JPS637626B2 - - Google Patents

Info

Publication number
JPS637626B2
JPS637626B2 JP16784180A JP16784180A JPS637626B2 JP S637626 B2 JPS637626 B2 JP S637626B2 JP 16784180 A JP16784180 A JP 16784180A JP 16784180 A JP16784180 A JP 16784180A JP S637626 B2 JPS637626 B2 JP S637626B2
Authority
JP
Japan
Prior art keywords
pulse
pulses
phase difference
flash
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16784180A
Other languages
Japanese (ja)
Other versions
JPS5790172A (en
Inventor
Koichi Tsujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16784180A priority Critical patent/JPS5790172A/en
Publication of JPS5790172A publication Critical patent/JPS5790172A/en
Publication of JPS637626B2 publication Critical patent/JPS637626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Phase Differences (AREA)
  • Locating Faults (AREA)

Description

【発明の詳細な説明】 この発明は、閃絡事故鉄塔の検出方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting a flash-fault pylon.

落雷によつて送電鉄塔に閃絡事故が発生する
と、送電中の電流が事故鉄塔の放電路を通じて大
地に流れ込む続流が発生し、この続流によつて送
電施設の継電器が作動して停電に至る。そのた
め、閃絡事故鉄塔を速やかに判別し、これを検出
する必要がある。
When a flash fault occurs on a power transmission tower due to a lightning strike, a follow-up current occurs in which the current being transmitted flows into the ground through the discharge path of the failed tower, and this follow-on flow activates the relays in the power transmission facility, resulting in a power outage. reach. Therefore, it is necessary to quickly identify and detect the towers that have had flash flash accidents.

この出願の発明者は、先に閃絡事故鉄塔の検出
方法及びその装置について提案し(特願昭55−
122780号)、更に続流の検出装置についても提案
している。
The inventor of this application previously proposed a method and device for detecting flash-faulted steel towers (patent application filed in 1983-
122780), and also proposed a follow-on flow detection device.

即ち、上記提案に係る検出方法は、閃絡事故が
発生した場合にその送電鉄塔に流入する続流の分
岐部分を挾んでその両側に流れる続流を変流器に
よつて検出し、検出した続流の位相を比較するこ
とにより、位相が一致する場合は非事故鉄塔、一
致しはい場合(逆位相の場合)は事故鉄塔である
と判別するものである。また、上記後者の提案に
係る発明は、変流器のコアの磁気飽和レベルを低
く設定することにより、続流の零クロスポイント
に対応して二次電流をパルスとして出力させ、こ
れを光パルスに変換して判別装置に入力させるよ
うにしたものである。
In other words, the detection method according to the above proposal uses a current transformer to detect the follow-on current that flows on both sides of the branch part of the follow-on current flowing into the transmission tower when a flash fault occurs. By comparing the phases of the follow-on currents, if the phases match, it is determined that the tower is not in an accident, and if they do not match (in the case of opposite phases), it is determined that it is an accident tower. In addition, the invention related to the latter proposal outputs a secondary current as a pulse in response to the zero cross point of the following current by setting the magnetic saturation level of the core of the current transformer low, and converts this into an optical pulse. , and input it to the discriminating device.

以上のことを第1図に基づいて説明すると、同
図aは変流器の一次電流(続流)、bは変流器の
磁気飽和レベルl,l′を低く設定した場合に一次
電流の零クロスポイントに対応して表われる二次
電流、cは整流した二次電流を発光ダイオードに
よつて光変換した光パルスを示している。一次電
流の捕促及び二次電流の光パルスへの変換換は、
第2図に示す続流検出装置1,1′において行な
われ、光パルスは光フアイバケーブル2,2′に
よつて判別装置3に入力され、同装置において光
パルスの位相の一致・不一致によつて一次電流
(続流)の位相の一致・不一致を判別し、閃絡事
故鉄塔を検出するようになつている。
To explain the above based on Fig. 1, a shows the primary current (follow-on current) of the current transformer, and b shows the primary current when the magnetic saturation levels l and l' of the current transformer are set low. The secondary current c that appears corresponding to the zero cross point indicates a light pulse obtained by photoconverting the rectified secondary current by a light emitting diode. The capture of the primary current and the conversion of the secondary current into light pulses are
The following current detection device 1, 1' shown in FIG. This system determines whether the phases of the primary current (follow-on current) match or do not match, and detects towers with flash faults.

以上の如き検出方法において、その判別精度を
向上するためは解決すべき次の如き問題がある。
即ち、続流検出装置1,1′によつて検出される
続流の位相差は、正確に0度(非事故)、又は180
度(事故)であるとは限らず、送電施設の電気的
諸条件によつて上記の角度からずれる場合がある
ので、位相差の判別には相当の余裕をもたせる必
要がある。しかし、そのような余裕をもたせるこ
とは判別精度を低下させる原因になる。
In the detection method described above, there are the following problems that must be solved in order to improve the discrimination accuracy.
That is, the phase difference of the following flow detected by the following flow detection devices 1, 1' is exactly 0 degrees (no accident), or 180 degrees.
The angle may deviate from the above angle depending on the electrical conditions of the power transmission facility, and it is not always the case that the angle is an accident. Therefore, it is necessary to allow a considerable amount of leeway in determining the phase difference. However, providing such a margin causes a decrease in discrimination accuracy.

そこで、この発明は、位相差の判別に相当の余
裕をもたせても、なお十分に精度よく位相差を判
別でき、正確に閃絡事故鉄塔を検出できる方法を
提供することを目的としている。以下この発明の
実施例を、第3図及至第9図に基づいて説明す
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method that allows a considerable margin for phase difference determination but still allows for sufficiently accurate phase difference determination and accurately detects a flash-faulted steel tower. Embodiments of the present invention will be described below with reference to FIGS. 3 to 9.

第3図は続流検出装置1,1′を塔頂4の両側
における地線5に取付けた場合であり、変流器
6,6′の極性は、地線5に沿つて同じ向きにな
るよう、即ち図の左側を巻始め端X、右側を巻終
り端Y(又はこの逆に)取付けてある。したがつ
て、この場合鉄塔7に閃絡事故が発生している
と、図の実線矢印のように続流が流れるため、第
4図a,bに示す如く位相が180度ずれたパルス
が判別装置3に入力されることになる。したがつ
て判別装置3においては、両パルスの位相の不一
致を以つて“事故”と判別することになる。な
お、第3図において鎖線矢印は非事故鉄塔におけ
る続流の向きを示している。
Figure 3 shows the case where the following flow detection devices 1 and 1' are attached to the ground wire 5 on both sides of the tower top 4, and the polarity of the current transformers 6 and 6' is in the same direction along the ground wire 5. That is, the left side of the figure is the winding start end X, and the right side is the winding end Y (or vice versa). Therefore, in this case, if a flash fault occurs in tower 7, a follow-on current will flow as shown by the solid arrow in the figure, so pulses with a phase shift of 180 degrees as shown in Figure 4 a and b will be identified. It will be input to device 3. Therefore, in the discriminating device 3, an "accident" is determined based on the mismatch in phase between the two pulses. In addition, in FIG. 3, the chain line arrow indicates the direction of the follow-on flow at the non-accident tower.

第5図は変流器6,6′の極性を上記とは逆に
設定したものであり、事故鉄塔の場合は第6図
a,bに示す如く位相差の無いパルスが判別装置
3に入力されることになる。したがつて、判別装
置3においては、両パルスの一致(論理積)を以
つて“事故”と判別することになる。
In Figure 5, the polarity of the current transformers 6 and 6' is set opposite to the above, and in the case of the accident tower, pulses with no phase difference are input to the discriminator 3 as shown in Figure 6 a and b. will be done. Therefore, in the discriminating device 3, an "accident" is determined based on the coincidence (logical product) of both pulses.

第3図及び第5図のいずれの場合も、上述のよ
うに続流の位相差に基づく事故発生の有無の判別
は可能であるが、第5図の場合の方が簡単な電気
回路ですむ。以下の説明は便宜上、第5図の方式
によるものとする。
In both cases of Fig. 3 and Fig. 5, it is possible to determine whether an accident has occurred based on the phase difference of the following current as described above, but the case of Fig. 5 requires a simpler electrical circuit. . For convenience, the following explanation will be based on the method shown in FIG. 5.

なお、以上は塔頂4の両側における地線5に続
流検出装置1,1′を取付ける場合について示し
たが、この装置1,1′は続流の分岐部分を挾ん
でその両側に取付ければよいので、地線5以外
に、例えば鉄搭7の搭頂4に近い支柱と搭脚に近
い支柱に取付けてもよい。
In addition, although the above example shows the case where the following flow detection devices 1, 1' are installed on the ground wire 5 on both sides of the tower top 4, these devices 1, 1' can be installed on both sides of the branch part of the following flow. Therefore, in addition to the ground wire 5, it may be attached to, for example, a support near the top 4 of the iron tower 7 and a support near the pedestal.

次に、判別装置3における位相差の判別に、前
述した如く相当の余裕をもたせた場合、判別精度
が低下すること、即ち誤判別する可能性があるこ
とを第7図を参照して説明する。
Next, it will be explained with reference to FIG. 7 that if a considerable margin is allowed in the phase difference discrimination in the discriminator 3 as described above, the discrimination accuracy will be reduced, that is, there is a possibility of erroneous discrimination. .

同図のa及びcは続流検出装置1,1′によつ
て捉えられた続流を示している。両者の位相は
180度の差があり、本来であれば零クロスポイン
トに対応してパルスP1,P2,P3…Q1,Q2.Q3…が
入力されるので、“非事故”と判別されなければ
ならない。しかしながら、同図aに示す続流のよ
うに、その発生のタイミング如何によつてはP0
で示す如きパルスが発生する場合がある。このよ
うなパルスP0がパルスQ1とほゞ同時に発生した
場合は勿論、パルスQ1に対するパルスP0の位相
のずれが、前述した判別の余裕の範囲内(例え
ば、0゜〜90゜)である場合は、位相が一致する状
態又は位相が一致するとみなしうる状態であるか
ら、判別装置3は“事故”と誤判別することにな
る。
A and c in the same figure show follow-on flows detected by follow-on flow detection devices 1 and 1'. The phase of both is
There is a difference of 180 degrees, and normally pulses P 1 , P 2 , P 3 ...Q 1 , Q 2 .Q 3 ... would have been input corresponding to the zero cross point, so it was determined that there was no accident. There must be. However, like the follow-on flow shown in figure a, depending on the timing of its occurrence, P 0
A pulse as shown in may occur. Of course, if such pulse P 0 occurs almost simultaneously with pulse Q 1 , the phase shift of pulse P 0 with respect to pulse Q 1 is within the above-mentioned margin for discrimination (for example, 0° to 90°). If this is the case, the phases match or the phases can be considered to match, so the discriminating device 3 incorrectly determines that it is an "accident."

このような誤判別は、パルスP0の如き異常な
パルスがいずれの検出装置1,1′において発生
した場合にもおこりうることである。
Such misjudgment can occur when an abnormal pulse such as pulse P 0 is generated in either of the detection devices 1, 1'.

よつて、この発明は、第1番目の入力パルスは
位相差判別の根拠にせず第2番目以降のパルスに
よつてその判別を行なうようにするものである。
Therefore, in the present invention, the first input pulse is not used as the basis for phase difference discrimination, but the discrimination is performed based on the second and subsequent pulses.

また、続流の発生後4〜5サイクル(約0.1秒)
後に送電施設の継電器が作動し送電が停止される
ので続流も遮断されるが、その遮断の際も前述の
場合と同様に異常パルスが発生し、誤判別を起こ
す可能性がある。したがつて、遮断時点又はそれ
に近接して発生するパルス、即ち最終パルスを位
相差判別の根拠としないようにすることも望まし
い。
Also, 4 to 5 cycles (approximately 0.1 seconds) after the occurrence of follow-on flow.
Later, the relay in the power transmission facility is activated and the power transmission is stopped, cutting off the follow-on current, but when this is cut off, an abnormal pulse is generated as in the case described above, and there is a possibility of misjudgment. Therefore, it is also desirable not to use the pulse that occurs at or near the cut-off point, ie, the final pulse, as the basis for determining the phase difference.

次に、判別精度に影響する問題として、続流に
重畳される直流成分の問題がある。続流に重畳す
る直流成分は第8図a,cに点線で示すように時
間の経過と共に次第に減衰するが、このような直
流成分が重畳するのは、続流が大地に流れ込むこ
と(一相の地絡事故に相当する)により、不平衡
電流(零相電流)が流れるためである。そのため
直流成分の含まれる比率やその減衰の速さは、送
電施設の特性や閃絡事故の様相(タイミングな
ど)によつてもかなり異なる。しかし、一般的に
は交流成分より小さい。
Next, as a problem that affects the discrimination accuracy, there is the problem of the DC component superimposed on the follow-on current. The DC component superimposed on the trailing current gradually attenuates over time as shown by the dotted lines in Figure 8a and c, but the reason why such DC components are superimposed is because the trailing current flows into the ground (one phase). This is because an unbalanced current (zero-sequence current) flows due to a ground fault (equivalent to a ground fault). Therefore, the proportion of DC components and their attenuation speed vary considerably depending on the characteristics of the power transmission facility and the aspects of the flash fault (timing, etc.). However, it is generally smaller than the AC component.

以上の如き直流成分が重畳した続流を前述の続
流検出装置1,1′によつて捕捉し、その零クロ
スポイントに対応した位相判別のためのパルスを
出力させるようにする場合には、次の如き問題が
生じる。
When a follow-on current with superimposed DC components as described above is captured by the above-mentioned follow-on current detection devices 1 and 1', and a pulse for phase discrimination corresponding to the zero cross point is outputted, The following problems arise.

即ち、第8図a,cに示すように、直流成分の
重畳の程度がかなり大きいとき、交流成分(商用
周波成分)の最初の1サイクル目の波形の負のピ
ーク値(直流成分が負極性のときは正のピーク
値)が零点をわずかに横切る程度であると、検出
装置1,1′の特性によつては、第8図bに示す
ように零クロスポイントを捉えてパルスを発生す
る場合と、これを捉えることができずパルスが発
出しない場合があり、パルスが発生するかどうか
は装置1,1′の特性のバラツキ等に影響され安
定しない。そのため、同図b,dに示す如きパル
スが判別装置3に入力され、しかも前述の理由に
よつて第2番目以下のパルスに基づいて位相差を
判別したとすると、dの場合は第2番目のパルス
が欠けているから、“事故”を“非事故”と誤判
別することになる。
That is, as shown in Fig. 8a and c, when the degree of superimposition of the DC component is quite large, the negative peak value of the waveform of the first cycle of the AC component (commercial frequency component) (the DC component has a negative polarity) When the positive peak value (positive peak value when In some cases, this cannot be detected and a pulse is not emitted, and whether or not a pulse is generated is not stable as it is influenced by variations in the characteristics of the devices 1 and 1'. Therefore, if pulses such as those shown in b and d of the same figure are input to the discrimination device 3, and the phase difference is discriminated based on the second and subsequent pulses for the above-mentioned reason, in the case of d, the second Since the pulse is missing, an "accident" will be misjudged as a "non-accident."

上記の如き誤判別を避けるためには、いずれの
検出装置1,1′からの出力パルスも第2番目の
パルスを教え終り、次に到来するパルス、即ち第
3番目のパルスによつて位相差を比較判別すれば
よいことになる。
In order to avoid the above-mentioned misjudgment, the output pulse from either of the detection devices 1, 1' must complete the second pulse, and then the phase difference can be determined by the next arriving pulse, that is, the third pulse. All you have to do is compare and judge.

なお第8図a,cのように、直流成分がかなり
の程度重畳するケースは少ないので、ほとんどの
場合は、第1番目のパルスを除き、第2番目のパ
ルスによつて判別するだけで十分間にあう。
As shown in Figure 8 a and c, there are few cases where the DC components overlap to a considerable degree, so in most cases, it is sufficient to exclude the first pulse and make a distinction based on the second pulse. I'll be there in time.

次に、第9図に基づいて判別装置3の内部構造
の一例を説明する。
Next, an example of the internal structure of the discrimination device 3 will be explained based on FIG. 9.

前述の続流検出装置1,1′から光フアイバー
ケーブル2,2′によつて送られてきた光パルス
P,Qは、光−電気変換回路8,8′において電
気パルスに変換され、そのパルスの立下がりによ
り、次のフリツプフロツプ9,9′をトリガする。
このフリツプフロツプ9,9は、それぞれに光パ
ルスP,Qが少なくとも1個入つたことを記懐
し、出力信号を出す。その出力信号によりアンド
ゲート10は開状態になる。次に、第2番目のパ
ルスP,Qに応じて電気パルスが入力されると、
アンドゲート11,11′が開状態になり、その
パルスはワンシヨツトマルチバイブレータ12,
12′に入力される。ワンシヨツトマルチバイブ
レータ12,12′は第2番目のパルスの立上が
りによつてトリガされ、90度位相相当分(時間換
算で60Hzのとき4.17msec)のパルスが出力され
る。したがつて、第2番目の電気パルス相互間に
若干の位相差があつても、その位相差が90度未満
のときは、次のアンドゲート13が開状態とな
り、フリツプフロツプ14に入力され、その出力
によつて第2番目のパルスの位相の一致したこ
と、即ち閃絡事故鉄塔であることの表示を行な
う。上記ワンシヨツトマルチバイブレータ12,
12′によるパルス幅の延長時間は、90度位相相
当分に限定されるものではないが、送電施設の電
気的諸条件により、普通60〜90度の位相相当の幅
をもつよう設計される。なお、第3番目以降のパ
ルスを受付けないようにするために、ワンシヨツ
トマルチバイブレータ12,12′の信号が出力
されたときは、フリツプフロツプ15,15′等
によりワンシヨツトマルチバイブレータ12,1
2′への入力を禁止する。
The optical pulses P, Q sent from the above-mentioned following current detection devices 1, 1' through the optical fiber cables 2, 2' are converted into electrical pulses in the optical-electrical conversion circuits 8, 8', and the pulses are converted into electrical pulses. The falling edge of FF triggers the next flip-flop 9, 9'.
The flip-flops 9, 9 each remember that at least one optical pulse P, Q has been received, and output an output signal. The output signal causes the AND gate 10 to open. Next, when an electric pulse is input in response to the second pulses P and Q,
The AND gates 11 and 11' are opened, and the pulse is transmitted to the one-shot multivibrator 12,
12'. The one-shot multivibrator 12, 12' is triggered by the rise of the second pulse, and outputs a pulse equivalent to a 90 degree phase (4.17 msec at 60 Hz in terms of time). Therefore, even if there is a slight phase difference between the second electric pulses, if the phase difference is less than 90 degrees, the next AND gate 13 is opened, the pulses are input to the flip-flop 14, and the pulse is input to the flip-flop 14. The output indicates that the phase of the second pulse matches, that is, the tower is in a flash fault. The above one-shot multivibrator 12,
The extension time of the pulse width by 12' is not limited to a phase equivalent to 90 degrees, but is usually designed to have a width equivalent to a phase of 60 to 90 degrees, depending on the electrical conditions of the power transmission facility. In addition, in order to prevent the third and subsequent pulses from being accepted, when the signal from the one-shot multivibrator 12, 12' is output, the one-shot multivibrator 12, 12' is output by the flip-flop 15, 15', etc.
Input to 2' is prohibited.

一方、第2番目のパルス間に90度以上の位相差
があると、アンドゲート13が開状態とならない
ため、フリツプフロツプ14から信号が出力され
ることはない。したがつて、非事故鉄塔であるこ
とを知ることができる。なお、他のフリツプフロ
ツプ9,9′,15,15′、ワンシヨツトマルチ
バイブレータ12,12′のリセツトは、いずれ
か一方のフリツプフロツプ9,9′に電気パルス
が1個でも入力されれば、一定時間(続流が継続
しうる時間よりも少し長い時間、概ね0.5秒)経
過後、リセツト回路16によりリセツトし回路を
初期の状態に戻す。
On the other hand, if there is a phase difference of 90 degrees or more between the second pulses, the AND gate 13 will not open, and no signal will be output from the flip-flop 14. Therefore, it can be known that this is a non-accident steel tower. The other flip-flops 9, 9', 15, 15' and the one-shot multivibrator 12, 12' can be reset for a certain period of time if even one electric pulse is input to either one of the flip-flops 9, 9'. After a period of time (about 0.5 seconds, which is slightly longer than the time during which the following current can continue) has elapsed, the reset circuit 16 resets the circuit to return it to its initial state.

この発明は上述の如く、続流の零クロスポイン
トに対応したパルスによつて続流の位相差を検出
し、閃絡事故鉄塔を検出するに際し、第1番目の
パルスは位相差の比較判別に使用しないことを特
徴とするものであるため、位相差の判別に相当の
余裕をもたせても誤判別する可能性が少ない。そ
のため、精度よく閃絡事故鉄塔を検出することが
できる。
As described above, this invention detects the phase difference of the follow-on current using a pulse corresponding to the zero cross point of the follow-on current, and when detecting a flash-faulted tower, the first pulse is used to compare and determine the phase difference. Since it is characterized in that it is not used, there is little possibility of misjudgment even if a considerable margin is provided for phase difference discrimination. Therefore, it is possible to detect the flash-faulted steel tower with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a乃至cは先行技術における一次電流、
二次電流及び光パルスの波形図、第2図は検出装
置のブロツク図、第3図は検出装置の取付状態を
示す正面図、第4図a及びbは第3図の場合の出
力パルスの波形図、第5図は検出装置の他の取付
状態を示す正面図、第6図a及びbは第5図の場
合の出力パルスの波形図、第7図a乃至dは一次
電流と出力パルスの波形図、第8図a乃至dは一
次電流に直流成分が重畳した場合の波形図、第9
図は判別装置のブロツク図である。 1,1′……続流検出装置、3……判別装置、
4……塔頂、5……地線、6,6′……変流器、
7……鉄塔。
1a to 1c are primary currents in the prior art;
Waveform diagrams of secondary current and optical pulses, Figure 2 is a block diagram of the detection device, Figure 3 is a front view showing the installation state of the detection device, and Figures 4a and b are the output pulses in the case of Figure 3. Waveform diagram, Figure 5 is a front view showing another mounting state of the detection device, Figure 6 a and b are waveform diagrams of output pulses in the case of Figure 5, Figures 7 a to d are primary current and output pulse. Figures 8a to d are waveform diagrams when a DC component is superimposed on the primary current.
The figure is a block diagram of the discrimination device. 1, 1′...Following current detection device, 3...Discrimination device,
4...Tower top, 5...Ground wire, 6,6'...Current transformer,
7... Steel tower.

Claims (1)

【特許請求の範囲】 1 続流の分岐部分を挾みその両側に流れる続流
の零クロスポイントに対応してパルスを発生せし
め、そのパルスの位相差を比較判別する閃絡事故
鉄塔の検出方法において、少くとも第1番目のパ
ルスを位相差の比較判別に使用しないことを特徴
とする閃絡事故鉄塔の検出方法。 2 上記パルスの第2番目のパルスに基づきその
位相差を比較判別することを特徴とする特許請求
の範囲第1項に記載の閃絡事故鉄塔の検出方法。 3 上記パルスの第3番目のパルスに基づきその
位相差を比較判別することを特徴とする特許請求
の範囲第1項に記載の閃絡事故鉄塔の検出方法。 4 上記パルスの最終パルスを位相差の比較判別
に使用しないことを特徴とする特許請求の範囲第
1項乃至第3項の何れかに記載の閃絡事故鉄塔の
検出方法。 5 上記パルスの位相差が92度以下の範囲にある
ときは、同相であると判別することを特徴とする
特許請求の範囲第1項に記載の閃絡事故鉄塔の検
出方法。
[Claims] 1. A method for detecting a flashover accident tower, which generates pulses corresponding to the zero cross points of the follow-on currents that sandwich the branch part of the follow-on currents and flows on both sides thereof, and compares and determines the phase difference of the pulses. A method for detecting a flash-faulted steel tower, characterized in that at least the first pulse is not used for phase difference comparison and determination. 2. The method for detecting a flash-fault pylon according to claim 1, wherein the phase difference is compared and determined based on the second pulse of the pulses. 3. The method for detecting a flash-fault pylon according to claim 1, wherein the phase difference is compared and determined based on the third pulse of the pulses. 4. The method for detecting a flash-fault pylon according to any one of claims 1 to 3, characterized in that the final pulse of the pulses is not used to compare and determine the phase difference. 5. The method for detecting a flash-flash accident tower according to claim 1, wherein when the phase difference of the pulses is within a range of 92 degrees or less, it is determined that the pulses are in phase.
JP16784180A 1980-11-27 1980-11-27 Method for detecting lightning damage on power transmission line tower Granted JPS5790172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16784180A JPS5790172A (en) 1980-11-27 1980-11-27 Method for detecting lightning damage on power transmission line tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16784180A JPS5790172A (en) 1980-11-27 1980-11-27 Method for detecting lightning damage on power transmission line tower

Publications (2)

Publication Number Publication Date
JPS5790172A JPS5790172A (en) 1982-06-04
JPS637626B2 true JPS637626B2 (en) 1988-02-17

Family

ID=15857066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16784180A Granted JPS5790172A (en) 1980-11-27 1980-11-27 Method for detecting lightning damage on power transmission line tower

Country Status (1)

Country Link
JP (1) JPS5790172A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183975A (en) * 1984-10-01 1986-04-28 Sumitomo Electric Ind Ltd Apparatus for discriminating accident section of power cable

Also Published As

Publication number Publication date
JPS5790172A (en) 1982-06-04

Similar Documents

Publication Publication Date Title
EP0098721B1 (en) Differential protection relay device
CN1068702C (en) Protective relay having out-of-step logic capability
CN107069673A (en) A kind of method of quick identification branch road CT broken strings and locking bus differential protection
CN110854810B (en) One-point grounding protection method for rotor of large synchronous phase modulator
JPS62144535A (en) Differential relay for power transformer
CN107681678B (en) Commutation failure prevention method based on rectifier side trigger angle emergency control
CA1056910A (en) Method and apparatus for detection of short-circuits
CA1195392A (en) Protective relay with second harmonic suppression
RU2303323C1 (en) Method and device for directional phase-failure ground-fault protection of ac distribution network
JPS637626B2 (en)
US5115387A (en) Circuitry and method of protecting thyristors
GB1599132A (en) Apparatus for monitoring a power system for subsynchronous current oscillations
JPH08172719A (en) Method of detecting fault of transmission line
Chen et al. A similarity comparison based pilot protection scheme for VSC-HVDC grids considering fault current limiting strategy
CN107134763B (en) A kind of method of discrimination that fault trip quickly returns
Costello Lessons learned analyzing transmission faults
CN109613398A (en) A kind of fault direction method of discrimination, discriminating element for high voltage ac/dc serial-parallel power grid
Kasztenny Dependability of Transient-based Line Protection Elements and Schemes
JPS5917601B2 (en) DC feeding circuit high resistance ground fault detection device
US11735907B2 (en) Traveling wave overcurrent protection for electric power delivery systems
SU1677762A1 (en) Device for differential-phase protection of electric plant
SU1078526A1 (en) Method for directional pulse protection against one-phase earth leakage in systems with compensated and isolated neutral
JP3227228B2 (en) Ground fault detector
JPS59222028A (en) Method of detecting flash trouble in transmission line branch point
JPH061938B2 (en) Transmission line failure detection relay