JPS6376240A - Picture tube - Google Patents

Picture tube

Info

Publication number
JPS6376240A
JPS6376240A JP61218582A JP21858286A JPS6376240A JP S6376240 A JPS6376240 A JP S6376240A JP 61218582 A JP61218582 A JP 61218582A JP 21858286 A JP21858286 A JP 21858286A JP S6376240 A JPS6376240 A JP S6376240A
Authority
JP
Japan
Prior art keywords
electron beam
electrode
elliptical
electrodes
beam passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61218582A
Other languages
Japanese (ja)
Inventor
Toshio Nakanishi
中西 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61218582A priority Critical patent/JPS6376240A/en
Priority to DE8787302872T priority patent/DE3775253D1/en
Priority to EP87302872A priority patent/EP0241218B1/en
Priority to KR1019870003185A priority patent/KR900006173B1/en
Publication of JPS6376240A publication Critical patent/JPS6376240A/en
Priority to US07/295,883 priority patent/US4886999A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a picture tube of an excellent focus property, by making the central electron beam passage aperture of focus electrodes which form a focus lens and of an anode in an elliptical form, while making electron beam passage apertures on both sides in a form consisting of two circular arcs, straight lines, and elliptical arcs. CONSTITUTION:Three tetrode electrodes 7 are arranged at an in-line form between two electrodes 4 and 5 which compose a focus electrode set 16. An electron beam passage aperture 14 at the center is elliptical having a longer axis in the vertical direction. Two electron beam passage apertures 13 and 15 on both sides make a form connecting elliptical arcs to straight lines and two circular arcs. When electron beams are deflected by a deflecting device, the section forms are converted one by one by applying necessary signal voltages to the tetrode electrodes 7 to make the necessary section forms responding to the deflecting amount, and the spot image distorted by the deflecting aberration can be corrected easily. Since the three electron beam passage apertures 13, 14, and 15 are formed longer in the vertical direction, the effective diameter in the vertical direction is larger, and the lens aberration can be reduced. As a result, even though the electron beams are made in a vertically longer section, the deterioration of the focus property owing to the spherical aberration is not generated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、インライン状に配置された3個の陰極に対
応させて、3個の電子ビーム通過孔を所定の間隔を置い
てインライン状に配列してなる受像管に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides three electron beam passing holes arranged in-line at predetermined intervals in correspondence with three cathodes arranged in-line. This relates to an array of picture tubes.

[従来の技術] この種受像管における集束レンズのフォーカス性能は集
束レンズの球面収差によって支配される。
[Prior Art] The focusing performance of a focusing lens in this type of picture tube is dominated by the spherical aberration of the focusing lens.

球面収差を小さくするには、集束レンズの口径を大きく
することが要請される。
In order to reduce spherical aberration, it is required to increase the aperture of the focusing lens.

この集束レンズの口径は、集束電極の電子ビーム通通孔
に支配される。
The aperture of this focusing lens is controlled by the electron beam passage hole of the focusing electrode.

3個の電子ビーム通過孔が所定の間隔を置いて直線状に
、つまりインライン状に配列された受像管においてては
、各ビーム通過孔の間隔以上に大きい開口径にできない
ため、球面収差を小さくするにも限度がある。これによ
って、フォーカス性能、したがって解像度にも自ずと制
約がある。
In a picture tube in which three electron beam passing holes are arranged in a straight line at a predetermined interval, the aperture diameter cannot be larger than the distance between each beam passing hole, so it is necessary to reduce spherical aberration. There are limits to what you can do. This naturally places limitations on focus performance and therefore resolution.

このような制約を解消する手段として、従来から知られ
ているものに、 (A)特開昭80−211743号公報で開示されてい
るように、インライン状に配置された3個の電子ビーム
通過孔のうち、中央の電子ビーム通過孔を楕円形状とし
、両側の電子ビーム通過孔を、外側がわの円弧と内側が
わの楕円弧とを連接した形状としたものがある。
Conventionally known means for resolving such constraints include (A) three electron beams passing through arranged in-line, as disclosed in Japanese Patent Application Laid-Open No. 80-211743; Among the holes, there is one in which the electron beam passage hole at the center has an elliptical shape, and the electron beam passage holes on both sides have a shape in which an arc on the outer side and an elliptical arc on the inner side are connected.

また1球面収差の良い集束レンズが得られた場合でも、
電子ビームが電子銃の後で偏向磁界を通るとき、電子ビ
ームの断面形状が変形を受け、蛍光面上でのスポット像
が非円形となる、いわゆる偏向収差が発生する。
Furthermore, even if a focusing lens with good 1-spherical aberration is obtained,
When the electron beam passes through a deflection magnetic field after the electron gun, the cross-sectional shape of the electron beam is deformed, causing a so-called deflection aberration in which the spot image on the phosphor screen becomes non-circular.

このような偏向収差はインライン型受像管のように偏向
磁界が非斉一分布の場合、特に著しく。
Such deflection aberrations are particularly noticeable when the deflection magnetic field has a non-uniform distribution, such as in an in-line picture tube.

蛍光面中央のスポット像が円形であっても、中央部水平
端では水平方向に横長の楕円となる。
Even if the spot image at the center of the phosphor screen is circular, at the horizontal end of the center it becomes an ellipse that is horizontally elongated.

このような偏向収差を解消する手段として、従来から知
られているものに。
This is a conventionally known means to eliminate such deflection aberrations.

(B)受像管電子銃の集束電極に印加する集束電圧に偏
向周波数に同期した双曲線波形電圧を重畳される方法。
(B) A method in which a hyperbolic waveform voltage synchronized with the deflection frequency is superimposed on the focusing voltage applied to the focusing electrode of the picture tube electron gun.

(C)特開昭 57−84883号公報で開示されてい
るように、受像管外に電磁石コイルを配設し、受像管に
配備した磁気素子を通して偏向収差を補正しようとする
ものがある。
(C) As disclosed in Japanese Patent Application Laid-open No. 57-84883, there is a method in which an electromagnetic coil is disposed outside the picture tube and deflection aberration is corrected through a magnetic element provided in the picture tube.

さらに、(D)特開昭53−9484号公報で開示され
てI/1′るように、非点収差特性の電子レンズを構成
する電極対の一方の電極端部に、非回転対称電界を形成
する電極を設け、静電的に電子レンズと非点収差を同時
に制御しようとするものも従来から知られている。
Furthermore, (D) as disclosed in Japanese Unexamined Patent Publication No. 53-9484 and I/1', a non-rotationally symmetric electric field is applied to the end of one of the electrode pairs constituting an electron lens with astigmatic characteristics. It has also been known to provide an electrode to electrostatically control an electron lens and astigmatism at the same time.

[発明が解決しようとする問題点] 上述したような球面収差および偏向収差の解消手段とし
て従来から知られているものには、それぞれ次のような
問題点があった。
[Problems to be Solved by the Invention] Conventionally known means for eliminating spherical aberration and deflection aberration as described above have the following problems.

つまり、(A)で示した球面収差の解消手段は、集束レ
ンズの開口径を異形ではあるが、実効的に大きくしよう
とするものである。しかし、このような異形孔の場合は
、数値制御方式の加工方法を用いるとしても、円弧と楕
円弧との連接形状で孔縁が連続的に変化する曲線である
から、基準点があいまいで、実際に孔加工するとき、お
よび加工された孔の形状や3個の孔の相互配置関係を検
査、測定することが困難である。
In other words, the means for eliminating spherical aberration shown in (A) is intended to effectively increase the aperture diameter of the focusing lens, although it has an unusual shape. However, in the case of such irregularly shaped holes, even if a numerical control method is used, the hole edge is a curve that changes continuously due to the connected shape of circular arcs and elliptical arcs, so the reference point is ambiguous and it is difficult to actually It is difficult to inspect and measure the shape of the drilled holes and the mutual arrangement of the three holes when drilling the holes.

それゆえ他の電極とともに組立てて電子銃を構成する場
合、他の電極の電子ビーム通過孔に対して偏心したり、
傾きなどを生じやすく、受像管の製造工程における歩留
りおよび性能特性に大きな障害となり、実用化に難点が
ある。
Therefore, when assembled with other electrodes to form an electron gun, the electron beam may be eccentric to the electron beam passage hole of the other electrodes, or
This tends to cause tilting, which is a major obstacle to the yield and performance characteristics in the picture tube manufacturing process, making it difficult to put it into practical use.

また、(B)で示した偏向収差の解消手段は、集束レン
ズの焦点距離を調整できるも、偏向収差の解消にはほと
んど効果がない。
Furthermore, although the means for eliminating deflection aberration shown in (B) can adjust the focal length of the condenser lens, it is hardly effective in eliminating deflection aberration.

(C)で示した偏向収差の解消手段は、電磁石コイル等
に要する費用が高くつくとともに、消費電力も大きく、
偏向磁界との干渉を避けるための工夫を必要とする問題
かあ、る。
The means for eliminating deflection aberration shown in (C) requires high costs for electromagnetic coils, etc., and also consumes a large amount of power.
This is a problem that requires some way to avoid interference with the deflection magnetic field.

さらに、(D)で示した電子レンズと非点収差の同時制
御手段の場合は、それぞれ異った目的を達成するための
波形電圧が互いに電界形成に干渉し合う問題がある。こ
のような相互干渉をなくするには、干渉を補正する波形
電圧をそれぞれに、偏向周波数に同期させて重畳する必
要があり、動作回路が複雑になる。また、インライン型
カラー陰極線管では、一般にスタチックコンバーゼンス
を電子レンズ領域で静電的におこなっているため、この
手段では、集束電極電位の変化によってスタチックコン
バーゼンスが崩れるという問題がある。
Furthermore, in the case of the simultaneous control means for electronic lens and astigmatism shown in (D), there is a problem that waveform voltages for achieving different purposes interfere with each other in electric field formation. In order to eliminate such mutual interference, it is necessary to superimpose waveform voltages for correcting the interference in synchronization with the deflection frequency, which complicates the operating circuit. Furthermore, in an in-line color cathode ray tube, static convergence is generally performed electrostatically in the electron lens region, so this method has the problem that static convergence is disrupted by changes in the focusing electrode potential.

この発明は、上記のような問題点を解消するためになさ
れたもので、加速、集束、集中といった電子銃の基本性
能を損なうことなく、また高精度な加工、組立を可能に
しながら、フォーカス性能に優れた受像管を提供するこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and it improves focus performance without impairing the basic performance of electron guns such as acceleration, focusing, and concentration, and while enabling high-precision processing and assembly. The purpose of this project is to provide an excellent picture tube.

[問題点を解決するための手段] この発明にかかる受像管は、電子ビームの軸線に沿って
前後に配置された2つの電極からなる集束電極間のドリ
フト空間内に、電子ビームを両側および上下からそれぞ
れ挟む各一対の垂直電極片および水平電極片からなる四
極電極を設け、かつ、集束レンズを形成する上記集束電
極および陽極における3個の電子ビーム通過孔のうち、
中央の電子ビーム通過孔を、インライン配列方向に対し
て垂直方向に長軸を有する楕円形状に、また両側の電子
ビーム通過孔を、直線部を挟む2個の円弧とその直線部
と反対側で上記2個の円弧に連接する楕円弧からなる形
状に形成したことを特徴とする。
[Means for Solving the Problems] The picture tube according to the present invention directs the electron beam on both sides and above and below within the drift space between the focusing electrodes, which are made up of two electrodes arranged one behind the other along the axis of the electron beam. A quadrupole electrode consisting of a pair of vertical electrode pieces and a horizontal electrode piece each sandwiched between the three electron beam passing holes in the focusing electrode and the anode forming a focusing lens,
The center electron beam passage hole is shaped like an ellipse with its long axis perpendicular to the inline arrangement direction, and the electron beam passage holes on both sides are formed by two circular arcs sandwiching a straight part and the opposite side of the straight part. It is characterized by being formed into a shape consisting of an elliptical arc connected to the two circular arcs.

[作用] この発明においては、上記四極電極に偏向周波数に同期
した双曲線波形の補正用の電圧を印加すると、四極電極
に印加電圧による電界が形成され、電子ビームがこの電
界空間を通過する間、静電的に吸引または反発作用を受
けて電子ビームの断面形状が信号電圧に応じた形状に変
化する。
[Function] In this invention, when a voltage for correcting a hyperbolic waveform synchronized with the deflection frequency is applied to the quadrupole electrode, an electric field is formed at the quadrupole electrode due to the applied voltage, and while the electron beam passes through this electric field space, The cross-sectional shape of the electron beam changes to a shape corresponding to the signal voltage due to electrostatic attraction or repulsion.

また、集束電極の電子ビーム通過孔は全てインライン配
列方向に対して垂直方向に縦長のものに形成されている
ので、縦方向の実効レンズ径が大きく、レンズ収差を小
さくできるので、電子ビームが周辺部に走査されたとき
、上記四極電極によって偏向収差を補正するために縦長
の断面形状にしても電子ビームは集束レンズの収差を受
けない。
In addition, all of the electron beam passing holes in the focusing electrode are formed vertically in the direction perpendicular to the inline arrangement direction, so the effective lens diameter in the vertical direction is large and lens aberration can be reduced, so that the electron beam is When the electron beam is scanned in a vertical direction, the electron beam is not affected by the aberration of the focusing lens even if the quadrupole electrode has a vertically elongated cross-sectional shape to correct the deflection aberration.

また、集束電極の電子ビーム通過孔の直線部は、実際に
孔加工を行なう時に使用する数値制御方式1作機械1通
称、NG付研削機等に対して明確な基準線となり、直線
から始まって円弧から楕円弧に加工が移り、次の円弧を
経て直線に戻るといった一連の加工手段をとれ、精度良
い孔加工ができる。
In addition, the straight line of the electron beam passage hole of the focusing electrode serves as a clear reference line for numerical control type 1 machine tools, commonly known as NG grinding machines, etc. used when actually drilling holes, and it starts from a straight line. A series of machining methods such as moving from a circular arc to an elliptical arc, then returning to a straight line after passing through the next circular arc can be used, allowing for highly accurate hole machining.

また、加工された孔形状等の検査においても上述と同様
に、NC方式三次元座標測定機によって精度良い検査、
測定が行なえる。
In addition, when inspecting the shape of the machined holes, etc., we use an NC three-dimensional coordinate measuring machine to perform highly accurate inspections, as described above.
Measurements can be made.

[実施例] 以下、この発明の一実施例を図面にもとづいて説明する
[Example] Hereinafter, an example of the present invention will be described based on the drawings.

第1図は、この発明の一実施例による受像管における電
子銃の概略構成図である。同図において、(1)はイン
ライン状に所定の間隔を置いて配置された3個の陰極で
ある。(2)は制御電極、(3)は加速電極、(1B)
は集束電極で、これは電子ビームの軸線に沿って前後に
配置された2つの電極(4)、(5)から構成されてい
る。(6)は陽極である。
FIG. 1 is a schematic diagram of an electron gun in a picture tube according to an embodiment of the present invention. In the figure, (1) is three cathodes arranged in-line at predetermined intervals. (2) is a control electrode, (3) is an acceleration electrode, (1B)
is a focusing electrode, which consists of two electrodes (4) and (5) placed one behind the other along the axis of the electron beam. (6) is an anode.

上記の各種(1)、(2)、(3)、(1B)、(8)
が同軸的に配置されたものを基本構成とする電子銃を備
えた受像管において、(7)は四極電極であって、上記
集束電極(18)を構成する前後2つの電極(4)、(
5)間にインライン状に3個、配置されている。その前
後2つの電極(4)、(5)は接続線(8)により電気
的に接続されて、同電位に保持されるようになっている
Various of the above (1), (2), (3), (1B), (8)
(7) is a quadrupole electrode, and the two front and rear electrodes (4), which constitute the focusing electrode (18),
5) Three pieces are arranged in-line between them. The two electrodes (4) and (5) before and after are electrically connected by a connecting wire (8) and held at the same potential.

上記3個の四極電極(7)はそれぞれ、第2図で示した
ように、電子ビームが通過する軸線に沿って配設された
4枚の電極片(9)、(9)、(10)、(10)から
構成されている。つまり、電子ビームを両側から挟む一
対の垂直電極片(10)、(10)と電子ビームを上下
から挟む一対の水平電極片(9)、(9)とから構成さ
れていて、それぞれ垂直方向電界と水平方向電界とを形
成する。
As shown in FIG. 2, each of the three quadrupole electrodes (7) has four electrode pieces (9), (9), (10) arranged along the axis through which the electron beam passes. , (10). In other words, it is composed of a pair of vertical electrode pieces (10), (10) that sandwich the electron beam from both sides, and a pair of horizontal electrode pieces (9), (9) that sandwich the electron beam from above and below, and each has a vertical electric field. and a horizontal electric field.

集束レンズを構成する上記集束電極(16)の後側電極
(5)および上記陽極(8)はそれぞれ、インライン状
に所定の間隔を置いて配置された3個の電子ビーム通過
孔(13)、(14)、(15)を有する。これら3個
の電子ビーム通過孔(13) 、(14)、(15)は
つぎに詳しく説明するように形成されている。
The rear electrode (5) of the focusing electrode (16) and the anode (8) constituting the focusing lens each have three electron beam passing holes (13) arranged in-line at predetermined intervals; (14) and (15). These three electron beam passage holes (13), (14), and (15) are formed as described in detail below.

第3図で明示したように、中央の電子ビーム通過孔(1
4)は、2個の楕円弧(14a)、(14a)をavi
した楕円形状で、インライン配列方向に対して垂直方向
に長軸を有するものである0両側の2個の電子ビーム通
過孔(13)、(15)は、直線部(13a)、(15
a)をもち、その直線部(13a)、(15a)を挟ん
でそれぞれ2個の円弧(13b) 、 (15b)を連
接し、上記直線部(13a) 、(15a)と反対側で
上記2個の円弧(13b) 、(15b)に楕円弧(1
3c)、(15c)を連接した形状をなしている。この
両側の電子ビーム通過孔(13) 、(15)(7)楕
円弧(13c) 、(15c)は、上記中央の電子ビー
ム通過孔(14)の2個の楕円弧(14a)、(14a
)側にそれぞれ面し、かつ、それら楕円弧(14a)、
(14a)よりも大きな曲率半径をもっている。
As clearly shown in Figure 3, the central electron beam passage hole (1
4) converts the two elliptical arcs (14a) and (14a) into avi
The two electron beam passing holes (13) and (15) on both sides are elliptical in shape and have long axes perpendicular to the inline arrangement direction.
a), and connect two circular arcs (13b) and (15b) respectively across the straight parts (13a) and (15a), and on the opposite side to the straight parts (13a) and (15a), the above two arcs are connected. arcs (13b), (15b) and elliptical arcs (1
3c) and (15c) are connected. The electron beam passing holes (13), (15), (7) elliptical arcs (13c), (15c) on both sides are the same as the two elliptical arcs (14a), (14a) of the central electron beam passing hole (14).
) sides, and those elliptical arcs (14a),
It has a larger radius of curvature than (14a).

そして、上記中央の電子ビーム通過孔(14)の2個の
楕円弧(14a) 、(14a)の略中央部、および、
上記2個の両側の電子ビーム通過孔(13) 、(15
)における直線部(13a) 、(15a)と楕円弧(
13c)、(15c)の略中央部をインライン配列の中
心線が通るようになっている。
and two elliptical arcs (14a) of the central electron beam passage hole (14), approximately the center of (14a), and
The above two electron beam passing holes (13), (15) on both sides
), the straight line parts (13a), (15a) and the elliptical arc (
13c) and (15c), the center line of the in-line arrangement passes through the approximate center of each of them.

なお、陽極(8)の3個の電子ビーム通過孔も上記のも
のと全く同様である。
Note that the three electron beam passing holes of the anode (8) are also exactly the same as those described above.

上記構成の受像管において、上記陰極(1)から放出さ
れた電子ビームは、制御電極(2)の開口部と加速電極
(3)の開口部を通過中に流量を調節されながら電子ビ
ームとなって、集束電極の前電極(0の開口部を通って
集束電極内を走行し陽極(6)との境界領域で集束作用
を受けて蛍向面(図示せず)にスポット像を映出する。
In the picture tube configured as described above, the electron beam emitted from the cathode (1) becomes an electron beam while the flow rate is adjusted while passing through the opening of the control electrode (2) and the opening of the accelerating electrode (3). The front electrode (0) of the focusing electrode travels inside the focusing electrode through the opening, receives a focusing action in the boundary region with the anode (6), and projects a spot image on a fluorescent surface (not shown). .

集束電極内は同電位に保持されているので、電子ビーム
はドリフト、つまり漂流している。
Since the potential within the focusing electrode is maintained at the same potential, the electron beam drifts.

このドリフト空間内に配設した四極電極(7)の1例え
ば、水平電極片(9)、(Ill)に垂直電極片(10
)、(10)に対して正の電位を与えた場合、第2図で
示すような円形断面(11)をもつ電子ビームが四極電
極(7)を通過中に静電界によって縦長断面(12)に
変形され、電子ビームが周辺に偏向されたとき、蛍光面
において横長断面になる収差を、偏向前に予め補正する
。この作用は、ドリフト空間で行なわれるから、本質的
に電子ビームを加速または減速させることなく、電子銃
の集束機能を損なわずに、単にスポット断面を変化させ
集束レンズ内の軌跡を変える。
One of the quadrupole electrodes (7) arranged in this drift space, for example, horizontal electrode pieces (9), (Ill) and vertical electrode pieces (10
), (10), when an electron beam with a circular cross section (11) as shown in Fig. 2 passes through the quadrupole electrode (7), the vertical cross section (12) is created by the electrostatic field. When the electron beam is deflected to the periphery, the aberration that results in a horizontally long cross section on the phosphor screen is corrected in advance before deflection. Since this action takes place in the drift space, it does not essentially accelerate or decelerate the electron beam, and without impairing the focusing function of the electron gun, it simply changes the spot cross section and changes the trajectory within the focusing lens.

したがって、スポット像を蛍光面中央に映出するときは
、四極電極(7)による円形断面(11)の変化を行な
わず、電子ビームを偏向装置(図示せず)によって偏向
する場合には、偏向量に対応して所要の断面形状になる
ように四極電極(7)に必要な信号電圧を印加して断面
形状を逐次変化させる。このようにして、偏向収差によ
って歪むスポット像を容易に補正することができる。
Therefore, when projecting a spot image at the center of the phosphor screen, the circular cross section (11) is not changed by the quadrupole electrode (7), and when the electron beam is deflected by a deflection device (not shown), the deflection The cross-sectional shape is successively changed by applying a necessary signal voltage to the quadrupole electrode (7) so that the required cross-sectional shape corresponds to the amount. In this way, a spot image distorted by deflection aberration can be easily corrected.

集束レンズを構成する集束電極(10)の後備電極(5
)と陽極(6)の電子ビームが通過する開口部、つまり
、3個の電子ビーム通過孔(13)。
The secondary electrode (5) of the focusing electrode (10) constituting the focusing lens
) and an aperture through which the electron beam of the anode (6) passes, that is, three electron beam passing holes (13).

(14)、(15)はともに縦長に形成されているから
縦方向の実効口径が大きく、レンズ収差を小さくできる
ので、電子ビームを縦長断面(12)にしても球面収差
によるフォーカス性能の劣化は起らない。
(14) and (15) are both vertically long, so they have a large effective aperture in the vertical direction and can reduce lens aberration, so even if the electron beam is made vertically long (12), the focus performance will not deteriorate due to spherical aberration. It doesn't happen.

また、上記3個の電子ビーム通過孔(13) 。Also, the three electron beam passing holes (13).

(14)、(15)の形状が上記したようなものである
から、両側の電子ビーム通過孔(13)、(15)をN
C付研削機で加工形成するとき、一方の直線部(13a
)を起点として円弧(13b)から楕円弧(13c)に
移行し、再び円1(13b)を経て直線部(13a)に
戻るといった加工を行なう、つぎに、その直線部(13
a)を基準点として、もう一方の直線部(15a)を数
値制御方式により加工し、この直線部(15a)を起点
として上述と同様に円弧(15b)、楕円弧(15c)
、円弧(15b)の加工を行なう。
Since the shapes of (14) and (15) are as described above, the electron beam passing holes (13) and (15) on both sides are
When processing and forming with a C-equipped grinder, one straight part (13a
) as a starting point, the process moves from the circular arc (13b) to the elliptical arc (13c), returns to the straight part (13a) via circle 1 (13b) again, and then the straight part (13
Using a) as a reference point, process the other straight part (15a) using a numerical control method, and use this straight part (15a) as a starting point to form a circular arc (15b) and an elliptical arc (15c) in the same manner as described above.
, the arc (15b) is processed.

また、中央の電子ビーム通過孔(10は、上記2つの直
線部(13a)、(15a)を基準点として2つの楕円
弧(14a) 、(14a)を加工することで形成する
Further, the central electron beam passage hole (10) is formed by processing two elliptical arcs (14a), (14a) using the two straight portions (13a), (15a) as reference points.

なお、以上はNC付研削機で加工形成する場合について
説明したが1通常多用される薄板プレス加工法を採用し
てもよく、この場合は、プレス金型の製作において、上
記直線部(13a)、(15a)を加工基準として精度
のよいプレス金型の製作が行なえるものである。
In addition, although the case where processing and forming is performed using an NC-equipped grinding machine has been described above, the thin plate pressing method that is commonly used may also be adopted. In this case, in the production of the press mold, , (15a) can be used as a processing standard to manufacture a press mold with high precision.

さらに、電子ビーム通過孔の加工後の検査においても、
上述と同様な手順により明確な基準点にもとづいて高精
度な検査が行なえる。
Furthermore, in the inspection after machining of the electron beam passage hole,
A highly accurate inspection can be performed based on a clear reference point using the same procedure as described above.

[発明の効果] 以上のとおり、この発明によるときは、四極電極の作用
をドリフト空間で静電的に行なうので、集束、集中とい
った電子銃の基本性能を乱すことなく、かつ、スタチッ
クコンバーゼンスを崩すことなく、偏向収差を補正する
ことができる。
[Effects of the Invention] As described above, according to the present invention, since the action of the quadrupole electrode is performed electrostatically in the drift space, the basic performance of the electron gun such as focusing and concentration is not disturbed, and static convergence can be prevented. Deflection aberration can be corrected without destroying the image.

また、上記四極作用を静電的に行なうので、電磁石など
の高価な付属素子を必要とせず、電力消費もないので非
常に経済的であるとともに、その四極電極が集束電極内
に存在するため、集束電圧程度の低い信号電圧で動作さ
せることができる。
In addition, since the above-mentioned quadrupolar action is performed electrostatically, there is no need for expensive attached elements such as electromagnets, and there is no power consumption, making it extremely economical. Furthermore, since the quadrupole electrode is located within the focusing electrode, It can be operated with a signal voltage as low as the focusing voltage.

その上、集束レンズを構成する集束電極の後側電極およ
び陽極の電子ビーム通過孔が縦長に形成されているから
、縦方向の実効口径が大きくて縦方向のレンズ収差を小
さくできるので、電子ビームを縦長断面にしても球面収
差によるフォーカス性能の劣化が起こらない。
Furthermore, since the back electrode of the focusing electrode that constitutes the focusing lens and the electron beam passing hole of the anode are formed vertically, the effective aperture in the vertical direction is large and the vertical lens aberration can be reduced, so that the electron beam can be Even if the cross section is made vertically long, focus performance does not deteriorate due to spherical aberration.

したがって、偏向収差を四極電極によって補正してもレ
ンズの球面収差によるフォーカス性能の劣化がなく、蛍
光面の全域に亘って良好な電子ビームのスポット像を得
ることができる。
Therefore, even if the deflection aberration is corrected by the quadrupole electrode, there is no deterioration in focus performance due to the spherical aberration of the lens, and a good spot image of the electron beam can be obtained over the entire area of the phosphor screen.

さらに、上記集束電極の後側電極および陽極の3個の電
子ビーム通過孔の加工に際しては、明確な基準点となる
直線部があるので、それら孔形状および相互配置関係と
もに高精度な加工か可能であり、それ故にまた。電子銃
の組立て精度もよく、歩留りの改善および性能特性の向
上に大きな効果がある。
Furthermore, when machining the three electron beam passing holes of the rear electrode of the focusing electrode and the anode, there is a straight line that serves as a clear reference point, so it is possible to process the hole shapes and mutual arrangement with high precision. And therefore also. The assembly accuracy of the electron gun is also good, which has a great effect on improving yield and performance characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による受像管における電
子銃の概略構成図、第2図は四極電極の構成と作用を説
明する要部の拡大構成図、第3図は集束電極の後側電極
を;1(す拡大斜視図である。 (1)・・・陰極、(2)・・・制御電極、(3)・・
・加速電極、(4)・・・前側′F!、極、(5)・・
・後側電極、(6)・・・陽極、(7)・・・四極電導
、(9・・・水平電極片、(10)・・・垂直電極片、
(+3)、(+41.(15)・・・電子ビーム通過孔
、(13a) 、 (15い、、 、、J、線部、(;
3b)、(15b)・・・円弧、  (13c)、(1
5c)、(14a)”・楕円弧、  (1B) −・・
集束電極。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a schematic configuration diagram of an electron gun in a picture tube according to an embodiment of the present invention, FIG. 2 is an enlarged configuration diagram of the main part explaining the configuration and operation of the quadrupole electrode, and FIG. 3 is a diagram showing the rear part of the focusing electrode. This is an enlarged perspective view of the side electrodes. (1)... cathode, (2)... control electrode, (3)...
・Acceleration electrode, (4)...Front side 'F! , pole, (5)...
- Rear electrode, (6)... anode, (7)... quadrupole conduction, (9... horizontal electrode piece, (10)... vertical electrode piece,
(+3), (+41. (15)...Electron beam passing hole, (13a), (15i,, , J, line part, (;
3b), (15b)...Circular arc, (13c), (1
5c), (14a)"・Elliptical arc, (1B) -...
Focusing electrode. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] インライン状に配置された3個の陰極と、インライン状
に配量された3個の電子ビーム通過孔をそれぞれ有する
制御電極、加速電極、集束電極、陽極を備えた受像管で
あつて、上記集束電極は、電子ビームの軸線に沿つて前
後に配置された2つの電極で構成され、電子ビームが通
過する軸線に沿つて配設されて電子ビームを両側から挟
む一対の垂直電極片および電子ビームを上下から挟む一
対の水平電極片で構成された3組の四極電極を、上記前
後2つの電極で挟み、上記集束電極における後側電極お
よび上記陽極それぞれの3個の電子ビーム通過孔のうち
、中央の電子ビーム通過孔は、インライン配列方向に対
して垂直方向に長軸を有する2個の楕円弧を連接した楕
円形状に形成され、両側の電子ビーム通過孔はそれぞれ
、直線部を挟む2個の円弧と上記直線部と反対側で上記
2個の円弧に連接する楕円弧からなる形状に形成され、
この両側の電子ビーム通過孔の楕円弧は、上記中央の電
子ビーム通過孔の楕円弧側に面し、中央の電子ビーム通
過孔の2個の楕円弧および両側の電子ビーム通過孔の上
記直線部と楕円弧のそれぞれ略中央部をインライン配列
の中心線が通るように構成したことを特徴とする受像管
A picture tube comprising three cathodes arranged in-line, a control electrode, an accelerating electrode, a focusing electrode, and an anode each having three electron beam passing holes arranged in-line, the focusing electrode The electrode consists of two electrodes arranged one behind the other along the axis of the electron beam, a pair of vertical electrode pieces arranged along the axis through which the electron beam passes and sandwiching the electron beam from both sides, and a pair of vertical electrode pieces arranged along the axis through which the electron beam passes. Three sets of quadrupole electrodes each consisting of a pair of horizontal electrode pieces sandwiched from above and below are sandwiched between the two front and rear electrodes, and the center of the three electron beam passing holes of each of the rear electrode of the focusing electrode and the anode is The electron beam passing hole is formed in an elliptical shape by connecting two elliptical arcs with long axes perpendicular to the inline arrangement direction, and the electron beam passing holes on both sides are formed by two circular arcs sandwiching a straight part. and formed into a shape consisting of an elliptical arc connected to the two circular arcs on the opposite side to the straight line part,
The elliptical arcs of the electron beam passage holes on both sides face the elliptical arc side of the central electron beam passage hole, and are in contact with the two elliptical arcs of the central electron beam passage hole and the straight portions of the electron beam passage holes on both sides. A picture tube characterized in that each of the picture tubes is configured such that the center line of the inline arrangement passes through substantially the center thereof.
JP61218582A 1986-04-03 1986-09-16 Picture tube Pending JPS6376240A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61218582A JPS6376240A (en) 1986-09-16 1986-09-16 Picture tube
DE8787302872T DE3775253D1 (en) 1986-04-03 1987-04-02 CATHODE RAY TUBE.
EP87302872A EP0241218B1 (en) 1986-04-03 1987-04-02 Cathode ray tube apparatus
KR1019870003185A KR900006173B1 (en) 1986-04-03 1987-04-03 Cathode ray tube device
US07/295,883 US4886999A (en) 1986-04-03 1989-01-11 Cathode ray tube apparatus with quadrupole electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218582A JPS6376240A (en) 1986-09-16 1986-09-16 Picture tube

Publications (1)

Publication Number Publication Date
JPS6376240A true JPS6376240A (en) 1988-04-06

Family

ID=16722210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218582A Pending JPS6376240A (en) 1986-04-03 1986-09-16 Picture tube

Country Status (1)

Country Link
JP (1) JPS6376240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814931A (en) * 1995-10-23 1998-09-29 Nec Corporation Cold cathode and cathode ray tube using the cold cathode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814931A (en) * 1995-10-23 1998-09-29 Nec Corporation Cold cathode and cathode ray tube using the cold cathode

Similar Documents

Publication Publication Date Title
KR900006173B1 (en) Cathode ray tube device
KR920001833B1 (en) Electron gun of color cathode ray tube having the improved electrode assembly
US4935663A (en) Electron gun assembly for color cathode ray tube apparatus
JPS5829568B2 (en) 2 beam 1 electron gun cathode ray tube
NL8903036A (en) LINE TYPE ELECTRON CANNON FOR COLOR CATHODE BEAM.
KR100418546B1 (en) Cathode ray tube apparatus
JPS6376240A (en) Picture tube
JPH05251014A (en) Electron gun for color picture tube
JPH0272546A (en) Electron gun for color picture tube
JP3211962B2 (en) Method for manufacturing in-line electron gun for color picture tube
JPH08315751A (en) Deflection aberration correcting method of cathode-ray tube and cathode-ray tube and image display device
CA1273986A (en) In-line electron gun system for a colour picture tube compensated for beam-spot distortion
JPS61253749A (en) Cathode ray tube
US4682073A (en) Electron optics for the electron beam generating system of a color picture tube
JPH03171534A (en) Color picture tube
JP3742122B2 (en) In-line electron gun for color picture tubes
GB2135503A (en) Accelerating and scan expansion electron lens system
EP0778605A2 (en) An electron gun assembly for a color cathode ray tube apparatus
EP1361596B1 (en) In-line type electron gun and color picture tube apparatus using the same
JPH02106855A (en) Electron gun for color picture tube
KR930000956Y1 (en) Cathode-ray tube
JP2661059B2 (en) Cathode ray tube
JP2963759B2 (en) Color picture tube equipment
KR100234053B1 (en) Electron gun for color braun tube
US20020079820A1 (en) Cathode-ray tube apparatus