、8
は最先端のドリルパイプ40の底部41に取付けられた
格納容器である。この格納容器8内には検層用計測装置
80及びこの検層用計測装置80にて得られたデータを
通信するための通信装置の送信機90が収納されている
Furthermore, in FIG. 4, an area 7 surrounded by a broken line indicates a dipole antenna formed by the bottom 41 and the top 42 of the most advanced drill pipe 40, and the drill pipe 4 and the insulating collar 6 at a position higher than that. There is. , and 8
is a containment vessel attached to the bottom 41 of the most advanced drill pipe 40. This containment vessel 8 houses a well logging measurement device 80 and a transmitter 90 of a communication device for communicating data obtained by this well logging measurement device 80.

検層用計測装置80は、掘削中の油井3の坑底及びビッ
ト5に関する種々の性状、たとえば温度。
The well logging measurement device 80 measures various properties, such as temperature, regarding the bottom of the oil well 3 and the bit 5 during drilling.

圧力、振動3回転トルク等をそれぞれ測定するセンサ等
からなる。また通信装置の送信機90は、検層用計測装
置80により得られたデータを、変調・増幅して上述の
ダイポールアンテナ7から一点破線にて示すような電磁
波として出力するための発振器等にて構成されている。
It consists of sensors that measure pressure, vibration, three rotation torque, etc. The transmitter 90 of the communication device is an oscillator or the like that modulates and amplifies the data obtained by the well logging measurement device 80 and outputs it as an electromagnetic wave as shown by the dotted line from the above-mentioned dipole antenna 7. It is configured.

一方、地上には通信装置の受信部を構成するアンテナ1
0.受信機のアンプ11.信号処理部12等が設けられ
ている。具体的には、直線状のアンテナ10が油井3を
ほぼ中心として張られており、このアンテナ10にて受
信された電磁波はアンプ11に出力される。このアンプ
IIはアンテナ10から与えられた信号を増幅して信号
処理部12に出力する。信号処理部12は、アンプ11
の出力信号を検波し、坑底のデータ、即ち格納容器8内
に収納されている検層用計測装置80により測定された
データを再生する。
On the other hand, on the ground is an antenna 1 that constitutes a receiving section of a communication device.
0. Receiver amplifier 11. A signal processing section 12 and the like are provided. Specifically, a linear antenna 10 is extended approximately centered on the oil well 3, and electromagnetic waves received by this antenna 10 are output to an amplifier 11. This amplifier II amplifies the signal given from the antenna 10 and outputs it to the signal processing section 12. The signal processing section 12 includes an amplifier 11
The output signal is detected and the data at the bottom of the pit, that is, the data measured by the well logging measuring device 80 housed in the containment vessel 8 is reproduced.

第5図は、上述のダイポールアンテナ7の部分を拡大し
て示した縦断面図であり、格納容器8内に収納された送
信機90から最先端のドリルパイプ40の絶縁カラー6
により電気的に絶縁された底部41及び上部42それぞ
れに導線CL C2が接続されてダイポールアンテナ7
が構成されている。
FIG. 5 is an enlarged vertical cross-sectional view of the above-mentioned dipole antenna 7, in which the insulating collar 6 of the most advanced drill pipe 40 is connected to the transmitter 90 housed in the containment vessel 8.
A conductive wire CL C2 is connected to the bottom part 41 and the top part 42 which are electrically insulated by the dipole antenna 7.
is configured.

このような従来の装置は、以下のように動作する。Such conventional devices operate as follows.

掘削リグ1が多数のドリルパイプ4,4・・・からなる
ドリルストリングを回転させると、最先端のドリルパイ
プ40の先端に取付けられているビット5も回転するの
で、このビット5の回転により油井3の底部の地層2が
掘削される。この際、最先端のドリルパイプ40の底部
41に設けられた格納容器8内の検層用計測装置80は
センサにて坑底の地層2の性状あるいはビット5の状態
を測定し、この結果得られたデータを送信機90にて変
調・増幅し、5〜60Hzの交流信号として最先端のド
リルパイプ40を絶縁カラー6にて電気的に絶縁したダ
イポールアンテナ7に印加する。これにより、ダイポー
ルアンテナ7からは図に一点破線にて示す如く電磁波が
放射される。
When the drilling rig 1 rotates a drill string consisting of a large number of drill pipes 4, 4..., the bit 5 attached to the tip of the most advanced drill pipe 40 also rotates, and the rotation of the bit 5 causes the oil well to be drilled. Stratum 2 at the bottom of 3 is excavated. At this time, the logging measurement device 80 in the containment vessel 8 installed at the bottom 41 of the most advanced drill pipe 40 uses a sensor to measure the properties of the stratum 2 at the bottom of the well or the state of the bit 5, and obtains the results. The transmitted data is modulated and amplified by a transmitter 90, and applied as an AC signal of 5 to 60 Hz to a dipole antenna 7 whose cutting edge drill pipe 40 is electrically insulated by an insulating collar 6. As a result, electromagnetic waves are radiated from the dipole antenna 7 as shown by dotted lines in the figure.

なお、ダイポールアンテナ7に印加される周波数が60
1Izの場合、空中での波長に換算すると5000−と
極めて長波長になる。
Note that the frequency applied to the dipole antenna 7 is 60
In the case of 1 Iz, when converted to a wavelength in the air, it is an extremely long wavelength of 5000-.

一方地上では、ダイポールアンテナ7から放射され地層
2中を伝播して来た電磁波は直線状のアンテナ10によ
り受信され、アンプ11にて増幅され、信号処理部12
にて検波され、所要形態のデータとして再生される。
On the ground, on the other hand, the electromagnetic waves radiated from the dipole antenna 7 and propagated through the stratum 2 are received by the linear antenna 10, amplified by the amplifier 11, and then sent to the signal processing unit 12.
The signal is detected and reproduced as data in the desired format.

(発明が解決しようとする問題点〕 而して以上の如き通信による場合は地中を伝播する際の
減衰が大きく、極めてS/N比が低い。このため位相変
調された電磁波の同期検波が確実に行えず、通信の信頼
性が極めて低いという問題点があった。本発明は斯かる
問題点を解決すべくなされたものであり、データ送信に
先立ち一定周波数の正弦波を送信し、受信機においては
この正弦波の周波数に基づき検波を行うこととして検波
を確実に行えるようにした通信方法を提供することを目
的とする。
(Problem to be solved by the invention) However, in the case of communication as described above, attenuation is large when propagating underground, and the S/N ratio is extremely low.For this reason, synchronous detection of phase-modulated electromagnetic waves is difficult. There was a problem in that the reliability of communication was extremely low.The present invention was made to solve this problem.Prior to data transmission, a sine wave of a constant frequency is transmitted, and the reception The purpose of this invention is to provide a communication method in which detection is performed reliably based on the frequency of this sine wave.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るデータ通信方法はデータ送信に先立ち一定
周波数の正弦波を坑内の送信機から地上の受信機へ送信
し、これを受信した受信機は受信正弦波の周波数に基い
てデータ送信波の検波の同期をとるのである。
The data communication method according to the present invention transmits a sine wave of a constant frequency from a transmitter in a mine to a receiver on the ground prior to data transmission, and the receiver that receives this transmits a data transmission wave based on the frequency of the received sine wave. This synchronizes the detection.

(作用〕 地中の送信機はまず一定周波数の正弦波を送信する。受
信機はこれを受信するとその周波数に関する情報を記憶
する。次に送信機はデータ送信波を送信する。受信機は
これを受信すると先に送信された正弦波の周波数を用い
てデータ送信波の同期検波を行う。
(Operation) The underground transmitter first transmits a sine wave with a constant frequency. When the receiver receives this, it stores information about that frequency. Next, the transmitter transmits a data transmission wave. When the data transmission wave is received, the frequency of the previously transmitted sine wave is used to perform synchronous detection of the data transmission wave.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof.

第1,2図は本発明の実施に使用する装置を略示するブ
ロック図であり、それぞれ検層用計測装置80と共に示
す本発明装置の送信機90及び本発明装置の受信機の構
成を示している。また第3図は本発明装置の動作説明の
ための信号波形図である。
1 and 2 are block diagrams schematically illustrating the apparatus used to carry out the present invention, and show the configurations of a transmitter 90 of the apparatus of the present invention and a receiver of the apparatus of the present invention, respectively, shown together with the well logging measuring device 80. ing. Further, FIG. 3 is a signal waveform diagram for explaining the operation of the apparatus of the present invention.

図中Sl、 S2・・・Snはそれぞれ坑底センサであ
り、たとえば温度、圧力、振動1回転トルク等をそれぞ
れ測定してアナログ信号を出力する。
In the figure, Sl, S2, .

各坑底センサSl、 S2・・・Snが出力するアナロ
グ信号はマルチプレクサ81に与えられており、このマ
ルチプレクサ81の出力はA/D変換器82に与えられ
てデジタル信号に変換され、マイクロプロセ、す83に
与えられる。
The analog signals output by each bottom-hole sensor Sl, S2...Sn are given to a multiplexer 81, and the output of this multiplexer 81 is given to an A/D converter 82, where it is converted into a digital signal and sent to a microprocessor. 83.

マイクロプロセッサ83にはメモリ84が接続されてお
り、各坑底センサSl、52・・・Snが検出したデー
タをメモリ84に一次的に記憶させる。90は送信機で
あって、マイクロプロセッサ83が出力する信号を受け
て送信を制御する制御部91.送信すべきデータをパラ
レル/シリアル変換するP/S変換回路92、発振回路
93及びP/S変換回路92出力を発振回路93が発す
る一定周波の正弦波に基いて位相変調する変調回路94
等からなり、この変調回路94出力又は発振回路93出
力が択一的に前述のダイポールアンテナ7へ出力される
ようにななつでいる。
A memory 84 is connected to the microprocessor 83, and the data detected by each bottom hole sensor Sl, 52...Sn is temporarily stored in the memory 84. Reference numeral 90 denotes a transmitter, and includes a control section 91 that receives signals output from the microprocessor 83 and controls transmission. A P/S conversion circuit 92 that converts data to be transmitted from parallel to serial, an oscillation circuit 93, and a modulation circuit 94 that phase modulates the output of the P/S conversion circuit 92 based on a sine wave of a constant frequency generated by the oscillation circuit 93.
The output of the modulation circuit 94 or the output of the oscillation circuit 93 is selectively output to the dipole antenna 7 described above.

第3図(イ)は発振回路93出力を示しており、定期的
に、または不定期的にマイクロプロセッサ83が送信機
90に対し送信を指示する信号を発すると、制御部91
は発振回路93を駆動せしめると共に所定時間その出力
をダイポールアンテナ7へ出力させる。上述した送信の
指示信号に基いてマイクロプロセッサ83は坑底センサ
31等から得られた、又はメモリ84に記憶させておい
たビットパラレルのデータを制御部91に発する。制御
部9IはこれをP/S変換回路92に与えてビットシリ
アルのデータに変換し、変調回路94へ出力せしめ、こ
こにおいて位相変調させる。
FIG. 3(a) shows the output of the oscillation circuit 93, and when the microprocessor 83 periodically or irregularly issues a signal instructing the transmitter 90 to transmit, the control unit 91
drives the oscillation circuit 93 and outputs its output to the dipole antenna 7 for a predetermined period of time. Based on the above-mentioned transmission instruction signal, the microprocessor 83 transmits bit parallel data obtained from the bottom hole sensor 31 or the like or stored in the memory 84 to the control unit 91. The control unit 9I supplies this to the P/S conversion circuit 92, converts it into bit serial data, and outputs it to the modulation circuit 94, where it is phase modulated.

第3図(ロ)はP/S変換回路92出力を例示し、同(
ハ)は変調回路94出力を示す。
FIG. 3 (b) shows an example of the output of the P/S conversion circuit 92;
C) shows the modulation circuit 94 output.

この実施例ではP/S変換回路92出力の1ビツトのデ
ータの持続時間を発振回路93出力の2ヘルツ分としで
ある。そして位相変調は2値信号の“1”1″0″に対
応して、発振回路93出力と同相、逆相の正弦波を出力
するように行われる。
In this embodiment, the duration of one bit of data output from the P/S conversion circuit 92 is set to 2 Hz of the output from the oscillation circuit 93. The phase modulation is performed so as to output a sine wave having the same phase and the opposite phase as the output of the oscillation circuit 93 in response to the binary signal "1", "1", and "0".

ダイポールアンテナ7から送信された電磁波は地上にて
アンテナIOに受信されて受信機20に与えられる。こ
の受信機20による受信波はアンプ11にて増幅された
後、発振回路93が発する正弦波を中心とする狭い帯域
を通過域とするバンドパスフィルタ21を介して切換回
路22に入力される。上記バンドパスフィルタ21にて
雑音が除去されることは言うまでもない。切換回路22
は、例えば受信開始後に所定時間受信した信号波、つま
り、発振回路93が発した正弦波をメモリ23に与え、
これにこの正弦波を記憶させる。切換回路22はその後
の受信信号を同期検波回路24に与える。同期検波回路
24はメモリ23からこれに記憶されている正弦波を読
出し、受信した信号をこの正弦波に基いて同期検波する
。これにより第3図(ロ)に示す如きビットシリアルの
デジタル信号が得られることになり、この信号が信号処
理部12に与えられ、ここでデータ解析が行われること
になる。
The electromagnetic waves transmitted from the dipole antenna 7 are received by the antenna IO on the ground and given to the receiver 20. The received wave from the receiver 20 is amplified by the amplifier 11 and then input to the switching circuit 22 via the bandpass filter 21 whose passband is a narrow band centered on the sine wave generated by the oscillation circuit 93. It goes without saying that noise is removed by the bandpass filter 21. Switching circuit 22
gives the memory 23 a signal wave received for a predetermined time after the start of reception, that is, a sine wave emitted by the oscillation circuit 93,
Store this sine wave in it. The switching circuit 22 supplies the subsequent received signal to the synchronous detection circuit 24. The synchronous detection circuit 24 reads out the sine wave stored therein from the memory 23, and synchronously detects the received signal based on this sine wave. As a result, a bit-serial digital signal as shown in FIG. 3(b) is obtained, and this signal is supplied to the signal processing section 12, where data analysis is performed.

なお上述の実施例では受信正弦波をそのままメモリ23
に記憶して同期検波に用いることとしたが、受信正弦波
の周波数を検出し、同周波数を受信機内で発振させ、こ
れを用いて同期検波することとしてもよい。
In the above embodiment, the received sine wave is directly stored in the memory 23.
However, it is also possible to detect the frequency of the received sine wave, oscillate the same frequency within the receiver, and use this to perform synchronous detection.

また本発明は検層データの通信に限らず地中から地上へ
の通信一般に広(通用できる。
Further, the present invention is applicable not only to communication of well logging data but also to communication from underground to above ground in general.

(効果〕 以上の如き本発明による場合は同期検波の基準を正確な
らしめるので検波が確実に行え、受信データの信頼度が
高まる。また通信に際し、所定周波数の正弦波をまず送
信するのでこれを送信開始の信号として着用できるなど
、本発明は優れた効果を奏する。
(Effects) In the case of the present invention as described above, since the reference for synchronous detection is made accurate, detection can be performed reliably and the reliability of received data is increased.Also, when communicating, a sine wave of a predetermined frequency is first transmitted, so this The present invention has excellent effects, such as being able to be worn as a signal to start transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は本発明方法の実施に使用されるそれぞれ送
信機及び受信機のブロック図、第3図はその動作説明の
ための信号波形数、第4.5図は従来技術の説明図であ
る。 Sl、S2・・・Sn・・・坑底センサ  4・・・ド
リルパイプ7・・・ダイポールアンテナ  IO・・・
アンテナ20・・・受信機  23・・・メモリ  2
4・・・同期検波回路80・・・検層用計測装置  9
0・・・送信機  93・・・発振回路  94・・・
変調回路 なお、各図中同一符号は同−又は相当部分を示す。
Figure 1.2 is a block diagram of a transmitter and receiver used to carry out the method of the present invention, Figure 3 is a number of signal waveforms for explaining its operation, and Figure 4.5 is an explanatory diagram of the prior art. It is. Sl, S2...Sn...Bottomhole sensor 4...Drill pipe 7...Dipole antenna IO...
Antenna 20...Receiver 23...Memory 2
4... Synchronous detection circuit 80... Measuring device for well logging 9
0...Transmitter 93...Oscillation circuit 94...
Modulation circuit Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1、地中の送信機から地上の受信機へ通信する方法にお
いて、データ送信に先立ち一定周波数の正弦波を前記送
信機から前記受信機へ送信し、これを受信した受信機は
受信正弦波の周波数に基いてデータ送信波の検波の同期
をとることを特徴とするデータ通信方法。
1. In a method of communicating from an underground transmitter to a receiver on the ground, prior to data transmission, a sine wave of a constant frequency is transmitted from the transmitter to the receiver, and the receiver receives the received sine wave. A data communication method characterized by synchronizing detection of data transmission waves based on frequency.
JP61222837A 1986-09-19 1986-09-19 Communication method for data from underground Pending JPS6376655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222837A JPS6376655A (en) 1986-09-19 1986-09-19 Communication method for data from underground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222837A JPS6376655A (en) 1986-09-19 1986-09-19 Communication method for data from underground

Publications (1)

Publication Number Publication Date
JPS6376655A true JPS6376655A (en) 1988-04-06

Family

ID=16788682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222837A Pending JPS6376655A (en) 1986-09-19 1986-09-19 Communication method for data from underground

Country Status (1)

Country Link
JP (1) JPS6376655A (en)

Similar Documents

Publication Publication Date Title
US4468665A (en) Downhole digital power amplifier for a measurements-while-drilling telemetry system
US4001773A (en) Acoustic telemetry system for oil wells utilizing self generated noise
US3906434A (en) Telemetering system for oil wells
US6987463B2 (en) Method for collecting geological data from a well bore using casing mounted sensors
US4160970A (en) Electromagnetic wave telemetry system for transmitting downhole parameters to locations thereabove
US7145473B2 (en) Electromagnetic borehole telemetry system incorporating a conductive borehole tubular
EP0160678B1 (en) Improved drilling method and apparatus
US6995683B2 (en) System and method for transmitting downhole data to the surface
US20060035591A1 (en) Methods and apparatus for reducing electromagnetic signal noise
JPS63160430A (en) System for transmission electromagnetic induction signal
US5959548A (en) Electromagnetic signal pickup device
NO315289B1 (en) Procedure for transferring data in a borehole
US20180348394A1 (en) Modular tool having combined em logging and telemetry
CN105089646A (en) Logging-while-drilling resistivity measuring device with data transmission function and method
CN109869142B (en) Underground data transmission device and method
CN106894813B (en) Electromagnetic measurement while drilling system and method based on adjacent well receiving antenna
JPS6376655A (en) Communication method for data from underground
CN112878997B (en) Measurement while drilling device
JPS6373500A (en) Data communication from underground and underground communication apparatus therefor
CN105089651A (en) Logging-while-drilling resistivity measuring device and logging-while-drilling resistivity measuring method
JPS6374230A (en) Underground communication equipment
JPS6374334A (en) Underground communication equipment
JPS6374223A (en) Underground communication equipment
JPS6374328A (en) Underground communication equipment
JPS6376632A (en) Underground communication equipment