JPS6376119A - Optical pickup - Google Patents

Optical pickup

Info

Publication number
JPS6376119A
JPS6376119A JP61219370A JP21937086A JPS6376119A JP S6376119 A JPS6376119 A JP S6376119A JP 61219370 A JP61219370 A JP 61219370A JP 21937086 A JP21937086 A JP 21937086A JP S6376119 A JPS6376119 A JP S6376119A
Authority
JP
Japan
Prior art keywords
grating
diffraction grating
optical
light source
reflection type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61219370A
Other languages
Japanese (ja)
Inventor
Kunikazu Onishi
邦一 大西
Akira Arimoto
昭 有本
Masayuki Inoue
雅之 井上
Yukio Fukui
幸夫 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61219370A priority Critical patent/JPS6376119A/en
Publication of JPS6376119A publication Critical patent/JPS6376119A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to reduce the tracking offset by using a reflection type diffraction grating having grating slots of unequal interval curve formed with a recess and a projection of a specific grating slit. CONSTITUTION:The + or - 1st-order diffracted light beams 4b, 4c separated by the reflection type diffraction grating 3 are regarded respectively as divergent luminous flux radiating a light given in an imaginary way. Moreover, the grating slot is provided at a position where the nearly middle part of the recess or projection of the grating slot is placed at a position with either a right stripe or a dark stripe of the interference stripe generated when the light beam from the virtual light source of the diffracted light of either the + 1st-order light 4b or the - 1st-order order diffracted light 4c and the actual incident light beam 2 made incident in the reflection type diffraction grating 3 and radiated from the laser light source 1 are overlapped in a coherent way. Furthermore, the grating slot pattern is formed as unequal interval curves. Thus, in the detection of tracking error by a 3-beam system, the tracking offset caused due to the positional deviation of the light spot of the + or - 1st-order diffracted light in the radial direction of the optical disk is reduced remarkably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、3ビ一ム方式のトラッキング誤差検出をおこ
なう光ピツクアップに係り、特にその光学的な構成の簡
略化に好適な光学系の構成に関する0 〔従来の技術〕 従来、3ビ一ム方式によるトラッキング誤差検出手段と
しては、例えば特開昭57−205833  号公報に
示されるように、半導体レーザ光源およびビームスプリ
ッタ間の光路中に等間隔でかつ直線状のパターンの位相
溝を持つ位相型回折格子を光軸に対して垂直に配置する
ものが知られている0この方法は簡単な光学系で3ビ一
ム方式のトラッキング誤差検出を行なう事ができる反面
、光学的情報記録媒体(以下光ディスクと記す。)に入
射する光ビームと光ディスクからの反射光ビームを分!
17るためのビームスプリッタおよび入射光を分離して
3本の光ビームを発生させるための回折格子という特別
な光学部品を2点必要とするという問題があった。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical pickup that performs tracking error detection using a 3-beam system, and particularly relates to an optical system configuration suitable for simplifying the optical configuration thereof. [Prior Art] Conventionally, as a tracking error detection means using a 3-beam system, as shown in Japanese Patent Application Laid-open No. 57-205833, a method for detecting tracking error using a three-beam system has been proposed, for example, as shown in Japanese Unexamined Patent Publication No. 57-205833. It is known that a phase-type diffraction grating with a large linear pattern of phase grooves is arranged perpendicular to the optical axis. This method uses a simple optical system to detect tracking errors using a 3-beam system. On the other hand, it is possible to separate the light beam incident on an optical information recording medium (hereinafter referred to as an optical disk) from the light beam reflected from the optical disk!
There was a problem in that two special optical components were required: a beam splitter to separate the incident light and a diffraction grating to separate the incident light and generate three light beams.

これに対して、反射型回折格子の格子溝の部分にビーム
スプリンタ膜な設けて回折格子とビームスプリッタを一
体化した光学素子を用い、光学部品点数を削減した光ピ
ツクアップについて、本発明者らは検討をすすめている
In contrast, the present inventors have developed an optical pickup that reduces the number of optical components by using an optical element that integrates a diffraction grating and a beam splitter by providing a beam splitter film on the grating grooves of a reflective diffraction grating. We are recommending consideration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このようなビームスプリッタと回折格子を一
体化した光学素子を用いる場合、その位相溝が設けられ
る面は光軸に対して傾斜して配置されるため、従来の光
ピツクアップで用いられている回折格子のような、等間
隔直線状の格子溝のパターン2持つ反射型回折格子では
、その反射型回折格子によって分離される±1次回折光
に著しく大きな波面収差が発生し、かつ光スポットの照
射位置に位置ずれが生じるため、光デイスク上に±1次
回折光の光スポットを正しく照射させることができない
。したがって、ビームスプリッタと回折格子を一体化し
た光ピンクアップを実用化するためには、発生する波面
収差および光スポットの照射位置ずれの影響ご実用上問
題ない程度まで低減できるような格子溝のパターンをも
つ反射型回折格子が新たに必要となる。
By the way, when using such an optical element that integrates a beam splitter and a diffraction grating, the plane on which the phase groove is provided is arranged at an angle with respect to the optical axis. In a reflection type diffraction grating, such as a diffraction grating, which has a pattern 2 of equally spaced linear grating grooves, a significantly large wavefront aberration occurs in the ±1st-order diffracted light separated by the reflection type diffraction grating, and the irradiation of the light spot Since a positional shift occurs, it is not possible to correctly irradiate the light spot of the ±1st-order diffracted light onto the optical disk. Therefore, in order to put into practical use optical pink-up that integrates a beam splitter and a diffraction grating, it is necessary to create a pattern of grating grooves that can reduce the effects of wavefront aberration and deviation of the irradiation position of the optical spot to a level that does not cause any practical problems. A new reflection-type diffraction grating is required.

本発明の目的は上記したような波面収差および光スポッ
トの位置ずれ改善した反射型回折格子および光ピツクア
ップを提供することにある。
An object of the present invention is to provide a reflection type diffraction grating and an optical pickup in which wavefront aberration and positional deviation of a light spot are improved as described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、反射型回折格子の格子溝パターン2後述す
るような不等間隔曲線状にし、かつこの反射型回折格子
に入射する光ビームのうち、少なくともその光軸上を進
行する光ビームが入射する部分の格子溝の並びの方向念
入射光軸と反射型回折格子が設けらちでいる面に立てた
法線を共に含む面に略平行にし、この反射型回折格子に
よって分離される0次および±1次回折光の伝播の方向
ご前述の光軸および法We共に含む面に対して略平行に
する事によって達成される。
The above purpose is to form the grating groove pattern 2 of the reflective diffraction grating into a non-uniformly spaced curved shape as described later, and at least the light beam traveling on the optical axis of the light beams incident on the reflective diffraction grating. The direction of the arrangement of the grating grooves in the part where the reflection type diffraction grating is arranged is approximately parallel to the plane that includes both the incident optical axis and the normal to the plane on which the reflection type diffraction grating is provided. This is achieved by making the direction of propagation of the ±1st-order diffracted light substantially parallel to the plane that includes both the optical axis and the modulus We.

〔作用〕[Effect]

反射型回折格子ご光軸に対して傾斜して配置した場合、
その格子溝パターンご後述するような不等間隔曲線状の
パターンにすることによって、±1次回折光に発生する
波面収差を大幅に低減することができる。また、±1次
回折光の伝播の方向号前述のように、反射型回折格子へ
の入射光軸と反射型回折格子の格子溝が設けられている
面に立てた法線を共に含む面に対して略平行にすること
によって、光ディスクの接線方向に略々平行に並んで照
射される±1次回折光の光スポットの照射位置ずれの方
向を、各党スポット照射位置の並びの方向Tなわち光デ
イスク接線方向に略一致させることができ、それによっ
て光ディスクの半径方向への光スポットの位置ずれを大
幅に低減させる事ができる。したがって6ビ一ム方式に
よるトラッキング誤差検出を行なう際に±1次回折光の
光スポットの光デイスク半径方向への位置ずれによりて
生じるトラッキングオフセットを大幅に低減することが
できる。
When a reflective diffraction grating is placed at an angle to the optical axis,
By forming the lattice groove pattern into a non-uniformly spaced curved pattern as described later, wavefront aberration occurring in the ±1st-order diffracted light can be significantly reduced. In addition, the direction of propagation of the ±1st-order diffraction light is, as mentioned above, relative to the plane that includes both the optical axis of incidence on the reflective diffraction grating and the normal to the surface on which the grating grooves of the reflective diffraction grating are provided. By making the optical disc substantially parallel to the tangential direction of the optical disc, the direction of the deviation of the irradiation position of the optical spots of the ±1st-order diffracted light, which is irradiated in parallel with the tangential direction of the optical disc, is adjusted to the direction T of the arrangement of the irradiation positions of each party spot, that is, the optical disc. They can be made to substantially coincide in the tangential direction, thereby making it possible to significantly reduce the positional deviation of the light spot in the radial direction of the optical disc. Therefore, when performing tracking error detection using the 6-beam method, it is possible to significantly reduce tracking offset caused by positional deviation of the optical spot of the ±1st-order diffracted light in the radial direction of the optical disk.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する0 第1図は、本発明の光ピツクアップの一例ごしめした正
面図である。半導体レーザ光源1分発した発散光ビーム
2は、反射型回折格子6に入射する。この反射型回折格
子3は、入射光ビーム2の光軸(2軸)に対して傾斜す
るように配置されている。なお、第1図ではこの傾斜角
度は約45°である。また、この反射型回折格子3は、
その内部に凹凸型の格子溝3bを設け、さらにその上部
にビームスプリッタ膜己Cを形成している。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 1. FIG. 1 is a front view of an example of the optical pickup of the present invention. A diverging light beam 2 emitted from a semiconductor laser light source for one minute is incident on a reflection type diffraction grating 6. This reflection type diffraction grating 3 is arranged so as to be inclined with respect to the optical axis (two axes) of the incident light beam 2. In addition, in FIG. 1, this inclination angle is approximately 45°. Moreover, this reflection type diffraction grating 3 is
A concavo-convex grating groove 3b is provided inside the grating groove 3b, and a beam splitter film C is formed above the grating groove 3b.

反射型回折格子3に入射した発散光ビーム2は凹凸型の
ビームスプリッタ膜3Cで反射される際、0次光ビーム
4&%+1次回折光ビーム4b、、−1次回折光ビーム
4Cに分離される。分離された各光ビーム4a、 4b
、 4cは、第1図の光軸(y軸)および反射型回折格
子3の格子溝が設けられている面に平行に設けられたy
軸を共に含む、7−Z平面に略平行な方向に伝播し、対
物レンズ5を経て元ディスク6の記録トラック6&上に
各々別個に集束され、第2図にしめすように、記録トラ
ック6aに沿った方向すなわち光ディスク6の接線方向
に略々平行な一直線上に光スポラ) 7a、 7b、 
7cE形成する。さらに光スポット7a、 7b、 7
cの光ディスク6からの反射光は対物レンズ52逆行し
今度は反射型回折格子3を透過後、凹レンズ8を経て光
検出器9に入射する。光検出器9は例えば第1図中にし
めすように6領域9a、 9b、 9c、 9d、 9
e、 9fに分割される。
When the diverging light beam 2 incident on the reflective diffraction grating 3 is reflected by the uneven beam splitter film 3C, it is separated into a 0th order light beam 4&%+1st order diffracted light beam 4b, . . . -1st order diffracted light beam 4C. Each separated light beam 4a, 4b
, 4c is a y-axis parallel to the optical axis (y-axis) in FIG.
They propagate in a direction substantially parallel to the 7-Z plane, both containing the axis, and are individually focused onto the recording tracks 6& of the original disk 6 through the objective lens 5, and are focused on the recording tracks 6a as shown in FIG. (optical spora) 7a, 7b,
7cE is formed. Furthermore, light spots 7a, 7b, 7
The reflected light from the optical disk 6 shown in FIG. The photodetector 9 has, for example, six areas 9a, 9b, 9c, 9d, 9 as shown in FIG.
e, divided into 9f.

0次光ビームの光スポラ)7aの光ディスク6からの反
射光10&は、領域9a、 9b、 9c、 9dに入
射し、領域9&と9dの出力信号の和と領域9bと90
の出力信号の和との差信号から非点収差方式によって、
光スポラ)78の焦点位Wt誤差信号が検出される。
The reflected light 10& from the optical disk 6 of the 0th-order light beam (optical spora) 7a enters the areas 9a, 9b, 9c, and 9d, and the sum of the output signals of the areas 9& and 9d and the areas 9b and 90
By the astigmatism method, from the difference signal between the sum of the output signals of
A focal position Wt error signal of the optical spoiler) 78 is detected.

また残りの2領域9e、 9fには各々±1次回折光4
a。
In addition, the remaining two regions 9e and 9f each contain ±1st-order diffracted light 4.
a.

4bの光スポラ)7b、7cの光ディスク6からの反射
光10b、 10cが別個に入射し、面領域の差信号か
ら光スポラ)7aのトラッキング誤差信号が検出される
。このようなトラッキング誤差検出手段は一般に3ビ一
ム方式と呼ばれている。なお光ディスク6に記録されて
いる情報信号は、例えば光検出器9の各領域9a、 9
b、 9c、 9dの出力信号の和から検出される。
The reflected lights 10b and 10c from the optical disks 6 of the optical spoilers 7b and 7c enter separately, and the tracking error signal of the optical spoiler 7a is detected from the difference signal of the surface areas. Such a tracking error detection means is generally called a 3-beam system. Note that the information signal recorded on the optical disc 6 is transmitted to each area 9a, 9 of the photodetector 9, for example.
It is detected from the sum of the output signals of b, 9c, and 9d.

ところで、第1図の実施例にしめすように、反射型回折
格子33光軸に対して傾斜して配置する場合、前述した
ように、従来の等間隔直線状の格子溝パターンを持った
回折格子では、±1次回折光に1/2波長波長波1波長
程 rms値)もの大きな波長収差が発生し、光スポラ
)7b、7cを回折限界程度まで絞り込む事ができなく
なってしまう。
By the way, when the reflective diffraction grating 33 is arranged obliquely with respect to the optical axis as shown in the embodiment of FIG. In this case, a large wavelength aberration of about 1/2 wavelength (rms value) occurs in the ±1st-order diffracted light, making it impossible to narrow down the optical spora (7b, 7c) to about the diffraction limit.

このような波面収差を低減する対策として、本発明では
、以下にしめすような不等間隔曲線状の格子溝パターン
を持つ反射型回折格子を考案した。
As a measure to reduce such wavefront aberration, the present invention has devised a reflection type diffraction grating having a grating groove pattern of unevenly spaced curves as shown below.

以下、本発明の格子溝パターンの一実施例について述べ
る。この格子溝パターンは、反射型回折格子3によって
分離される±1次回折光4b、 da f各々仮想的に
設定した光源を発する発数光束と見なし、+1次回折光
4b、−1次回折光4Cのいずれか一方の回折光の仮想
光源からの光ビームと、レーザ光源1を発し、反射型回
折格子3に入射する実際の入射光ビーム2を反射型回折
光子5上でコヒーレントに重ね合わせた場合に発生する
干渉縞の明縞または暗線どちらか一方の縞が表われる位
置に格子溝の凹部または凸部の略中央部が位置するよう
に格子溝を設ける事によって得られる。
An embodiment of the lattice groove pattern of the present invention will be described below. This grating groove pattern is regarded as a luminous flux emitted from a virtually set light source, respectively, and the ±1st-order diffracted light 4b and da f separated by the reflection type diffraction grating 3 are divided into the +1st-order diffracted light 4b and the -1st-order diffracted light 4C. This occurs when the light beam from the virtual light source of one of the diffracted lights and the actual incident light beam 2 emitted by the laser light source 1 and incident on the reflective diffraction grating 3 are coherently superimposed on the reflective diffraction photon 5. This can be obtained by providing the grating grooves so that the approximate center of the concave or convex portions of the grating grooves is located at the position where either the bright or dark interference fringes appear.

第3図は、本実施例の格子溝/<ターンの作成原理を説
明するための正面図および平面図である。
FIG. 3 is a front view and a plan view for explaining the principle of creating lattice grooves/<turns of this embodiment.

本実施例の格子溝パターンは、第3図にしめすように、
反射型回折格子3の格子溝が設けられる面上の点Pとレ
ーザ光源1までの光学的距離R,,−1次回折光40?
発する仮想的な光源1Cと点2間の光学的距離をRoと
すると、 Ro  Rγ=m、λ □(1) ただし、λはレーザ光の波長、1は任意の整数。
The lattice groove pattern of this example is as shown in Fig. 3.
The optical distance R between the point P on the surface where the grating grooves of the reflective diffraction grating 3 are provided and the laser light source 1, -1st order diffracted light 40?
If the optical distance between the emitting virtual light source 1C and the point 2 is Ro, Ro Rγ=m, λ □ (1) where λ is the wavelength of the laser beam, and 1 is an arbitrary integer.

(1)式の関係を満たす点Pの位置に格子溝の凹部また
は凸部のどちらか一方を設ける。第4図に、上記の関係
式?満たす位置に格子溝を設けた格子溝パターンの一例
をしめす。第4図で黒線11は、格子溝の凸部または凹
部の略中央部が通る軌跡をしめす。第4図で明らかなよ
うに、(り式で得られる格子溝パターンは不等間隔曲線
状になっている。
Either a concave portion or a convex portion of the lattice groove is provided at the position of the point P that satisfies the relationship of equation (1). Figure 4 shows the above relational expression? An example of a lattice groove pattern in which lattice grooves are provided at filling positions is shown. In FIG. 4, a black line 11 indicates a locus along which a substantially central portion of a convex portion or a concave portion of the lattice groove passes. As is clear from FIG. 4, the lattice groove pattern obtained by the formula (2) has an unevenly spaced curved pattern.

(以下このような不等間隔曲線状の格子号簡単のため、
曲線格子と記す。) なお、実際の反射型回折格子3は、第5図(a)のよう
に、(1)式の関係2満たす座標(z、y)の位置Pに
略矩型状の格子溝断面の凹部の略中央部3b−1が位置
するかもしくは、第5図(b)のように、格子溝断面の
凸部の略中央部3b−2が位置するように、得られる干
渉縞に沿って、格子溝3bを設ける。また第5図(C)
 (d)にしめすように、格子溝の断面形状を略正弦波
状の形状にしてもよいし、第5図(、)にしめすように
、略三角波状にしてもよい。
(Hereinafter, to simplify the lattice number of such unevenly spaced curves,
It is written as a curved lattice. ) Note that, as shown in FIG. 5(a), the actual reflection type diffraction grating 3 has a recess with a substantially rectangular grating groove cross section at the position P of the coordinates (z, y) that satisfy the relationship 2 of equation (1). Along the obtained interference fringes, so that the approximately central portion 3b-1 of the lattice groove is located, or the approximately central portion 3b-2 of the convex portion of the grating groove cross section is located as shown in FIG. A lattice groove 3b is provided. Also, Figure 5 (C)
The cross-sectional shape of the grating grooves may be approximately sinusoidal as shown in FIG. 5(d), or approximately triangular as shown in FIG. 5(,).

また、前述の(1)式で述べた作成原理と同様+1次回
折光4bの仮想光源1bからの光ビームとレーザ光源1
からの光ビーム2を重ね合わせて得られる干渉縞に沿っ
て格子溝を設けても、前述の曲i格子と同様の性能なも
つ曲線格子が得られる。
Also, similar to the creation principle described in equation (1) above, the light beam from the virtual light source 1b of the +1st order diffracted light 4b and the laser light source 1
Even if grating grooves are provided along the interference fringes obtained by superimposing the light beams 2 from the curved i-grating, a curved grating having the same performance as the curved i-grating described above can be obtained.

さらに、以上の実施例では、仮想光源1b、1cの位置
2反射型回折格子3上での±1次回折光4b。
Furthermore, in the above embodiment, the ±1st-order diffracted light 4b on the position 2 reflection type diffraction grating 3 of the virtual light sources 1b and 1c.

4cの位相分布と全く同一の位相分布企もつような発散
光2発する光源の位置に正確に合わせているが、これに
限定されるものではなく、この光源の位置の近傍内の適
当に離れた位置に仮想光源1b。
It is precisely aligned with the position of a light source that emits two diverging lights that have exactly the same phase distribution as the phase distribution of 4c, but it is not limited to this. Virtual light source 1b at the position.

1Cを想定して、格子溝パターンご作成してもよい。A lattice groove pattern may be created assuming 1C.

以上の様にして得られる曲線格子ご第1[4の反射型回
折格子3として用いる事によって、従来の等間隔直線状
の格子溝Bもつ回折格子を用いた場合に比べて、±1次
回折光4b、4cに発生する波面収差を大幅に低減する
ことができる。第6図は、第4図にしめしたような格子
溝パターンをもつ曲線格子を第1図の反射型回折格子6
として用いた場合に、レーザ光源1の位置ずれ量(第1
図のX方向)と、±1次回折光4b、4cの各々に発生
する波面収差(rm8値)の関係をしめした図である0
第6図から明らかなように、前述したような曲線格子を
用いる事によって・レーザ光源が理想位置から、±0.
5m程度ずれても±1次回折光4b、4cの波面収差を
1 、/’20波長程度(rms値)以下にすることが
でき、光デイスク6上の光スボツ) 7b、 7cを実
用上問題ない程度まで絞り込むことが可能となる。
By using the curved grating obtained as described above as the reflection type diffraction grating 3 of No. 1 [4], the ±1st-order diffracted light Wavefront aberrations occurring at 4b and 4c can be significantly reduced. FIG. 6 shows a curved grating having a grating groove pattern as shown in FIG.
When used as
X direction in the figure) and the wavefront aberration (rm8 value) generated in each of the ±1st-order diffracted lights 4b and 4c.
As is clear from FIG. 6, by using the curved grating as described above, the laser light source can be moved from the ideal position to within ±0.
Even if there is a deviation of about 5 m, the wavefront aberration of the ±1st-order diffracted beams 4b and 4c can be reduced to about 1,/'20 wavelength (rms value) or less, and there is no practical problem with the optical slots 7b and 7c on the optical disk 6. It becomes possible to narrow down the results to a certain degree.

一方このような曲線格子を反射型回折格子3として用い
た場合、光デイスク上に照射される±1次回折光4b、
4cの光スボッ)7bもしくは7Cに照射位置に位置ず
れが生じる。第7図は、第6図同様第4図にしめしたよ
うな格子溝パターンをもつ曲線格子を用いた場合に、レ
ーザ光源1の位置ずれ量と±1次回折光4b、4cの光
スボツ)7b、7cの理想位置からの位置ずれ量の関係
をしめしたものである。なお第7図の横軸は、レーザ光
源1のX軸方向に関する光源の位置ずれ量をしめし、縦
軸は第1図の反射型回折格子3上に設けたy軸を対物レ
ンズ5によって光学的に光デイスク6上に投影した時に
得られるi軸方向に関する光スボッ)7a、7bの位置
ずれ量をしめす。
On the other hand, when such a curved grating is used as the reflection type diffraction grating 3, the ±1st-order diffraction light 4b irradiated onto the optical disk,
A positional shift occurs in the irradiation position on the light spot 4c) 7b or 7C. FIG. 7 shows the amount of positional deviation of the laser light source 1 and the optical slots of the ±1st-order diffracted lights 4b and 4c when a curved grating with a grating groove pattern as shown in FIG. 4 is used as in FIG. 6. , 7c shows the relationship between the amount of positional deviation from the ideal position. The horizontal axis in FIG. 7 shows the amount of positional deviation of the laser light source 1 in the X-axis direction, and the vertical axis shows the amount of positional deviation of the laser light source 1 in the X-axis direction. The amount of positional deviation of the optical stubs 7a and 7b in the i-axis direction obtained when the images are projected onto the optical disk 6 is shown.

第7図にしめすように、レーザ光源1に位置ずれがある
場合、光スボッ)7a、7bは、互いに反対の向きに、
はぼ同じ距離だけ照射位置が移動する。
As shown in FIG. 7, when the laser light source 1 is misaligned, the optical switches 7a and 7b are moved in opposite directions.
The irradiation position moves by approximately the same distance.

しかし、その一方し−ザ元源1が位置ずれしていない場
合でも光スボッ)7bに0.6μm程度の位置ずれが生
じてしまう。
However, on the other hand, even if the source 1 is not misaligned, a misalignment of about 0.6 .mu.m will occur in the optical stub 7b.

なお、このような光スボッ)7bの位置ずれは、第3図
および(1)式でしめした実施例のように一1次回折光
4Cの仮想光源1Cから発する光ビームとレーザ光源1
から発する光ビームを重ね合わせた際にあられれる干渉
縞に沿って格子溝を設けた曲線格子を用いた場合に発生
するもので、曲線格子が+1次回折光4bの仮想光源か
らの光ビームとレーザ光源1からの光ビームとの干渉縞
に沿って格子溝を設けた格子である場合は、逆に光スポ
ット7Cに位置ずれが生じる。
Incidentally, such a positional shift of the optical switch 7b is caused by the difference between the light beam emitted from the virtual light source 1C of the first-order diffracted light 4C and the laser light source 1, as shown in the example shown in FIG. 3 and equation (1).
This occurs when a curved grating is used that has grating grooves along the interference fringes that appear when light beams emitted from In the case of a grating in which grating grooves are provided along interference fringes with the light beam from the light source 1, on the contrary, a positional shift occurs in the light spot 7C.

このように、±1次回折光の光スボッ) 7b、 7c
のうち、一方の光スポットにのみ位置ずれが発生したり
、両党スポットの位置ずれの絶対量が異なる場合、(以
下このような位置ずれご非対称な位置すれと記す。)そ
の位置ずれの方向が光ディスク6の記録トラック6&の
方向に垂直すなわち光ディスク6の半径方向になってい
ると、第8図のように、光スボッ) 7a、 7b、 
7cが記録トラック6aに略々平行な一直線上に並ばず
、光デイスク半径方向に関して相対的な位置ずれが生じ
る。このため6ビ一ム方式によるトラッキング誤差信号
に著しいオフセットが生じてしまう。このような光スポ
ットの非対称な位置ずれが発生する方向は、格子溝パタ
ーンに関係なく、反射型回折格子3に入射する光ビーム
2の光軸(Z軸)と反射型回折格子の格子溝が設けられ
ている面に立てた法線を共に含む面と格子溝が設けられ
ている面との交線すなわち第1図のy軸を対物レンズ5
によって光学的に光デイスク6上に投影したi軸の方向
にのみ限られる。
In this way, the light beams of the ±1st-order diffracted light (7b, 7c)
If a positional deviation occurs in only one of the optical spots, or if the absolute amount of positional deviation of both spots is different (hereinafter referred to as an asymmetric positional deviation), the direction of the positional deviation will be determined. If it is perpendicular to the direction of the recording track 6& of the optical disc 6, that is, in the radial direction of the optical disc 6, as shown in FIG.
7c are not lined up in a straight line substantially parallel to the recording track 6a, resulting in a relative positional shift in the radial direction of the optical disk. For this reason, a significant offset occurs in the tracking error signal by the 6-beam system. Regardless of the grating groove pattern, the direction in which such an asymmetric positional shift of the light spot occurs is determined by the relationship between the optical axis (Z axis) of the light beam 2 incident on the reflection grating 3 and the grating grooves of the reflection grating. The intersection line between the surface including the normal to the surface on which the grating grooves are provided, that is, the y-axis in FIG. 1, is the objective lens 5.
is limited only to the direction of the i-axis optically projected onto the optical disk 6.

そこで、前述したような光スボッ)7bもしくは7Cの
光ディスク6の半径方向への位置ずれおよびその位置ず
れに併うトラッキングオフセットを低減するために反射
型回折格子3によって分離される0次および±1次回折
光4a、 4b、 4cの伝播する方向が先程述べたよ
うな、入射光ビーム2の光軸と反射型回折格子3に立て
た法線を共に含む平面すなわち第1図の?−Z平面に略
平行になるように格子溝パターンの方向を定める。
Therefore, in order to reduce the positional deviation in the radial direction of the optical disc 6 of the optical disk 7b or 7C as described above and the tracking offset associated with the positional deviation, the 0th order and ±1st order are separated by the reflection type diffraction grating 3. The direction of propagation of the diffracted beams 4a, 4b, and 4c is a plane that includes both the optical axis of the incident light beam 2 and the normal line to the reflective diffraction grating 3, as mentioned earlier, that is, the plane shown in FIG. - Orient the grating groove pattern so that it is approximately parallel to the Z plane.

なお、0次および±1次回折光4a、 4b、 4cの
伝播の方向を7−Z平面に略平行な方向にするためには
、第4図の例でしめすように反射型回折格子3に入射す
る光ビーム2のうち少なくともその光軸付近の光ビーム
が入射する部分の格子溝3bの並びの方向を第1図のy
−Z平面に平行な方向すなわちy軸方向に略一致するよ
うに、格子溝パターンの向きを定めればよい。
Note that in order to make the propagation direction of the 0th-order and ±1st-order diffraction lights 4a, 4b, and 4c approximately parallel to the 7-Z plane, the diffraction gratings 3 must be incident on the reflection type diffraction grating 3 as shown in the example of FIG. The direction in which the grating grooves 3b are arranged in the portion of the light beam 2 that is incident at least near the optical axis is y in FIG.
The grating groove pattern may be oriented so as to substantially coincide with the direction parallel to the -Z plane, that is, the y-axis direction.

すなわち、(1)式に従って、格子溝パターンを作成す
る際、仮想光源の位置を第3図の実施例のように1.−
2平面内に想定して(1)式を計算すればよい。
That is, when creating a grating groove pattern according to equation (1), the position of the virtual light source is set to 1. as in the embodiment shown in FIG. −
Equation (1) can be calculated assuming two planes.

以上の説明は、光スポットの非対称な位置ずれが生じる
i一方向に限ったが、もちろん光スポットの位置ずれは
、i軸以外の方向にも生じるOしかし、i軸方向以外の
方向は、いずれも例えば第10図にしめすように、レー
ザ光源1に位置ずれがない場合は、光スボッ) 7b、
 7cの位置ずれもほとんど無く、またレーザ光源1に
位置ずれがある場合は、光スボッ)7b、7cは互いに
逆向きにほぼ同一の距離だけ移動する。したがって、も
しレーザ光源1に位置ずれがある場合でも、第11図に
しめすように、光スポット7a、 7b、 7cの照射
位置の直線性は常に保たれている。このため、光ビック
アンプ全体を光軸のまわりに回転させる等の手法によっ
て容易に光スポットの位置ずれを補正することができる
The above explanation was limited to the i direction in which the asymmetric positional deviation of the light spot occurs, but of course the positional deviation of the light spot also occurs in directions other than the i-axis.However, in any direction other than the i-axis direction, For example, as shown in FIG. 10, if there is no positional shift in the laser light source 1, the light beam will be blocked) 7b,
There is almost no positional deviation of 7c, and if there is a positional deviation of the laser light source 1, the optical switches 7b and 7c move in opposite directions by approximately the same distance. Therefore, even if there is a positional shift in the laser light source 1, the linearity of the irradiation positions of the light spots 7a, 7b, and 7c is always maintained, as shown in FIG. Therefore, the positional deviation of the optical spot can be easily corrected by a technique such as rotating the entire optical big amplifier around the optical axis.

このようにすると、対物レンズ5によって光デイスク6
上に照射される光スボッ) 7a 7b、 7cはほぼ
第1図のi軸に平行な一直線上に並ぶ。また3ビ一ム方
式でトラッキング誤差信号を検出する場合、光スボッ)
 7&、 7b、 7cの照射位置は光ディスク6の記
録トラック6aに対して略々平行な直線上になるように
1配置するので、結局上記のように光スボッ) 7a、
 7b、 7oをほぼi軸に略平行な一直線上に並べる
ことによって、第9図のように光スボツ)7b、7aの
非対称な位置ずれが生じるi軸の方向ご光ディスク乙の
記録トラック方向すなわち光ディスク乙の接線方向に略
々一致させることができる。したがって光スボッ) 7
b、 7cの半径方向の照射位置ずれを大幅に低減でき
りそれに併りてトラッキングオフセットも大幅に低減す
ることができる0 なお前述の光スボッ)7−oもしくは70の非対称な位
置ずれは、当然光ディスク6からの反射光10b。
In this way, the objective lens 5 allows the optical disk 6 to be
The light beams 7a, 7b, and 7c irradiated above are aligned approximately in a straight line parallel to the i-axis in FIG. In addition, when detecting tracking error signals using the 3-beam method, optical
Since the irradiation positions of 7&, 7b, and 7c are arranged on a straight line approximately parallel to the recording track 6a of the optical disc 6, the light beams 7a,
By arranging 7b and 7o in a straight line substantially parallel to the i-axis, an asymmetrical positional shift of the optical slots 7b and 7a occurs as shown in Figure 9. It can be made to roughly match the tangential direction of B. Therefore, Hikari Suboc) 7
It is possible to significantly reduce the irradiation position deviation in the radial direction of b and 7c, and at the same time, the tracking offset can also be greatly reduced. Reflected light 10b from the optical disc 6.

10cにも影響し、反射光iobもしくは10cが、光
検出器9の領域9θ、9fに対して相対的にずれて照射
される。しかしそのような位置ずれ量も見込んで、例え
ば第12図にしめすように、光スポット10bもしくは
10cが位置ずれをおこしても、それぞれ常に領域9θ
、9fの各々にのみ入射するように9e。
10c is also affected, and the reflected light iob or 10c is irradiated with a relative shift to the regions 9θ and 9f of the photodetector 9. However, taking into account such a positional deviation amount, as shown in FIG.
, 9e so as to be incident only on each of 9f.

9fの受光面を広くとっておけばrJJ題は生じない。If the light receiving surface of 9f is made wide, the rJJ problem will not occur.

次に、第13図は、本発明の曲線格子の他の一実施例?
しめすもので、その作成原理ご説明するための正面図お
よび平面図である。本実施例は、第6図にしめしたよう
な反射型回折格子によって分離される±1次回折光4b
、4cの波面収差が互いに異なる点を改養するために、
+1次回折光4bの仮想光源1bからの光ビームとレー
ザ光源1からの光ビームとの干渉縞および一1次回折光
4Cの仮想光源1cからの光ビームとレーザ光源1から
の光ビームとの干渉縞のそれぞれの干渉縞があられれる
位置の平均の位置に格子溝の凹部もしくは、凸部を設け
たものである。すなわち、反射型回折格子乙の格子が設
けられる面上の点Pとレーザ光源1までの光学的距離を
Rγ、+1次回折光4bの仮想光源1bと点2間の光学
的距離ERG、−1次回折光4Cの仮想光源1Cと点2
間の光学的距離’2Roとすると= (R,−ゴ。’)
 /2 =m、λ □(2)ただし、λはレーザ光の波
長、mは任意の整数、(2)式の関係をみたす点Pの位
置に格子溝の凹部または凸部を設ける。
Next, FIG. 13 shows another embodiment of the curved grating of the present invention.
It is a front view and a plan view for explaining the principle of its creation. In this embodiment, ±1st-order diffracted light 4b is separated by a reflection type diffraction grating as shown in FIG.
, 4c, in order to improve the point that the wavefront aberrations are different from each other,
Interference fringes between the +1st order diffracted light 4b of the light beam from the virtual light source 1b and the light beam from the laser light source 1, and interference fringes of the 1st order diffracted light 4C of the light beam from the virtual light source 1c and the light beam from the laser light source 1 A concave or convex portion of the grating groove is provided at the average position of the respective interference fringes. That is, the optical distance between the point P on the surface where the grating of the reflective diffraction grating B is provided and the laser light source 1 is Rγ, the optical distance ERG between the virtual light source 1b of the +1st order diffracted light 4b and the point 2, and the −1st order Virtual light source 1C and point 2 of folded light 4C
If the optical distance between them is '2Ro = (R, - Go.')
/2 = m, λ □ (2) where λ is the wavelength of the laser beam, m is an arbitrary integer, and a concave or convex portion of the grating groove is provided at a point P that satisfies the relationship of equation (2).

第14図に(2)式ご計算して得られた曲線格子ご第1
図の反射型回折格子3として用いた場合のレーザ光源の
位置ずれ量(X軸方向)と±1次回折光4b、4cに発
生する波面収差量(rms値)の関係の一例Bしめす。
Figure 14 shows the first curved grid obtained by calculating equation (2).
An example B of the relationship between the amount of positional deviation (in the X-axis direction) of the laser light source and the amount of wavefront aberration (rms value) generated in the ±1st-order diffraction lights 4b and 4c when used as the reflection type diffraction grating 3 shown in the figure is shown.

第14図から明らがなように(2)式の関係式から作成
した曲線格子を用いた場合は(1)式の関係式から作成
した曲線格子を用いた場合と異なり、発生する波面収差
+1次回折光4b、 −1次回折光4Cとも同一の値と
なり、その絶対量も若干低くなる。
As is clear from Fig. 14, when using the curved grating created from the relational expression (2), wavefront aberration occurs, unlike when using the curved grating created from the relational expression (1). Both the +1st-order diffracted light 4b and the -1st-order diffracted light 4C have the same value, and their absolute amounts are also slightly lower.

第15図は、(2)式の関係式から作成した曲線格子を
用いた場合の光スポットの位置ずれのようすをしめした
図で、図の縦軸、横軸は第7図と同一である。第15図
から明らかなように、(2)式から作成した曲線格子を
用いるとレーザ光源1に位置ずれかない場合でも、+1
次回折光4bの光スポツト7飄−1次回折光4Cの光ス
ボノ)7cが同一の向きに同一の距離(約0.2μm程
度)だけ位置ずれが生じる。
Figure 15 is a diagram showing how the position of the light spot shifts when a curved grating created from the relational expression (2) is used, and the vertical and horizontal axes of the diagram are the same as in Figure 7. . As is clear from FIG. 15, when the curved grating created from equation (2) is used, even when there is no positional shift in the laser light source 1, +1
The optical spot 7c of the second-order diffracted light 4b and the optical spot 7c of the first-order diffracted light 4C are shifted in the same direction by the same distance (about 0.2 μm).

このような場合も、その位置ずれの方向を光ディスク乙
の半径方向に合わせた場合は、第1の実施例の場合同様
トラッキングオフセットが増大する。
In this case as well, if the direction of the positional shift is aligned with the radial direction of the optical disc B, the tracking offset will increase as in the case of the first embodiment.

したがって、第1の実施例と全く同様に0次および±1
次回折光4a、 4b、 4cの伝播の方向を第1図の
y−Z平面に略平行にすることによって、第16図のよ
うに、光スボッ)7b、7cの位置ずれの方向を光ディ
スク乙の接線方向に略一致させる事ができトラッキング
オフセットを大幅に低減できる。
Therefore, just like the first embodiment, the 0th order and ±1
By making the direction of propagation of the second-order diffracted lights 4a, 4b, and 4c substantially parallel to the y-Z plane in Fig. 1, the direction of the positional deviation of the optical discs 7b and 7c can be adjusted to the position of the optical disc B, as shown in Fig. 16. It is possible to substantially match them in the tangential direction, and the tracking offset can be significantly reduced.

なお飄以上述べた実施例では、反射型回折格子3の光軸
に対する傾斜角度が45°の場合のみ記したがもちろん
この傾斜角度は0°〜90°の任意の角度でよくその都
度(1)式もしくは(2)式の関係を計算して格子溝パ
ターンを作成すればよい。
In the above-described embodiments, only the case where the angle of inclination of the reflection type diffraction grating 3 with respect to the optical axis is 45 degrees is described, but of course, this angle of inclination may be any angle from 0 to 90 degrees, and (1) The lattice groove pattern may be created by calculating the relationship of the equation or (2).

最後に本発明の反射型回折格子の具体的な構成について
、その−例を第17図3用いて説明する。
Finally, the specific structure of the reflection type diffraction grating of the present invention will be explained with reference to FIG. 17 and an example thereof.

本発明の反射型回折格子6は、光学ガラスもしくは光学
用プラスチックの平行平板からなる基板3aの片面に、
本発明でしめした格子溝パターンに従って凹凸の格子溝
5bf刻み、その上に例えば誘電体膜または金属膜など
で構成されたハーフミラ−a3cを形成してさらにその
上に、基板3&に近い屈折率を有する光学用プラスチッ
ク層、例えば紫外線硬化が可能なアクリル糸面脂層3d
を基板3aに刻まれた格子溝をうめ込むような状態で形
成する事によって作成される。
The reflection type diffraction grating 6 of the present invention has a substrate 3a made of a parallel flat plate of optical glass or optical plastic.
The uneven grating grooves 5bf are carved according to the grating groove pattern shown in the present invention, and a half mirror a3c made of, for example, a dielectric film or a metal film is formed thereon, and a refractive index close to that of the substrate 3& is formed thereon. Optical plastic layer, for example, an acrylic thread surface fat layer 3d that can be cured by ultraviolet rays.
It is created by forming the lattice grooves cut into the substrate 3a in such a manner as to embed them in the lattice grooves.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、光軸に対して傾斜
して配置された反射型回折格子によって分離された±1
次回折光が光デイスク上に形成する各光スポットの波面
収差および光デイスク半径方向への位置すれとそれに併
う6ピ一ム方式のトラッキングオフセットを大幅に低減
することができるので、ビームスプリッタと回折格子を
一体化し、光学部品点数の削減をはかる光ピツクアップ
の実用化に大きな効果がある。
As described above, according to the present invention, ±1
Since the wavefront aberration of each optical spot formed by the next diffracted light on the optical disk, the positional deviation in the optical disk radial direction, and the accompanying tracking offset of the 6-pin system can be significantly reduced, the beam splitter and diffraction This will have a great effect on the practical application of optical pickups that integrate the gratings and reduce the number of optical components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例をしめず正面図、第2図は
、元スポットの照射位置をしめす平面図・第3図、第4
図、第5図は、本発明の第1の実施例の格子溝パターン
の作成原理をしめ丁模式図1および斜視図、第6図、第
7図、第8図、第9図。 第10図、第11図、第12図は1第1図の実施例の格
子溝パターンの特性なしめ丁模式図および平面図、第1
3図は、本発明の第2の実施例の格子溝パターンの作成
原理をしめず模式図、第14図、第15図。 第16図は、第2の実施例の格子溝パターンの特性をし
めず模式図および平面図、第17図は、本実施例の反射
型回折格子の構成例をしめず断面図。 1・・・レーザ光源、    3・・・反射型回折格子
、5・・・対物レンズ、    6・・・光ディスク、
9・・・光検出器。 ど\
Figure 1 is a front view of an embodiment of the present invention, Figure 2 is a plan view showing the irradiation position of the original spot, Figures 3 and 4.
5 shows a schematic diagram 1 and a perspective view, FIG. 6, FIG. 7, FIG. 8, and FIG. 9, which illustrate the principle of creating a lattice groove pattern according to the first embodiment of the present invention. Figures 10, 11, and 12 are a schematic diagram and a plan view showing the characteristics of the lattice groove pattern of the embodiment shown in Figure 1;
3 is a schematic diagram showing the principle of creating a lattice groove pattern according to a second embodiment of the present invention, and FIGS. 14 and 15. FIG. 16 is a schematic diagram and a plan view showing the characteristics of the grating groove pattern of the second embodiment, and FIG. 17 is a sectional view showing an example of the configuration of the reflection type diffraction grating of the present embodiment. DESCRIPTION OF SYMBOLS 1... Laser light source, 3... Reflection type diffraction grating, 5... Objective lens, 6... Optical disk,
9...Photodetector. degree\

Claims (1)

【特許請求の範囲】 1、レーザ光源と該レーザ光源より発した発散光ビーム
を集束して、光学式情報記録媒体に照射する対物レンズ
を設け、かつ前記レーザ光源と前記対物レンズ間の光路
中に凹凸の格子溝を設けた反射型回折格子を光軸に対し
て傾斜して配置し、該反射型回折格子によって前記レー
ザ光源より発した発散光ビームを反射させ、かつ該発散
光ビームを0次および±1次回折光ビームに分離して、
該各々の回折光ビームを前記対物レンズに導くように構
成された光ピックアップにおいて、前記反射型回折格子
は、前記光源および前記光源から所定の距離だけ離れた
位置に設けた第2の光源の各々から発した互いにコヒー
レントな光ビームを前記反射型回折格子上で重ね合わせ
た場合に発生する干渉縞の明縞または暗縞のどちらか一
方の縞の位置に格子溝の凹部もしくは凸部断面の略中央
部が位置するように格子溝の凹部および凸部を設ける事
によって形成される不等間隔曲線状の格子溝を有する反
射型回折格子であることを特徴とする光ピックアップ。 2、前記反射型回折格子は、該反射型回折格子に入射す
る光ビームのうち少なくともその光軸上を進行する光ビ
ームが入射する部分の格子溝の並びの方向が前記入射ビ
ームの光軸および前記反射型回折格子の格子溝が刻まれ
る面に立てた法線を共に含む平面に対して略平行である
ことを特徴とする特許請求の範囲第1項に記載の光ピッ
クアップ。
[Claims] 1. A laser light source and an objective lens that focuses a diverging light beam emitted from the laser light source and irradiates it onto an optical information recording medium are provided, and in an optical path between the laser light source and the objective lens. A reflection type diffraction grating provided with uneven grating grooves is arranged obliquely with respect to the optical axis, and the reflection type diffraction grating reflects the diverging light beam emitted from the laser light source and converts the divergent light beam to zero. Separate into second-order and ±first-order diffracted light beams,
In the optical pickup configured to guide each of the diffracted light beams to the objective lens, the reflective diffraction grating includes each of the light source and a second light source provided at a predetermined distance from the light source. When mutually coherent light beams emitted from the reflective diffraction grating are superimposed on the reflective diffraction grating, there is an abbreviation of a cross section of a concave or convex part of the grating groove at the position of either the bright or dark interference fringes that occur. What is claimed is: 1. An optical pickup characterized in that it is a reflection type diffraction grating having curved grating grooves at irregular intervals formed by providing concave and convex portions of the grating grooves such that the central portion thereof is located. 2. The reflection type diffraction grating is such that the direction in which the grating grooves are lined up in the portion where at least the light beam traveling on the optical axis of the light beam incident on the reflection type diffraction grating is incident is aligned with the optical axis of the incident beam. 2. The optical pickup according to claim 1, wherein the optical pickup is substantially parallel to a plane that includes a normal line to a surface on which grating grooves of the reflection type diffraction grating are carved.
JP61219370A 1986-09-19 1986-09-19 Optical pickup Pending JPS6376119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219370A JPS6376119A (en) 1986-09-19 1986-09-19 Optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219370A JPS6376119A (en) 1986-09-19 1986-09-19 Optical pickup

Publications (1)

Publication Number Publication Date
JPS6376119A true JPS6376119A (en) 1988-04-06

Family

ID=16734350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219370A Pending JPS6376119A (en) 1986-09-19 1986-09-19 Optical pickup

Country Status (1)

Country Link
JP (1) JPS6376119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449535A (en) * 1990-06-19 1992-02-18 Alps Electric Co Ltd Optical reader
JPH05101436A (en) * 1991-09-19 1993-04-23 Samsung Electron Co Ltd Optical pickup apparatus utilizing hogram element
JPH09190641A (en) * 1996-01-10 1997-07-22 Nec Corp Optical head device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449535A (en) * 1990-06-19 1992-02-18 Alps Electric Co Ltd Optical reader
JPH05101436A (en) * 1991-09-19 1993-04-23 Samsung Electron Co Ltd Optical pickup apparatus utilizing hogram element
JPH09190641A (en) * 1996-01-10 1997-07-22 Nec Corp Optical head device

Similar Documents

Publication Publication Date Title
KR900007141B1 (en) Optical reproducing apparatus
US5648951A (en) Movable optical head integrally incorporated with objective lens and hologram element
JP2651419B2 (en) Semiconductor laser optical head assembly
JP2683918B2 (en) Device for optically scanning the information surface
US6016300A (en) Optical pickup head apparatus
US5293367A (en) Optical pickup head wherein an error signal is produced by detecting a phase difference in diffraction beams from a holographic optical element
KR100714381B1 (en) Device for reading or writing optical recording media and method for producing a diffraction grating used in such a device
US7852735B2 (en) Optical pickup device
JPH07129980A (en) Optical pickup
JP4751444B2 (en) Optical disk device
JPS58220248A (en) Optical pickup
US5018804A (en) Laser pick-up
KR20060045544A (en) Information processing apparatus and information recording medium
JP2002109778A (en) Optical pickup device
US5648946A (en) Optical pick-up apparatus with holographic optical element to diffract both forward and return light beams
JPS6376119A (en) Optical pickup
JPH0619838B2 (en) Optical playback device
JP3303250B2 (en) Displacement measuring device and optical pickup
JP2683293B2 (en) Optical head device
JPS63191328A (en) Optical head device
JPH0675300B2 (en) Optical head device
KR0176500B1 (en) Optical pick up using hologram element
JP3397880B2 (en) Optical pickup device
JP4216105B2 (en) Optical disk device
JPH09282683A (en) Optical device