JPS6376233A - Ion source device - Google Patents

Ion source device

Info

Publication number
JPS6376233A
JPS6376233A JP21999386A JP21999386A JPS6376233A JP S6376233 A JPS6376233 A JP S6376233A JP 21999386 A JP21999386 A JP 21999386A JP 21999386 A JP21999386 A JP 21999386A JP S6376233 A JPS6376233 A JP S6376233A
Authority
JP
Japan
Prior art keywords
ion source
main body
source device
ion
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21999386A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Tsujioka
強 辻岡
Minoru Kume
久米 実
Kotaro Matsuura
松浦 宏太郎
Yuzo Abe
祐三 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21999386A priority Critical patent/JPS6376233A/en
Publication of JPS6376233A publication Critical patent/JPS6376233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To make it possible to convert ions in the plasma into ion beams efficiently, by floating electrically the inner wall of an ion source main body from the grounding, and applying to the inner wall a voltage positive to a filament. CONSTITUTION:To an ion source device main body 11, an acceleration power source 12 to heat the thermion is applied positively. Between a filament 14 and the ion source device main body 11, a discharge power source 16 is connected so as to make the ion source device main body 11 positive to the filament 14, the first grid electrode 17 is made to be in the floating condition electrically, and an ion drawing-out power source 19 is connected to the second grid electrode 18. The ions 22 in the plasma produced by the collision between the thermions produced from the filament 14 and the incident gas molecles led from a gas guide tube 13 scarcely strike to the inner wall 11a of the ion source main body 11 where a positive voltage is applied, being rarely neutralized, but strike to the first and the second grids 17 and 18 on the way of drawing out and disappeare. Therefore, a large ion beam current can be drawn out.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は磁気記録媒体等の薄膜製造技術において、イオ
ンビームを用いたスパッタ法、蒸着法等に用いられるイ
オン源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an ion source device used in sputtering, vapor deposition, etc. using an ion beam in thin film manufacturing technology for magnetic recording media and the like.

(ロ)従来の技術 一般に、強磁性金属薄膜層を磁気記録層とする磁気記録
媒体は、金属もしくはそれらの合金などを真空蒸着法等
によってポリエステルフィルム等の基板上に被着してつ
くられ、高密度記録に適した特性を有するが、反面空気
中で除々に酸化を受は易く、最大磁束密度などの磁気特
性が劣化するなどの難点がある。
(b) Conventional technology Generally, magnetic recording media having a ferromagnetic metal thin film layer as a magnetic recording layer are made by depositing metals or their alloys on a substrate such as a polyester film by vacuum deposition method or the like. Although it has characteristics suitable for high-density recording, it is susceptible to gradual oxidation in the air and has drawbacks such as deterioration of magnetic properties such as maximum magnetic flux density.

上述の欠点を解消したものとして、例えば特開昭60−
87437号公報に開示されているように、真空槽内に
、円筒状キャンの周面に沿って移動する基板と、この基
板の移動方向に沿って順次にこの基板と対向する強磁性
材蒸発源とイオン源とを配設し、真空雰囲気下で強磁性
材蒸発源から強磁性材の蒸気流を基板に差し向けて、該
基板上に強磁性金属薄膜層を形成した後、引き続いてイ
オン源からイオン化した酸素ガスまたは窒素ガスを差し
向けることによって、速い速度で効率よく強磁性金X薄
膜層の表面の酸化または窒化を行い保護層を形成し、強
磁性金属薄膜着の耐候性を向上させたものがある。
As a solution to the above-mentioned drawbacks, for example, Japanese Patent Application Laid-Open No. 1986-
As disclosed in Japanese Patent No. 87437, a substrate that moves along the circumferential surface of a cylindrical can is placed in a vacuum chamber, and a ferromagnetic material evaporation source that faces the substrate sequentially along the direction of movement of the substrate. and an ion source, and a ferromagnetic material vapor flow is directed toward the substrate from the ferromagnetic material evaporation source in a vacuum atmosphere to form a ferromagnetic metal thin film layer on the substrate, and then the ion source is By directing ionized oxygen or nitrogen gas at a high speed, the surface of the ferromagnetic gold There is something.

そして、このイオン源装置としては、フィラメントから
の熱電子によりプラズマを形成するカウフマン型のイオ
ン源装置が最も一般的に用いられている。
The most commonly used ion source device is a Kauffman type ion source device that forms plasma using thermoelectrons from a filament.

このカウフマン型のイオン源装置は第5図に示すように
、フィラメント(1)から放出した熱電子(2)が該フ
ィラメント(1)に対して正に印加されているアノード
(3〉に到達しようとするが、その途中で窒素等の導入
ガス分子(4)に衝突し、この中性の導入ガス分子(4
)はイオン化され、2次電子(5)とイオン(6)の混
合状態(プラズマ)を形成する。そしてこのプラズマか
ら2枚のグリッド電極(7)(8)間に生じた電位差に
よってイオンを引き出す構造になっている。
In this Kaufmann type ion source device, as shown in Fig. 5, thermionic electrons (2) emitted from the filament (1) reach the anode (3), which is positively applied to the filament (1). However, on the way, it collides with introduced gas molecules (4) such as nitrogen, and this neutral introduced gas molecules (4)
) is ionized to form a mixed state (plasma) of secondary electrons (5) and ions (6). The structure is such that ions are extracted from this plasma by the potential difference generated between the two grid electrodes (7) and (8).

しかし乍ら、このカウフマン型のイオン源装置では、プ
ラズマ中のイオン(6)の大部分はグリッド電極(7)
(8)によって引き出される前に、アースされたイオン
源装置本体(9)の内壁(9a)に衝突し、再び中性の
分子(lO)となる、従って、プラズマ中のイオン(6
)が効率良くイオンビームとして利用出来ず、良好な保
護層を磁性層上に形成出来なかった。
However, in this Kaufman type ion source device, most of the ions (6) in the plasma are transferred to the grid electrode (7).
(8), the ions collide with the inner wall (9a) of the grounded ion source main body (9) and become neutral molecules (lO) again.
) could not be used efficiently as an ion beam, and a good protective layer could not be formed on the magnetic layer.

(ハ) 発明が解決しようとする問題点本発明は上記従
来例の欠点に鑑みなされたもので、プラズマ中のイオン
を効率良くイオンビームに変換することが出来るイオン
源装置を提供することを目的とするものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of the drawbacks of the above-mentioned conventional examples, and an object thereof is to provide an ion source device that can efficiently convert ions in plasma into an ion beam. That is.

(ニ)  問題点を解決するための手段イオン源装置本
体の内壁をアースから電気的に浮かし、該内壁にフィラ
メントに対して正の電圧を印加する。
(d) Means for solving the problem: The inner wall of the ion source device body is electrically floated from the ground, and a positive voltage is applied to the inner wall with respect to the filament.

(ホ) 作用 上記構成に依れば、イオン源装置本体の内壁がアノード
としての役割を持つため、プラズマ中のイオンが正電位
に印加されている内壁と衝突し、中性化することはほと
んど無くなる。
(E) Effect According to the above configuration, since the inner wall of the ion source main body plays the role of an anode, ions in the plasma rarely collide with the inner wall, which is applied with a positive potential, and are neutralized. It disappears.

(へ) 実施例 以下、図面を参照しつつ本発明の一実施例について詳細
に説明する。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本実施例のカウフマン型のイオン源装置の断面
図である。
FIG. 1 is a sectional view of the Kaufmann type ion source device of this embodiment.

図中、(11)はステンレス製のイオン源装置本体で、
該イオン源装置本体〈11)には、熱1子を加熱するた
めの加速電源(12)が正に印加されている。
In the figure, (11) is the main body of the ion source made of stainless steel.
An accelerating power source (12) for heating the heat element is positively applied to the ion source device main body (11).

(13)は前記イオン源本体(11)に窒素ガス等を導
入するガス導入管、(14)は交流1i源(15)に接
続されたフィラメントで、該フィラメント(14)と前
記イオン源装置本体(11)との間には、フィラメント
(14)に対してイオン源装置本体(11)が正になる
ように50〜100vの放電用電源(16)が接続され
ている。 (17)(18)はお互いに2〜5Iff1
1離間した第1、第2グリッド電極で、前記第1グリッ
ド電極(17)は電気的に浮いた状態にあり、前記第2
グリッド電極(18)には−500vのイオン引き出し
用tR。
(13) is a gas introduction pipe for introducing nitrogen gas or the like into the ion source main body (11); (14) is a filament connected to the AC 1i source (15); the filament (14) and the ion source main body (11), a 50-100V discharge power source (16) is connected so that the ion source device main body (11) is positive with respect to the filament (14). (17) and (18) are both 2~5Iff1
The first and second grid electrodes are separated by 1, and the first grid electrode (17) is in an electrically floating state, and the second grid electrode (17) is electrically floating.
The grid electrode (18) has a -500v tR for ion extraction.

(19)が接続されている。(19) is connected.

上述のようなイオン源装置では、フィラメント(14)
から発生した熱1子(20)とガス導入管(13)から
入射した導入ガス分子(21)との衝突により生成した
プラスマ中のイオン(22)は正電圧が印加きれている
イオン源本体(11)の内壁(lla)と衝突して中性
化することはほとんど無く、引き出し過程で第1、第2
グリッド(17)(18)と衝突して消滅するだけで、
大きなイオンビーム電流を引き出すことが出来る。
In the ion source device as described above, the filament (14)
The ions (22) in the plasma generated by the collision between the heat molecules (20) generated from the gas inlet and the introduced gas molecules (21) incident from the gas inlet tube (13) are transferred to the ion source body (22) to which positive voltage has not been applied. There is almost no possibility of collision with the inner wall (lla) of 11) and neutralization, and the first and second
It just collides with the grid (17) (18) and disappears,
A large ion beam current can be extracted.

第2図は上述のイオン源装置によって得られたイオンビ
ーム電流の測定装置を示す図である。
FIG. 2 is a diagram showing a device for measuring ion beam current obtained by the above-described ion source device.

(23)は真空容器で、該真空容器(23)の内部は排
気系によって8 X 10”丁orrまで排気されてい
る。
(23) is a vacuum vessel, and the inside of the vacuum vessel (23) is evacuated to 8 x 10 inches by an exhaust system.

導入ガスとしてはアルゴンガスを用い、イオン源装置本
体(11)を通してlXl0−4丁orrまで導入した
。そして、このイオン源装置本体(11)からのアルゴ
ンのイオンビーム電流を、該イオン源装置本体(11)
から20Cm離した位置に装着したファラデーカップ(
24)を用いて測定した。
Argon gas was used as the introduced gas, and was introduced up to 1X10-4 orr through the ion source device main body (11). Then, the argon ion beam current from the ion source device main body (11) is transferred to the ion source device main body (11).
Faraday cup (
24).

第3図には上記測定装置を用いて、引き出し電圧Weが
500v、グロー放t t EE Vgが50V(7)
条件で加速電圧Vaを変化させ−Cイオンを流の増減を
測定した結果が示きれている。この図から分かるように
本発明のイオン源装置では従来のイオン源装置に比べて
イオンビーム電流密度が約2倍増感した。
In Figure 3, using the above measuring device, the extraction voltage We is 500V and the glow emission t t EE Vg is 50V (7)
The results of measuring increases and decreases in the flow of -C ions by changing the accelerating voltage Va under various conditions are shown. As can be seen from this figure, the ion source device of the present invention was sensitive to an ion beam current density approximately twice that of the conventional ion source device.

次に、本発明のイオン源装置を月いた磁気テープの製造
方法について第4図を参照しつつ説明する。
Next, a method for manufacturing a magnetic tape using the ion source device of the present invention will be described with reference to FIG.

(25)は真空容器の中央部に配設された円筒状キャン
であり、ポリエチレンテレフタレートフィルム等の基板
(26)は原反ロール(27)より前記円筒状キャン(
25)の周側面に沿って移動し、巻き取りロール(28
)に巻き取られる。この間、前記円筒状キャン(25)
の周側面に沿って移動する基板(26)に対向して真空
容器の下底に配設された蒸発源(29)で強磁性材料が
加熱蒸発きれ、鉄等の蒸気流〈30)が基板(26)に
差し向けられて蒸着が行われる。そして、それと同時に
、本発明のイオン源装置によって窒素イオン(31)を
照射して、前記基板(26)上に鉄と窒化鉄との混合層
を形成する。この方法で形成した鉄・窒化鉄膜は耐食性
が非常に優れ、磁気特性も向上する。
(25) is a cylindrical can disposed in the center of the vacuum container, and a substrate (26) such as a polyethylene terephthalate film is transferred from the cylindrical can (25) to the raw material roll (27).
It moves along the circumferential side of the take-up roll (28).
) is wound up. During this time, the cylindrical can (25)
The ferromagnetic material is heated and evaporated by an evaporation source (29) placed at the bottom of the vacuum container, facing the substrate (26) moving along the circumferential side of the substrate, and a vapor flow of iron etc. (26) for vapor deposition. At the same time, the ion source device of the present invention irradiates nitrogen ions (31) to form a mixed layer of iron and iron nitride on the substrate (26). The iron/iron nitride film formed by this method has excellent corrosion resistance and improved magnetic properties.

尚、ステンレス製のイオン源装置本体(11)に代えて
ガラス体の内壁に導電性の金属膜を蒸着したものでもよ
い。
Note that instead of the stainless steel ion source device body (11), a conductive metal film may be deposited on the inner wall of a glass body.

(ト)  発明の効果 本発明に依れば、イオンビームの電流密度が増加して、
耐食性及び磁気特性が非常に優れた磁気テープ等の磁気
記#1媒体を作成することが出来るイオン源装置を提供
し得る。
(g) Effects of the invention According to the invention, the current density of the ion beam increases,
It is possible to provide an ion source device that can create a magnetic #1 medium such as a magnetic tape that has excellent corrosion resistance and magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のイオン源装置の概略断面図、第2図イ
オンビーム電流の測定を示す概略断面図、第3図はイオ
ンビーム電流密度と加速電圧との関係を示す図、第4図
は本発明のイオン源装置を用いた磁気テープ製造装置を
示す概略断面図である。第5図は従来のイオン源装置の
概略断面図である。
FIG. 1 is a schematic sectional view of the ion source device of the present invention, FIG. 2 is a schematic sectional view showing measurement of ion beam current, FIG. 3 is a diagram showing the relationship between ion beam current density and accelerating voltage, and FIG. 4 1 is a schematic cross-sectional view showing a magnetic tape manufacturing apparatus using the ion source device of the present invention. FIG. 5 is a schematic cross-sectional view of a conventional ion source device.

Claims (1)

【特許請求の範囲】[Claims] (1)ガス導入管を備え、イオン引き出し用の開口部に
第1、第2グリッド電極を備え、内部に前記ガス導入管
より導入したガス分子に衝突する熱電子放出用のフィラ
メントを備えるイオン源装置本体の内壁をアースから電
気的に分離し、該内壁に前記フィラメントに対して正の
加速電圧を印加したことを特徴とするイオン源装置。
(1) Ion source equipped with a gas introduction tube, first and second grid electrodes in the ion extraction opening, and a filament for thermionic emission that collides with gas molecules introduced from the gas introduction tube inside. An ion source device characterized in that an inner wall of the device main body is electrically isolated from ground, and a positive acceleration voltage is applied to the inner wall with respect to the filament.
JP21999386A 1986-09-17 1986-09-17 Ion source device Pending JPS6376233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21999386A JPS6376233A (en) 1986-09-17 1986-09-17 Ion source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21999386A JPS6376233A (en) 1986-09-17 1986-09-17 Ion source device

Publications (1)

Publication Number Publication Date
JPS6376233A true JPS6376233A (en) 1988-04-06

Family

ID=16744244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21999386A Pending JPS6376233A (en) 1986-09-17 1986-09-17 Ion source device

Country Status (1)

Country Link
JP (1) JPS6376233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325846A (en) * 1989-06-20 1991-02-04 Fujitsu Ltd Charge neutralization device in ion beam irradiation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325846A (en) * 1989-06-20 1991-02-04 Fujitsu Ltd Charge neutralization device in ion beam irradiation device

Similar Documents

Publication Publication Date Title
JP5160730B2 (en) Beam plasma source
US6416634B1 (en) Method and apparatus for reducing target arcing during sputter deposition
US4389299A (en) Sputtering device
GB2095029A (en) Evaporation of an evaporant in vacuum
US3616452A (en) Production of deposits by cathode sputtering
US4716340A (en) Pre-ionization aided sputter gun
US3390249A (en) Vaporization monitoring apparatus
JP3345009B2 (en) Method for ionizing material vapor produced by heating and apparatus for performing the method
JP4078084B2 (en) Ionized film forming method and apparatus
JPS6376233A (en) Ion source device
Matl et al. Ion-assisted deposition with a new plasma source
JPH01108374A (en) Cathodic sputtering apparatus
JPH07258832A (en) Electron gun for vacuum deposition device and vacuum deposition device having the same
JP2849771B2 (en) Sputter type ion source
JP3510174B2 (en) Ion generator and film forming device
JPH08102278A (en) Device and method for generating ion beam
JP3401365B2 (en) Plasma generator and ion plating device
JP3032380B2 (en) Plasma electron gun
JP4544949B2 (en) Surface inspection method and apparatus
JP3788632B2 (en) Continuous ion plating equipment
KR960030348A (en) Multi-cathode Electron Beam Plasma Etching Equipment
JPH0261130B2 (en)
JPH02159375A (en) Ion beam sputtering device
JPH043056B2 (en)
JP2973706B2 (en) Ion beam irradiation equipment