JPS6376268A - Preparation of electrolyte for redox-flow cell - Google Patents
Preparation of electrolyte for redox-flow cellInfo
- Publication number
- JPS6376268A JPS6376268A JP61220515A JP22051586A JPS6376268A JP S6376268 A JPS6376268 A JP S6376268A JP 61220515 A JP61220515 A JP 61220515A JP 22051586 A JP22051586 A JP 22051586A JP S6376268 A JPS6376268 A JP S6376268A
- Authority
- JP
- Japan
- Prior art keywords
- chromium
- ferrochrome
- electrolyte
- hydrochloric acid
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 11
- 238000002360 preparation method Methods 0.000 title description 3
- 239000011651 chromium Substances 0.000 claims abstract description 43
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 42
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 39
- 229910000604 Ferrochrome Inorganic materials 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000012298 atmosphere Substances 0.000 claims abstract description 14
- 239000000243 solution Substances 0.000 claims description 28
- 238000004090 dissolution Methods 0.000 claims description 19
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 16
- 229910001882 dioxygen Inorganic materials 0.000 claims description 16
- 239000003575 carbonaceous material Substances 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 12
- 239000008151 electrolyte solution Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 abstract description 13
- 230000009467 reduction Effects 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 1
- 238000011946 reduction process Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 31
- 229910052742 iron Inorganic materials 0.000 description 15
- 239000007788 liquid Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910001385 heavy metal Inorganic materials 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910001430 chromium ion Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- -1 iron ions Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は電力貯蔵用2次電池に関し、更に詳しくは鉄及
びクロムの塩化物を活物質として用いるレドックスフロ
ー電池の電解液調製方法に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a secondary battery for power storage, and more particularly to a method for preparing an electrolyte for a redox flow battery using chlorides of iron and chromium as active materials. .
我が国の電力需要の伸びは9年と共に増大し続けている
が、電力需要の変動も産業構造の高度化と国民生活水準
の向上を反映して年々、著しくなる傾向にある。例えば
夏季における昼間の電力需要量を100とすると明は方
のそれは30以下となっている状況である。一方、電力
の供給面からみると、出力変動が望しくない原子力発電
や大規模石炭火力発電の割合も増加する傾向にあるため
、電力を貯蔵する設備の必要性が高まっている。Japan's electricity demand has been increasing for the past nine years, but fluctuations in electricity demand have also tended to become more pronounced year by year, reflecting the sophistication of the industrial structure and improvement in the standard of living of the people. For example, if the daytime power demand in the summer is 100, the demand in the morning is 30 or less. On the other hand, from an electric power supply perspective, the proportion of nuclear power generation and large-scale coal-fired power generation, where fluctuations in output are undesirable, is on the rise, increasing the need for power storage equipment.
現在の電力貯蔵は揚水発電によって行なわれているが、
その立地に限りがあることから、新しい電力貯蔵技術、
中でも技術的、経済的に実現の可能性が高いとされてい
る2次電池が盛んに研究されており、中でも特にレドッ
クス系を隔膜を介して接触させたレドックスフロー電池
が注目されている。Current electricity storage is done through pumped hydropower generation,
Due to limited locations, new energy storage technologies,
Among them, secondary batteries, which are said to have a high possibility of being realized technically and economically, are being actively researched, and among them, redox flow batteries in which redox systems are brought into contact through a diaphragm are attracting particular attention.
このレドックスフロー電池は図面に示すように鉄イオン
(Fe”/Fe”)やクロムイオン(Cr”/Cr”)
のように原子価が変化するイオンの水溶液をタンク6と
7に貯蔵しておき、これをポンプ8と9で流通型電解槽
2に供給して充放電を行なう形式の電池である。This redox flow battery uses iron ions (Fe"/Fe") and chromium ions (Cr"/Cr") as shown in the drawing.
In this type of battery, an aqueous solution of ions whose valences change as shown in FIG.
レドックス液として正極液に鉄イオン、負極液にクロム
イオンを用いる場合、充放電反応は次式によって表わさ
れる。When iron ions are used in the positive electrode liquid and chromium ions are used in the negative electrode liquid as the redox liquid, the charge/discharge reaction is expressed by the following equation.
従って、夜間になって余ってきた電力はインバータ1を
通して交直変換した後、レドックスフロー電池に充電さ
れ、 (1)(2)式の充電方向の反応によってFe”
/Cr”+の形で貯蔵される。Therefore, the power left over at night is converted into AC/DC through the inverter 1, and then charged into the redox flow battery. Fe"
/Cr”+.
次に昼間に電力が足りなくなってくると(1) (2)
式の放電方向の反応によって放電させ、インバータで直
交変換後、電力系統へ供給される。これがレドックスフ
ロー電池を用いた電力貯蔵システムである。Next, when there is a shortage of electricity during the day (1) (2)
It is discharged according to the reaction in the discharge direction of the equation, and after orthogonal conversion by an inverter, it is supplied to the power system. This is a power storage system using redox flow batteries.
このレドックスフロー電池で用いる電解液は、鉄・クロ
ムの溶解度、充放電反応速度等の特性から塩酸酸性の塩
化物水溶液が使用される。このうち特にクロム溶液は、
副反応である水素発生を抑えるため、高純度の電解クロ
ムを使用しており、これが高価であることから、この電
池を実用化する上で大きな問題となっていた。As the electrolytic solution used in this redox flow battery, a chloride aqueous solution acidic with hydrochloric acid is used due to its characteristics such as solubility of iron and chromium and charging/discharging reaction rate. Among these, chromium solution in particular
In order to suppress hydrogen generation, which is a side reaction, high-purity electrolytic chromium is used, which is expensive and has been a major problem in putting this battery into practical use.
このため安価なりロム鉱石、クロム鉱還元物。Therefore, chromium ore and reduced chromium ore are cheaper.
フェロクロム等からのクロム溶液の調製法が望まれてい
るが、これらは重金属等の不純物を多く含むため、水素
発生が多く、クーロン効率が低下する等の欠点を有して
いる。従ってクロム鉱石等からレドックスフロー電池の
電解液を調製する方法として特開昭60−115174
に示されるように、塩酸に溶解後、液を電解槽の陰極室
に導入し、電気分解によって陰極室の電極に不純物を電
着除去する方゛法が提案されている。Although a method for preparing a chromium solution from ferrochrome etc. is desired, these methods contain many impurities such as heavy metals and therefore have drawbacks such as a large amount of hydrogen generation and a decrease in coulombic efficiency. Therefore, as a method for preparing an electrolyte for a redox flow battery from chromium ore, etc., Japanese Patent Application Laid-Open No. 60-115174
As shown in Figure 2, a method has been proposed in which after dissolving in hydrochloric acid, the solution is introduced into the cathode chamber of an electrolytic cell, and impurities are removed by electrodeposition on the electrodes of the cathode chamber by electrolysis.
しかしこの方法は電解槽設備が必要であること。However, this method requires electrolytic cell equipment.
又、電気分解が必要である等、操作が煩雑であるという
欠点がある。Further, there is a drawback that the operation is complicated, such as requiring electrolysis.
本発明の目的はクロム鉱還元物やフェロクロムからレド
ックスフロー電池電解液を簡単かつ容易に調製する方法
を提供することにある。An object of the present invention is to provide a simple and easy method for preparing a redox flow battery electrolyte from reduced chromium ore or ferrochrome.
本発明はクロム鉱石還元物または/およびフェロクロム
を酸素ガスを遮断した雰囲気下で塩酸に溶解し、その後
、酸素ガスを遮断した雰囲気下で残渣を濾過することを
特徴とするレドックスフロー電池の電解液調製法である
。The present invention provides an electrolyte solution for a redox flow battery, which is characterized in that a reduced chromium ore or/and ferrochrome is dissolved in hydrochloric acid in an oxygen gas-blocked atmosphere, and then the residue is filtered in an oxygen gas-blocked atmosphere. This is a preparation method.
本発明に使用するクロムを含む原料は、クロム鉱還元物
または/およびフェロクロムである。ここでクロム鉱還
元物とは、クロム鉱石からフェロクロムを作る際の部分
還元をしたものを言い、通常、金属クロムが10数%存
在し、還元率として約50%程度を示す物である。The chromium-containing raw material used in the present invention is a reduced chromium mineral and/or ferrochrome. Here, the term "reduced chromium ore" refers to a product that has undergone partial reduction when producing ferrochrome from chromium ore, and usually contains about 10% of metallic chromium and exhibits a reduction rate of about 50%.
本発明においては1以上のクロム原料を必要に応じ適当
な粒度に粉砕した後、酸素ガスを遮断した雰囲気下で塩
酸に溶解させる。原料中のクロム及び鉄は下式に従って
反応し、溶解する。In the present invention, one or more chromium raw materials are pulverized to an appropriate particle size as required, and then dissolved in hydrochloric acid in an atmosphere cut off from oxygen gas. Chromium and iron in the raw materials react and dissolve according to the formula below.
Cr+2HC2→CrCQz+ H,↑ (3)Cr
+ 3HCQ n CrCら+3/2H,↑ (4)
CrO+ 2HCQ 4 CrCQ2H,O(5)Fe
+ 2HCQ −+ FeCQ2H,↑ (6
)FeO+ 2HCQ →FeCQ2+ HzO(7)
溶解槽を酸素ガスから遮断するには、溶解槽上部に覆い
をし、ガス出口ダクトを溶解槽から離したり、あるいは
水でシールする等の適当な方法によって外部の空気の侵
入を防ぐ構造のものとすれば良い。この場合、溶解時に
は水素ガスの発生が有るため、始め溶解槽内に酸素ガス
が存在しても発生する水素ガスによりパージされるので
酸素ガスを遮断した雰囲気の形式はすみやかに達成でき
るが、より好ましくは溶解前に溶解槽内を窒素、アルゴ
ン等の酸素を含有しないガスでパージしておくことが望
ましい。Cr+2HC2→CrCQz+ H, ↑ (3) Cr
+ 3HCQ n CrC et al. + 3/2H, ↑ (4)
CrO+ 2HCQ 4 CrCQ2H,O(5)Fe
+ 2HCQ −+ FeCQ2H, ↑ (6
)FeO+ 2HCQ →FeCQ2+ HzO(7)
To isolate the dissolution tank from oxygen gas, the top of the dissolution tank should be covered, the gas outlet duct should be separated from the dissolution tank, or it should be constructed to prevent outside air from entering by an appropriate method such as sealing it with water. It's fine. In this case, since hydrogen gas is generated during melting, even if oxygen gas initially exists in the melting tank, it will be purged by the generated hydrogen gas, so an atmosphere in which oxygen gas is blocked can be quickly achieved, but Preferably, before melting, the inside of the melting tank is purged with a gas that does not contain oxygen, such as nitrogen or argon.
又、この溶解時には反応を速やかに進めるため、溶液を
加熱することや撹拌機等で撹拌することも有効である。Furthermore, in order to speed up the reaction during this dissolution, it is also effective to heat the solution or stir it with a stirrer or the like.
この酸素ガスを遮断した溶解操作により鉄は2価イオン
、クロムは2価及び3価イオンの形で溶解し、溶解液の
電位は飽和甘こう電極基準で−0,4Vより卑の電位が
得られる。この溶液の電位ではレドックスフロー電池の
負極で、副反応である水素発生を助長する重金属等の不
純物は影響を及ぼさない濃度に溶解が抑制される。Through this dissolution operation with oxygen gas cut off, iron is dissolved in the form of divalent ions, and chromium is dissolved in the form of divalent and trivalent ions, and the potential of the solution becomes less base than -0.4V with respect to the saturated amber electrode. It will be done. At the potential of this solution, impurities such as heavy metals that promote hydrogen generation as a side reaction at the negative electrode of the redox flow battery are suppressed from dissolving to a concentration that does not have any effect.
本発明のこの溶解操作時に導電性炭素材料を共存させた
場合はこの重金属等の不純物の溶解抑制効果が顕著とな
り一層効果的である。すなわち溶解時、この導電性炭素
材料の存在により、極くわずかに溶解した重金属等の不
純物が導電性炭素材料を電子移動媒体としてその表面に
下式に従って析出することによる。If a conductive carbon material is present during the melting operation of the present invention, the effect of suppressing the dissolution of impurities such as heavy metals will be significant and will be even more effective. That is, during melting, due to the presence of the conductive carbon material, a very small amount of dissolved impurities such as heavy metals is deposited on the surface of the conductive carbon material using the electron transfer medium according to the following formula.
M ” + nCr” −+ M↓+nCr”
(8)ここでM+は重金属等の不純物を示す、又、使
用される導電性炭素材料とは、固有抵抗値が0.1Ω口
以下の炭素材料であり、炭素粉末、炭素繊維、グラファ
イト粉末、グラファイト繊維、カーボンブラック等が挙
げられる。溶解時に共存させる量としては溶解したフェ
ロクロムやクロム鉱還元物1kg当り0.1g以上、よ
り好ましくは0.5g以上が効果的である。M” + nCr” −+ M↓+nCr”
(8) Here, M+ indicates impurities such as heavy metals, and the conductive carbon material used is a carbon material with a specific resistance value of 0.1Ω or less, including carbon powder, carbon fiber, graphite powder, Examples include graphite fiber and carbon black. The effective amount of coexistence during dissolution is 0.1 g or more, more preferably 0.5 g or more per 1 kg of dissolved ferrochrome or reduced chromium mineral.
以上のような溶解操作終了後、塩酸に溶解しないカーボ
ン、シリカ等の残渣が残存するため、溶解時と同様に酸
素ガスを遮断した雰囲気下で濾別する。これはこの残渣
中に溶解を抑制された重金属等の不純物が存在し、濾別
操作を酸素ガス存在下で行なうと、溶解液中の2価クロ
ムイオンが酸化されて溶液の電位が上昇し、この重金属
等の不純物が溶解してくるためであり、酸素ガスを遮断
した雰囲気下での濾別が必要である。濾別時の酸素ガス
を遮断する方法としては、溶解槽の場合と同様に濾過器
の上部に覆いをし、覆いにガス入口ダクトと出口ダクト
を設け、入口ダクトから窒素等の酸素ガスを含まないガ
スを流して外部の空気の侵入を防ぐ構造のものとすれば
良い。After the dissolution operation as described above is completed, residues of carbon, silica, etc. that do not dissolve in hydrochloric acid remain, so they are filtered out in an atmosphere cut off from oxygen gas as in the case of dissolution. This is because impurities such as heavy metals whose dissolution is suppressed are present in this residue, and when the filtration operation is performed in the presence of oxygen gas, divalent chromium ions in the solution are oxidized and the potential of the solution increases. This is because impurities such as heavy metals are dissolved, and filtration must be performed in an atmosphere where oxygen gas is blocked. The method of blocking oxygen gas during filtration is to cover the top of the filter, as in the case of a dissolution tank, and provide a gas inlet duct and an outlet duct in the cover, and to remove oxygen gas such as nitrogen from the inlet duct. It is sufficient if the structure is such that it allows gas to flow and prevents the intrusion of outside air.
残渣の濾別方法としては減圧濾過、加圧濾過、自然濾過
等公知の方法が使用できる。As a method for separating the residue by filtration, known methods such as vacuum filtration, pressure filtration, and natural filtration can be used.
残液を濾別して得られたクロム、鉄の塩酸溶液はレドッ
クスフロー電池の電解液として何ら支障なく使用できる
が、クロム原料を塩酸に溶解時、導電性炭素材料を共存
させない場合には、この濾別終了後、濾過液を導電性炭
素材料と酸素ガスを遮断した雰囲気下で接触させると、
溶解時に共存させたのと同様に式(8)の反応が生じ、
重金属等の不純物がより一層除去されるという効果が得
られる。導電性炭素材料との接触方法は容器に導電性炭
素材料を充填し、この充填容器を窒素等の酸素を含まな
いガスであらかじめパージした後、濾過液を流通させる
だけで良い。The hydrochloric acid solution of chromium and iron obtained by filtering the residual liquid can be used as an electrolyte for redox flow batteries without any problems. After the separation, when the filtrate is brought into contact with the conductive carbon material in an atmosphere that blocks oxygen gas,
The reaction of formula (8) occurs in the same way as when they coexisted during dissolution,
The effect is that impurities such as heavy metals are further removed. The method of contacting the conductive carbon material may be as follows: filling a container with the conductive carbon material, purging the filled container with an oxygen-free gas such as nitrogen, and then passing the filtrate through the container.
この場合には、溶解時に導電性炭素材料を共存させる方
法に比べ、濾別が容易になる。及び溶液調製を数回に分
けて行なう場合など導電性炭素材料の繰り返し利用がで
きるため、使用量が約半分になるメリットがある。In this case, filtration becomes easier than in a method in which a conductive carbon material is present at the time of melting. Also, since the conductive carbon material can be used repeatedly when the solution is prepared in several batches, there is an advantage that the amount used can be reduced by about half.
本発明において、上述のようにして得られたクロム、鉄
の塩酸溶液中にはもはや未溶解の重金属等の不純物は存
在しないため、酸素ガスと接触させても何ら差しつかえ
ない。In the present invention, since there are no undissolved impurities such as heavy metals in the hydrochloric acid solution of chromium and iron obtained as described above, there is no problem in bringing it into contact with oxygen gas.
本発明のレドックスフロー電池で調製すべき溶液の状態
としてはクロム3価イオンと鉄2価イオンを含む放電状
態の液が取扱い上望ましいので、本発明によって得られ
た溶液は一旦大気に開放する。Since the solution to be prepared in the redox flow battery of the present invention is preferably in a discharged state containing trivalent chromium ions and divalent iron ions for handling purposes, the solution obtained by the present invention is once exposed to the atmosphere.
これにより溶液中の2価クロムイオンは酸素によってす
みやからクロム3価イオンに酸化され、目的とする放電
状態の電解液を得ることができる。As a result, divalent chromium ions in the solution are oxidized to trivalent chromium ions by oxygen, and an electrolytic solution in the desired discharge state can be obtained.
本発明による電解液の調製法は高純度電解クロムを塩酸
に溶解して使用する方法に比べてフェロクロム又は/お
よびクロム鉱還元物という安価な原料を使用するので溶
液調製コストを著しく低減できる。又、クロム鉱石等を
塩酸に溶解した後、不純物を電着除去する方法に比べ、
(1)電解槽設備が不要である、(2)溶解時に同時に
不純物除去ができるので生産工程が簡単になり、所望の
電解液を極めて容易に調製できる、等の効果を有する。The method for preparing an electrolytic solution according to the present invention uses inexpensive raw materials such as ferrochrome and/or reduced chromium ore compared to a method in which high-purity electrolytic chromium is dissolved in hydrochloric acid, so that the solution preparation cost can be significantly reduced. Also, compared to the method of dissolving chromium ore etc. in hydrochloric acid and then removing impurities by electrodeposition,
(1) No electrolytic bath equipment is required; (2) Impurities can be removed at the same time as melting, which simplifies the production process and makes it possible to prepare a desired electrolytic solution extremely easily.
以下、本発明の実施例を示す。 Examples of the present invention will be shown below.
実施例1
入口と出ログクトを有する密閉型の溶解槽にフェロクロ
ムを入れ、入口ダクトから窒素ガスを流して溶解槽内の
酸素ガスをパージした後、12規定塩酸を導入し、フェ
ロクロムを加温溶解させた。Example 1 Ferrochrome was placed in a closed type dissolution tank with an inlet and an outlet duct, nitrogen gas was flowed through the inlet duct to purge oxygen gas in the dissolution tank, 12N hydrochloric acid was introduced, and the ferrochrome was dissolved by heating. I let it happen.
その後、溶解液を濾過器へ導入し、窒素雰囲気下で減圧
濾過し、残渣を濾別した。この濾液のクロム及び鉄濃度
は原子吸光法で測定したところ、それぞれ1.50モル
/Qと0.68モル/Qであった。Thereafter, the solution was introduced into a filter, filtered under reduced pressure under a nitrogen atmosphere, and the residue was filtered off. The chromium and iron concentrations of this filtrate were measured by atomic absorption spectrometry and were 1.50 mol/Q and 0.68 mol/Q, respectively.
この液に水を加えて塩酸濃度が4規定となるように調整
した後、レドックスフロー電池電解液として電極面積1
5cdの小型液流通型単電池で充放電させた。この電池
の電解槽の構造は集電板としてフェノール樹脂結合質炭
素板、液流通型電極としてカーボンクロス、及び隔膜と
して陽イオン交換膜をそれぞれ使用して構成し、正、負
極は同一構造とした。温度40℃、電流0.6Aでの充
放電実験の結果、充放電クーロン効率は97%、充放電
電圧効率は86%であった。After adding water to this solution and adjusting the hydrochloric acid concentration to 4N, it was used as a redox flow battery electrolyte with an electrode area of 1
It was charged and discharged using a small 5 cd liquid flow type cell. The structure of the electrolytic cell of this battery consists of a phenol resin-bound carbon plate as a current collector plate, carbon cloth as a liquid flow electrode, and a cation exchange membrane as a diaphragm, with the positive and negative electrodes having the same structure. . As a result of a charge/discharge experiment at a temperature of 40° C. and a current of 0.6 A, the charge/discharge coulomb efficiency was 97%, and the charge/discharge voltage efficiency was 86%.
比較例1
上部開放型の溶解槽にフェロクロムと12規定塩酸を入
れ、フェロクロムを加温溶解させた。その後、溶解液を
濾過器へ導入し、空気中で減圧濾過し、残渣を濾別した
。この濾液のクロム及び鉄濃度は原子吸光法で測定した
ところ、それぞれ1.53モル/Qと0.70モル/Q
であった。Comparative Example 1 Ferrochrome and 12N hydrochloric acid were placed in a dissolution tank with an open top, and the ferrochrome was dissolved by heating. Thereafter, the solution was introduced into a filter, filtered under reduced pressure in air, and the residue was filtered off. The chromium and iron concentrations of this filtrate were determined by atomic absorption spectrometry to be 1.53 mol/Q and 0.70 mol/Q, respectively.
Met.
この液に水を加えて塩酸濃度が4規定となるように調整
した後、レドックスフロー電池電解液として実施例1と
同一条件で充放電を行なったところ、充放電クーロン効
率は83%、充放電電圧効率は85ぶであった。After adding water to this solution to adjust the hydrochloric acid concentration to 4N, charging and discharging it as a redox flow battery electrolyte under the same conditions as in Example 1 resulted in a charge-discharge coulombic efficiency of 83%. The voltage efficiency was 85 bu.
実施例2
実施例1のフェロクロムの代わりにクロム鉱石還元ペレ
ットを用い、これを粉砕後、実施例1と同一条件で溶液
を調製した。溶解、濾別後の濾液中のクロム及び鉄濃度
はそれぞれ1.35モル/Qと1.04モル/Qであっ
た。Example 2 Chromium ore reduced pellets were used in place of the ferrochrome in Example 1, and after pulverizing them, a solution was prepared under the same conditions as in Example 1. The chromium and iron concentrations in the filtrate after dissolution and filtration were 1.35 mol/Q and 1.04 mol/Q, respectively.
この液に水を加えて塩酸濃度が4規定となるように調整
した後、実施例1で示した小型液流通型単電池を用い、
同一条件で充放電させたところ、充放電クーロン効率は
96%、充放電電圧効率は86%であった。After adding water to this solution and adjusting the hydrochloric acid concentration to 4N, using the small liquid flow type cell shown in Example 1,
When charged and discharged under the same conditions, the charge/discharge coulomb efficiency was 96%, and the charge/discharge voltage efficiency was 86%.
比較例2
比較例1のフェロクロムの代わりにクロム鉱石還元ペレ
ットを用い、これを粉砕後比較例1と同一条件で溶液を
調製した。溶解、濾別後の濾液中のクロム及び鉄濃度は
それぞれ1.37モル/2と1.05モル/Qであった
。この液に水を加えて塩酸濃度が4規定となるように調
整した後、比較例1と同一条件で充放電させたところ、
充放電クーロン効率81%、充放電電圧効率85%であ
った。Comparative Example 2 A reduced chromium ore pellet was used in place of the ferrochrome in Comparative Example 1, and after pulverizing it, a solution was prepared under the same conditions as in Comparative Example 1. The chromium and iron concentrations in the filtrate after dissolution and filtration were 1.37 mol/2 and 1.05 mol/Q, respectively. After adding water to this solution and adjusting the hydrochloric acid concentration to 4N, it was charged and discharged under the same conditions as Comparative Example 1.
The charge/discharge coulomb efficiency was 81% and the charge/discharge voltage efficiency was 85%.
実施例3
実施例1において溶解時、フェロクロム1隨当り0.5
gの割合でカーボンクロスを共存させ実施例1と同一条
件で溶液を調製した。溶解、濾別後の濾液中のクロム及
び鉄濃度はそれぞれ1.51モル/Ωと0.67モル/
12であった。この液に水を加えて塩酸濃度が4規定と
なるように調整した後、実施例1と同一条件で充放電さ
せたところ、充放電クーロン効率98%、充放電電圧効
率87%であった。Example 3 When melting in Example 1, 0.5 per unit of ferrochrome
A solution was prepared under the same conditions as in Example 1 by coexisting carbon cloth at a ratio of 1.5 g. The chromium and iron concentrations in the filtrate after dissolution and filtration were 1.51 mol/Ω and 0.67 mol/Ω, respectively.
It was 12. After water was added to this solution to adjust the hydrochloric acid concentration to 4N, it was charged and discharged under the same conditions as in Example 1, resulting in a charge/discharge coulombic efficiency of 98% and a charge/discharge voltage efficiency of 87%.
実施例4
フェロクロムを実施例1と同一条件で溶解し、残渣を濾
別した。この濾液を、カーボンクロスを充填し、あらか
じめ窒素でパージした充填容器に導入し、流通させた。Example 4 Ferrochrome was dissolved under the same conditions as in Example 1, and the residue was filtered off. This filtrate was introduced into a packed container filled with carbon cloth and purged with nitrogen in advance, and allowed to flow.
得られた溶液中のクロム及び鉄濃度は、それぞれ1.4
8モル/Ωと0.70モル/Qであった。The chromium and iron concentrations in the resulting solution were each 1.4
They were 8 mol/Ω and 0.70 mol/Q.
この液に水を加えて塩酸濃度が4規定となるように調整
した後、実施例1と同一条件で充放電させたところ、充
放電クーロン効率98%、充放電電圧効率87%であっ
た。After water was added to this solution to adjust the hydrochloric acid concentration to 4N, it was charged and discharged under the same conditions as in Example 1, and the charge/discharge coulomb efficiency was 98% and the charge/discharge voltage efficiency was 87%.
図面はレドックスフロー電池を用いた電力貯蔵システム
の概念図である。
1・・・インバータ、2・・・流通型電解槽、3・・・
正極、4・・・負極、5・・・イオン交換膜。
6・・・正極液タンク、7・・・負極液タンク、8・・
・正極液ポンプ、9・・・負極液ポンプ。The drawing is a conceptual diagram of a power storage system using redox flow batteries. 1... Inverter, 2... Flow type electrolytic cell, 3...
Positive electrode, 4... negative electrode, 5... ion exchange membrane. 6... Positive electrode liquid tank, 7... Negative electrode liquid tank, 8...
- Positive electrode liquid pump, 9... negative electrode liquid pump.
Claims (3)
酸素ガスを遮断した雰囲気下で塩酸に溶解し、その後、
酸素ガスを遮断した雰囲気下で残渣を濾別することを特
徴とするレドックスフロー電池の電解液調製法。(1) Dissolve chromium ore reduced product or/and ferrochrome in hydrochloric acid in an atmosphere cut off from oxygen gas, and then
A method for preparing an electrolyte for a redox flow battery, which comprises filtering out residue in an atmosphere where oxygen gas is blocked.
とを特徴とする特許請求範囲第1項の電解液調製法。(2) The method for preparing an electrolytic solution according to claim 1, characterized in that a conductive carbon material is allowed to coexist during dissolution in hydrochloric acid.
囲気下で導電性炭素材料と接触させることを特徴とする
特許請求範囲第1項の電解液調製法。(3) The method for preparing an electrolytic solution according to claim 1, characterized in that after filtering off the residue, the solution is brought into contact with a conductive carbon material in an atmosphere cut off from oxygen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61220515A JPS6376268A (en) | 1986-09-18 | 1986-09-18 | Preparation of electrolyte for redox-flow cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61220515A JPS6376268A (en) | 1986-09-18 | 1986-09-18 | Preparation of electrolyte for redox-flow cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6376268A true JPS6376268A (en) | 1988-04-06 |
Family
ID=16752227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61220515A Pending JPS6376268A (en) | 1986-09-18 | 1986-09-18 | Preparation of electrolyte for redox-flow cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6376268A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6613298B2 (en) | 2000-07-04 | 2003-09-02 | Kansai Electric Power Co., Inc. | Trivalent and tetravalent mixed vanadium compound producing method and vanadium electrolyte producing method |
US6872376B2 (en) | 2000-12-26 | 2005-03-29 | Nippon Chemical Industrial Co., Ltd. | Modified vanadium compound, producing method thereof, redox flow battery electrolyte composite and redox flow battery electrolyte producing method |
US8906529B2 (en) | 2008-07-07 | 2014-12-09 | Enervault Corporation | Redox flow battery system for distributed energy storage |
US8916281B2 (en) | 2011-03-29 | 2014-12-23 | Enervault Corporation | Rebalancing electrolytes in redox flow battery systems |
US8980454B2 (en) | 2013-03-15 | 2015-03-17 | Enervault Corporation | Systems and methods for rebalancing redox flow battery electrolytes |
US8980484B2 (en) | 2011-03-29 | 2015-03-17 | Enervault Corporation | Monitoring electrolyte concentrations in redox flow battery systems |
-
1986
- 1986-09-18 JP JP61220515A patent/JPS6376268A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6613298B2 (en) | 2000-07-04 | 2003-09-02 | Kansai Electric Power Co., Inc. | Trivalent and tetravalent mixed vanadium compound producing method and vanadium electrolyte producing method |
US6872376B2 (en) | 2000-12-26 | 2005-03-29 | Nippon Chemical Industrial Co., Ltd. | Modified vanadium compound, producing method thereof, redox flow battery electrolyte composite and redox flow battery electrolyte producing method |
US8906529B2 (en) | 2008-07-07 | 2014-12-09 | Enervault Corporation | Redox flow battery system for distributed energy storage |
US8916281B2 (en) | 2011-03-29 | 2014-12-23 | Enervault Corporation | Rebalancing electrolytes in redox flow battery systems |
US8980484B2 (en) | 2011-03-29 | 2015-03-17 | Enervault Corporation | Monitoring electrolyte concentrations in redox flow battery systems |
US8980454B2 (en) | 2013-03-15 | 2015-03-17 | Enervault Corporation | Systems and methods for rebalancing redox flow battery electrolytes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3675392B2 (en) | Method for recovering metals in waste lithium ion batteries | |
JP3085634B2 (en) | Manufacturing method of high purity vanadium electrolyte | |
JPH01294368A (en) | Preparation of electrolyte for redox flow battery | |
AU2019252587B2 (en) | Process for the recovery of lithium and transition metal using heat | |
WO2024021274A1 (en) | Method for recycling lithium iron phosphate battery waste | |
CN113620345B (en) | Sodium chromite material and preparation method and application thereof | |
CN111115662B (en) | Lithium battery material recovery method | |
US20220013820A1 (en) | Battery recycling with electrolysis of the leach to remove copper impurities | |
CN107026256A (en) | A kind of thermal cell positive electrode FexCo1‑xS2Powder and preparation method thereof | |
CN114497495A (en) | Prussian blue electrode material with high potassium storage capacity and preparation method and application thereof | |
CN113430390A (en) | Treatment method of laterite-nickel ore high-pressure acid leaching slag and positive electrode material | |
CN112981433A (en) | Method for recycling waste lithium iron phosphate anode material by electrolyzing cation membrane pulp and recycled lithium hydroxide | |
CN111403842B (en) | Recovery method of waste lithium battery anode material, spherical nickel oxide material and application | |
CN105810943B (en) | A kind of method that zinc doping LiFePO4 is prepared using phosphatization slag | |
JPS6376268A (en) | Preparation of electrolyte for redox-flow cell | |
JPH03192662A (en) | Cell capacity recovery method for redox-flow cell | |
CN112542586B (en) | Subcritical continuous synthesis method of lithium iron fluoride sulfate anode material | |
CN112573499A (en) | Supercritical continuous synthesis method of low-cost fluorinated lithium iron phosphate cathode material | |
JP3837469B2 (en) | Layered rock salt type lithium iron oxide and method for producing the same | |
CN117080491B (en) | Purification method of electrolyte of flow battery | |
CN113321242B (en) | Method for synthesizing sodium ion battery anode material by utilizing electrolytic manganese anode mud | |
WO2020012809A1 (en) | Nickel metal hydride battery | |
CN117088347A (en) | Method for regenerating lithium iron phosphate positive electrode material by low-temperature liquid phase method and application | |
CN115295907A (en) | Method for removing impurities from waste positive electrode material leachate and regenerating positive electrode material | |
CN115744970A (en) | Method for preparing high-entropy pyrochlore oxide battery negative electrode material by hydrothermal method |